Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Ann Surg Oncol ; 31(6): 3887-3893, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38472675

ABSTRACT

BACKGROUND: The rise of artificial intelligence (AI) in medicine has revealed the potential of ChatGPT as a pivotal tool in medical diagnosis and treatment. This study assesses the efficacy of ChatGPT versions 3.5 and 4.0 in addressing renal cell carcinoma (RCC) clinical inquiries. Notably, fine-tuning and iterative optimization of the model corrected ChatGPT's limitations in this area. METHODS: In our study, 80 RCC-related clinical questions from urology experts were posed three times to both ChatGPT 3.5 and ChatGPT 4.0, seeking binary (yes/no) responses. We then statistically analyzed the answers. Finally, we fine-tuned the GPT-3.5 Turbo model using these questions, and assessed its training outcomes. RESULTS: We found that the average accuracy rates of answers provided by ChatGPT versions 3.5 and 4.0 were 67.08% and 77.50%, respectively. ChatGPT 4.0 outperformed ChatGPT 3.5, with a higher accuracy rate in responses (p < 0.05). By counting the number of correct responses to the 80 questions, we then found that although ChatGPT 4.0 performed better (p < 0.05), both versions were subject to instability in answering. Finally, by fine-tuning the GPT-3.5 Turbo model, we found that the correct rate of responses to these questions could be stabilized at 93.75%. Iterative optimization of the model can result in 100% response accuracy. CONCLUSION: We compared ChatGPT versions 3.5 and 4.0 in addressing clinical RCC questions, identifying their limitations. By applying the GPT-3.5 Turbo fine-tuned model iterative training method, we enhanced AI strategies in renal oncology. This approach is set to enhance ChatGPT's database and clinical guidance capabilities, optimizing AI in this field.


Subject(s)
Artificial Intelligence , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Kidney Neoplasms/pathology , Carcinoma, Renal Cell/pathology , Prognosis
3.
J Cancer ; 15(3): 645-658, 2024.
Article in English | MEDLINE | ID: mdl-38213722

ABSTRACT

Bladder cancer (BCa) stands as a significant malignancy within the genitourinary system. Notably, heat shock proteins (HSPs) exhibit elevated expression in cells subjected to environmental stresses and have been linked to the progression of many human malignancies. Among these, the functional implications and specific mechanism of HSPB8 in BCa have yet to be fully explored. In this study, we measured HSPB8 expression in both BCa tissues and various cell lines, further delving into its influence on cellular behaviors. Our observations pinpoint an upregulation of HSPB8 in BCa, a trend strongly associated with more advanced clinical manifestations. Suppressing HSPB8 exhibited marked reductions in cell proliferation and migration capabilities, while simultaneously amplifying apoptosis and inducing cell cycle arrest. Reinforcing these findings, our in vivo analyses using mouse models showed similar trends. Notably, upon HSPB8 knockdown, levels of specific proteins including eNOS (S1177), Hsp27 (S78/S82), PRAS40(T246), RSK1/2(S221/S227), and STAT3 (S727) decreased, with Hsp27 (S78/S82) and PRAS40(T246) experiencing the most profound drops. Furthermore, the application of an HSP27 inhibitor effectively reversed the phenotypes caused by increased HSPB8 expression. Collectively, our results suggest that elevated HSPB8 expression could act as a potential prognostic marker for BCa, and targeting HSPB8 might open new therapeutic avenues for treating this malignancy.

4.
Int J Surg ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954666

ABSTRACT

BACKGROUND: Artificial intelligence (AI) technologies, particularly large language models (LLMs), have been widely employed by the medical community. In addressing the intricacies of urology, ChatGPT offers a novel possibility to aid in clinical decision-making. This study aimed to investigate the decision-making ability of LLMs in solving complex urology-related problems and assess its effectiveness in providing psychological support to patients with urological disorders. MATERIALS AND METHODS: This study evaluated the clinical and psychological support capabilities of ChatGPT 3.5 and 4.0 in the field of urology. A total of 69 clinical and 30 psychological questions were posed to the AI models, and their responses were evaluated by both urologists and psychologists. As a control, clinicians from Chinese medical institutions provided responses under closed-book conditions. Statistical analyses were conducted separately for each subgroup. RESULTS: In multiple-choice tests covering diverse urological topics, ChatGPT 4.0, performed comparably to the physician group, with no significant overall score difference. Subgroup analyses revealed variable performance, based on disease type and physician experience, with ChatGPT 4.0 generally outperforming ChatGPT 3.5 and exhibiting competitive results against physicians. When assessing the psychological support capabilities of AI, it is evident that ChatGPT4.0 outperforms ChatGPT3.5 across all urology-related psychological problems. CONCLUSIONS: The performance of LLMs in dealing with standardized clinical problems and providing psychological support has certain advantages over clinicians. AI stands out as a promising tool for potential clinical aid.

5.
Cell Death Discov ; 9(1): 283, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37532687

ABSTRACT

Warburg effect plays a crucial role in bladder cancer (Bca) development. However, the mechanism by which glycolysis is involved in Bca remains poorly understood. CircRNAs commonly play a regulatory role in tumor progression. Our study discovered and identified a novel circRNA, hsa_circ_0000235 (circ235), and investigated its role in the glycolytic process, which further results in the progression of Bca. We applied qRT-PCR to assess its clinicopathological relevance and evaluated its proliferation, migration, and glycolytic capacity. We investigated its mechanism using RNA immunoprecipitation, dual-luciferase reporters, and fluorescence in situ hybridization. The findings demonstrated that circ235 was dramatically increased in Bca tissues and was related to a worse prognosis. In vitro studies revealed that circ235 accelerated the rate of extracellular acidification and promoted glucose uptake and lactate manufacture in Bca cells. Additionally, it strengthened the proliferative and migratory capacities. Experiments on animals revealed that downregulating circ235 dramatically reduced carcinogenesis and tumor growth. Circ235 activates monocarboxylate transporter 4 (MCT4) by sponging miR-330-5p, which promotes glycolysis and tumor growth. In conclusion, these findings suggest that circ235 may be a viable molecular marker and therapeutic target for Bca.

6.
Clin Transl Med ; 12(5): e738, 2022 05.
Article in English | MEDLINE | ID: mdl-35522942

ABSTRACT

BACKGROUND: Dysregulation of the epitranscriptome causes abnormal expression of oncogenes in the tumorigenic process. Previous studies have shown that NAT10 can regulate mRNA translation efficiency through RNA acetylation. However, the role of NAT10-mediated acetylation modification in bladder cancer remains elusive. METHODS: The clinical value of NAT10 was estimated according to NAT10 expression pattern based on TCGA data set and the tumor tissue array. Acetylated RNA immunoprecipitation sequencing was utilized to explore the role of NAT10 in mRNA ac4C modification. Translation efficiency and mRNA stability assay were applied to study the effect of NAT10-deletion on target genes. The nude mouse model and genetically engineered mice were conducted to further verify the characteristics of NAT10 in promoting BLCA progression and regulating downstream targets. RESULTS: NAT10 was essential for the proliferation, migration, invasion, survival and the stem-cell-like properties of bladder cancer cell lines. NAT10 was responsible for mRNA ac4C modification in BLCA cells, including BCL9L, SOX4 and AKT1. Deficient NAT10 in both xenograft and transgenic mouse models of bladder cancer reduced the tumor burden. Furthermore, acetylated RNA immunoprecipitation sequencing data and RNA immunoprecipitation qPCR results revealed that NAT10 is responsible for a set of ac4C mRNA modifications in bladder cancer cells. Inhibition of NAT10 led to a loss of ac4C peaks in these transcripts and represses the mRNA's stability and protein expression. Mechanistically, the ac4C reduction modification in specific regions of mRNAs resulting from NAT10 downregulation impaired the translation efficiency of BCL9L, SOX4 and AKT1 as well as the stability of BCL9L, SOX4. CONCLUSIONS: In summary, these findings provide new insights into the dynamic characteristics of mRNA's post-transcriptional modification via NAT10-dependent acetylation and predict a role for NAT10 as a therapeutic target in bladder cancer. HIGHLIGHTS: NAT10 is highly expressed in BLCA patients and its abnormal level predicts bladder cancer progression and low overall survival rate. NAT10 is necessary and sufficient for BLCA tumourigenic properties. NAT10 is responsible for ac4C modification of target transcripts, including BCL9L, SOX4 and AKT1. NAT10 may serve as an effective and novel therapeutic target for BLCA.


Subject(s)
N-Terminal Acetyltransferases , Urinary Bladder Neoplasms , Animals , Cytidine/analogs & derivatives , Cytidine/genetics , Humans , Mice , N-Terminal Acetyltransferases/metabolism , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , SOXC Transcription Factors , Urinary Bladder Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL