Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Genet ; 20(6): e1011285, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885195

ABSTRACT

The control of transcription is crucial for homeostasis in mammals. A previous selective sweep analysis of horse racing performance revealed a 19.6 kb candidate regulatory region 50 kb downstream of the Endothelin3 (EDN3) gene. Here, the region was narrowed to a 5.5 kb span of 14 SNVs, with elite and sub-elite haplotypes analyzed for association to racing performance, blood pressure and plasma levels of EDN3 in Coldblooded trotters and Standardbreds. Comparative analysis of human HiCap data identified the span as an enhancer cluster active in endothelial cells, interacting with genes relevant to blood pressure regulation. Coldblooded trotters with the sub-elite haplotype had significantly higher blood pressure compared to horses with the elite performing haplotype during exercise. Alleles within the elite haplotype were part of the standing variation in pre-domestication horses, and have risen in frequency during the era of breed development and selection. These results advance our understanding of the molecular genetics of athletic performance and vascular traits in both horses and humans.


Subject(s)
Athletic Performance , Blood Pressure , Haplotypes , Horses/genetics , Animals , Humans , Blood Pressure/genetics , Athletic Performance/physiology , Haplotypes/genetics , Endothelin-3/genetics , Polymorphism, Single Nucleotide , Alleles , Male , Endothelial Cells/metabolism
2.
Life Sci Alliance ; 7(3)2024 03.
Article in English | MEDLINE | ID: mdl-38228368

ABSTRACT

Non-small cell lung cancer is often diagnosed at advanced stages, and many patients are still treated with classical chemotherapy. The unselective nature of chemotherapy often results in severe myelosuppression. Previous studies showed that protein-coding mutations could not fully explain the predisposition to myelosuppression. Here, we investigate the possible role of enhancer mutations in myelosuppression susceptibility. We produced transcriptome and promoter-interaction maps (using HiCap) of three blood stem-like cell lines treated with carboplatin or gemcitabine. Taking advantage of publicly available enhancer datasets, we validated HiCap results in silico and in living cells using epigenetic CRISPR technology. We also developed a network approach for interactome analysis and detection of differentially interacting genes. Differential interaction analysis provided additional information on relevant genes and pathways for myelosuppression compared with differential gene expression analysis at the bulk level. Moreover, we showed that enhancers of differentially interacting genes are highly enriched for variants associated with differing levels of myelosuppression. Altogether, our work represents a prominent example of integrative transcriptome and gene regulatory datasets analysis for the functional annotation of noncoding mutations.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Carboplatin/adverse effects , Antineoplastic Agents/adverse effects , Mutation/genetics
3.
Methods Mol Biol ; 2532: 75-94, 2022.
Article in English | MEDLINE | ID: mdl-35867246

ABSTRACT

Targeted chromosome conformation capture (HiCap) is an experimental method for detecting spatial interactions of genomic features such as promoters and/or enhancers. The protocol first describes the design of sequence capture probes. After that, it provides details on the chromosome conformation capture adapted for next-generation sequencing (Hi-C). Finally, the methodology for coupling Hi-C with sequence capture technology is described.


Subject(s)
Chromosomes , Genomics , Chromatin/genetics , Chromosomes/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing , Molecular Conformation , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL