Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Plant Cell ; 35(1): 369-389, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36173348

ABSTRACT

Maize (Zea mays) originated in southern Mexico and has spread over a wide latitudinal range. Maize expansion from tropical to temperate regions has necessitated a reduction of its photoperiod sensitivity. In this study, we cloned a quantitative trait locus (QTL) regulating flowering time in maize and show that the maize ortholog of Arabidopsis thaliana EARLY FLOWERING3, ZmELF3.1, is the causal locus. We demonstrate that ZmELF3.1 and ZmELF3.2 proteins can physically interact with ZmELF4.1/4.2 and ZmLUX1/2, to form evening complex(es; ECs) in the maize circadian clock. Loss-of-function mutants for ZmELF3.1/3.2 and ZmLUX1/2 exhibited delayed flowering under long-day and short-day conditions. We show that EC directly represses the expression of several flowering suppressor genes, such as the CONSTANS, CONSTANS-LIKE, TOC1 (CCT) genes ZmCCT9 and ZmCCT10, ZmCONSTANS-LIKE 3, and the PSEUDORESPONSE REGULATOR (PRR) genes ZmPRR37a and ZmPRR73, thus alleviating their inhibition, allowing florigen gene expression and promoting flowering. Further, we identify two closely linked retrotransposons located in the ZmELF3.1 promoter that regulate the expression levels of ZmELF3.1 and may have been positively selected during postdomestication spread of maize from tropical to temperate regions during the pre-Columbian era. These findings provide insights into circadian clock-mediated regulation of photoperiodic flowering in maize and new targets of genetic improvement for breeding.


Subject(s)
Arabidopsis , Zea mays , Zea mays/metabolism , Flowers/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Adaptation, Physiological/genetics , Acclimatization/genetics , Photoperiod , Arabidopsis/metabolism , Gene Expression Regulation, Plant/genetics
2.
Plant Cell ; 33(12): 3621-3644, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34726755

ABSTRACT

Inflorescence architecture is an important determinant of crop productivity. The number of spikelets produced by the wheat inflorescence meristem (IM) before its transition to a terminal spikelet (TS) influences the maximum number of grains per spike. Wheat MADS-box genes VERNALIZATION 1 (VRN1) and FRUITFULL 2 (FUL2) (in the SQUAMOSA-clade) are essential to promote the transition from IM to TS and for spikelet development. Here we show that SQUAMOSA genes contribute to spikelet identity by repressing MADS-box genes VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2), SHORT VEGETATIVE PHASE 1 (SVP1), and SVP3 in the SVP clade. Constitutive expression of VRT2 resulted in leafy glumes and lemmas, reversion of spikelets to spikes, and downregulation of MADS-box genes involved in floret development, whereas the vrt2 mutant reduced vegetative characteristics in spikelets of squamosa mutants. Interestingly, the vrt2 svp1 mutant showed similar phenotypes to squamosa mutants regarding heading time, plant height, and spikelets per spike, but it exhibited unusual axillary inflorescences in the elongating stem. We propose that SQUAMOSA-SVP interactions are important to promote heading, formation of the TS, and stem elongation during the early reproductive phase, and that downregulation of SVP genes is then necessary for normal spikelet and floral development. Manipulating SVP and SQUAMOSA genes can contribute to engineering spike architectures with improved productivity.


Subject(s)
Meristem/genetics , Plant Leaves/growth & development , Plant Proteins/genetics , Triticum/genetics , Meristem/growth & development , Plant Leaves/genetics , Plant Proteins/metabolism , Triticum/growth & development
3.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33593903

ABSTRACT

Inflorescence architecture dictates the number of flowers and, ultimately, seeds. The architectural discrepancies between two related cereals, barley and wheat, are controlled by differences in determinacy of inflorescence and spikelet meristems. Here, we characterize two allelic series of mutations named intermedium-m (int-m) and double seed1 (dub1) that convert barley indeterminate inflorescences into wheat-like determinate inflorescences bearing a multifloreted terminal spikelet and spikelets with additional florets. INT-M/DUB1 encodes an APETALA2-like transcription factor (HvAP2L-H5) that suppresses ectopic and precocious spikelet initiation signals and maintains meristem activity. HvAP2L-H5 inhibits the identity shift of an inflorescence meristem (IM) to a terminal spikelet meristem (TSM) in barley. Null mutations in AP2L-5 lead to fewer spikelets per inflorescence but extra florets per spikelet. In wheat, prolonged and elevated AP2L-A5 activity in rAP2L-A5 mutants delays but does not suppress the IM-TSM transition. We hypothesize that the regulation of AP2L-5 orthologs and downstream genes contributes to the different inflorescence determinacy in barley and wheat. We show that AP2L-5 proteins are evolutionarily conserved in grasses, promote IM activity, and restrict floret number per spikelet. This study provides insights into the regulation of spikelet and floret number, and hence grain yield in barley and wheat.


Subject(s)
Gene Expression Regulation, Plant , Hordeum/growth & development , Inflorescence/growth & development , Mutation , Plant Proteins/metabolism , Hordeum/genetics , Hordeum/metabolism , Inflorescence/genetics , Inflorescence/metabolism , Plant Proteins/genetics
4.
Plant Physiol ; 190(1): 60-71, 2022 08 29.
Article in English | MEDLINE | ID: mdl-35640983

ABSTRACT

Spikelets are highly specialized and short-lived branches and function as a constitutional unit of the complex grass inflorescences. A series of genetic, genomic, and developmental studies across different clades of the family have called for and permitted a synthesis on the regulation and evolution of spikelets, and hence inflorescence diversity. Here, we have revisited the identity specification of a spikelet, focusing on the diagnostic features of a spikelet from morphological, developmental, and molecular perspectives. Particularly, recent studies on a collection of barley (Hordeum vulgare L.), wheat (Triticum spp.), and rice (Oryza sativa L.) mutants have highlighted a set of transcription factors that are important in the control of spikelet identity and the patterning of floral parts of a spikelet. In addition, we have endeavored to clarify some puzzling issues on the (in)determinacy and modifications of spikelets over the course of evolution. Meanwhile, genomes of two sister taxa of the remaining grass species have again demonstrated the importance of genome duplication and subsequent gene losses on the evolution of spikelets. Accordingly, we argue that changes in the orthologs of spikelet-related genes could be critical for the development and evolution of the spikelet, an evolutionary innovation in the grass family. Likewise, the conceptual discussions on the regulation of a fundamental unit of compound inflorescences could be translated into other organismal groups where compound structures are similarly formed, permitting a comparative perspective on the control of biological complexity.


Subject(s)
Hordeum , Oryza , Gene Expression Regulation, Plant , Hordeum/genetics , Hordeum/metabolism , Inflorescence/genetics , Meristem/genetics , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Poaceae/metabolism , Triticum/genetics
5.
Plant J ; 100(1): 158-175, 2019 10.
Article in English | MEDLINE | ID: mdl-31183889

ABSTRACT

Angiosperm petal fusion (sympetaly) has evolved multiple times independently and is associated with increased specificity between plants and their pollinators. To uncover developmental genetic changes that might have led to the evolution of sympetaly in the asterid core eudicot genus Petunia (Solanaceae), we carried out global and fine-scale gene expression analyses in different regions of the corolla. We found that, despite several similarities with the choripetalous model species Arabidopsis thaliana in the proximal-distal transcriptome, the Petunia axillaris fused and proximal corolla tube expresses several genes that in A. thaliana are associated with the distal petal region. This difference aligns with variation in petal shape and fusion across ontogeny of the two species. Moreover, differential gene expression between the unfused lobes and fused tube of P. axillaris petals revealed three strong candidate genes for sympetaly based on functional annotation in organ boundary specification. Partial silencing of one of these, the HANABA TARANU (HAN)-like gene PhGATA19, resulted in reduced fusion of Petunia hybrida petals, with silencing of both PhGATA19 and its close paralog causing premature plant senescence. Finally, detailed expression analyses for the previously characterized organ boundary gene candidate NO APICAL MERISTEM (NAM) supports the hypothesis that it establishes boundaries between most P. axillaris floral organs, with the exception of boundaries between petals.


Subject(s)
Arabidopsis/genetics , Flowers/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Meristem/genetics , Petunia/genetics , Arabidopsis/growth & development , Arabidopsis/ultrastructure , Bayes Theorem , Flowers/growth & development , Flowers/ultrastructure , Magnoliopsida/classification , Magnoliopsida/genetics , Meristem/growth & development , Meristem/ultrastructure , Microscopy, Electron, Scanning , Petunia/growth & development , Petunia/ultrastructure , Phenotype , Phylogeny , Plant Proteins/genetics , Species Specificity
6.
Plant Physiol ; 180(2): 1013-1030, 2019 06.
Article in English | MEDLINE | ID: mdl-31004004

ABSTRACT

CENTRORADIALIS (CEN) is a key regulator of flowering time and inflorescence architecture in plants. Natural variation in the barley (Hordeum vulgare) homolog HvCEN is important for agricultural range expansion of barley cultivation, but its effects on shoot and spike architecture and consequently yield have not yet been characterized. Here, we evaluated 23 independent hvcen, also termed mat-c, mutants to determine the pleiotropic effects of HvCEN on developmental timing and shoot and spike morphologies of barley under outdoor and controlled conditions. All hvcen mutants flowered early and showed a reduction in spikelet number per spike, tiller number, and yield in the outdoor experiments. Mutations in hvcen accelerated spikelet initiation and reduced axillary bud number in a photoperiod-independent manner but promoted floret development only under long days (LDs). The analysis of a flowering locus t3 (hvft3) hvcen double mutant showed that HvCEN interacts with HvFT3 to control spikelet initiation. Furthermore, early flowering3 (hvelf3) hvcen double mutants with high HvFT1 expression levels under short days suggested that HvCEN interacts with HvFT1 to repress floral development. Global transcriptome profiling in developing shoot apices and inflorescences of mutant and wild-type plants revealed that HvCEN controlled transcripts involved in chromatin remodeling activities, cytokinin and cell cycle regulation and cellular respiration under LDs and short days, whereas HvCEN affected floral homeotic genes only under LDs. Understanding the stage and organ-specific functions of HvCEN and downstream molecular networks will allow the manipulation of different shoot and spike traits and thereby yield.


Subject(s)
Flowers/growth & development , Flowers/genetics , Genes, Plant , Hordeum/genetics , Plant Proteins/genetics , Seeds/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Homeobox , Hordeum/anatomy & histology , Hordeum/growth & development , Mutation/genetics , Phenotype , Photoperiod , Plant Proteins/metabolism , Plant Shoots/genetics , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproduction
7.
New Phytol ; 217(2): 925-938, 2018 01.
Article in English | MEDLINE | ID: mdl-29091285

ABSTRACT

Angiosperm adaptations to seasonally cold climates have occurred multiple times independently. However, the observation that less than half of all angiosperm families are represented in temperate latitudes suggests internal constraints on the evolution of cold tolerance/avoidance strategies. Similar to angiosperms as a whole, grasses are primarily tropical, but one major clade, subfamily Pooideae, radiated extensively within temperate regions. It is posited that this Pooideae niche transition was facilitated by an early origin of long-term cold responsiveness around the base of the subfamily, and that a set of more ancient pathways enabled evolution of seasonal cold tolerance. To test this, we compared transcriptome-level responses of disparate Pooideae to short-/long-term cold and with those previously known in the subtropical grass rice (Ehrhartoideae). Analyses identified several highly conserved cold-responsive 'orthogroups' within our focal Pooideae species that originated successively during the diversification of land plants, predominantly via gene duplication. The majority of conserved Pooideae cold-responsive genes appear to have ancient roles in stress responses, with most of the orthogroups also being sensitive to cold in rice. However, a subgroup of genes was likely co-opted de novo early in the Pooideae. These results highlight a plausible stepwise evolutionary trajectory for cold adaptations across Pooideae.


Subject(s)
Biological Evolution , Poaceae/genetics , Tropical Climate , Cold Temperature , Gene Expression Regulation, Plant , Genes, Plant , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Oryza/genetics , Phylogeny , Principal Component Analysis , Species Specificity
8.
Ann Bot ; 119(7): 1211-1223, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28334152

ABSTRACT

Background and Aims: Independent evolution of derived complex characters provides a unique opportunity to assess whether and how similar genetic changes correlate with morphological convergence. Bilaterally symmetrical corollas have evolved multiple times independently from radially symmetrical ancestors and likely represent adaptations to attract specific pollinators. On the other hand, losses of bilateral corolla symmetry have occurred sporadically in various groups, due to either modification of bilaterally symmetrical corollas in late development or early establishment of radial symmetry. Methods: This study integrated phylogenetic, scanning electron microscopy (SEM)-based morphological, and gene expression approaches to assess the possible mechanisms underlying independent evolutionary losses of corolla bilateral symmetry. Key Results: This work compared three species of Lamiaceae having radially symmetrical mature corollas with a representative sister taxon having bilaterally symmetrical corollas and found that each reaches radial symmetry in a different way. Higher core Lamiales share a common duplication in the CYCLOIDEA (CYC ) 2 gene lineage and show conserved and asymmetrical expression of CYC2 clade and RAD genes along the adaxial-abaxial floral axis in species having bilateral corolla symmetry. In Lycopus americanus , the development and expression pattern of La-CYC2A and La-CYC2B are similar to those of their bilaterally symmetrical relatives, whereas the loss of La-RAD expression correlates with a late switch to radial corolla symmetry. In Mentha longifolia , late radial symmetry may be explained by the loss of Ml-CYC2A , and by altered expression of two Ml-CYC2B and Ml-RAD genes . Finally, expanded expression of Cc-CYC2A and Cc-RAD strongly correlates with the early development of radially symmetrical corollas in Callicarpa cathayana . Conclusions: Repeated losses of mature corolla bilateral symmetry in Lamiaceae are not uncommon, and may be achieved by distinct mechanisms and various changes to symmetry genes, including the loss of a CYC2 clade gene from the genome, and/or contraction, expansion or alteration of CYC2 clade and RAD -like gene expression.


Subject(s)
Biological Evolution , Flowers/anatomy & histology , Lamiaceae/anatomy & histology , Phylogeny , Animals , Conserved Sequence , Genes, Plant , Lamiaceae/genetics , Microscopy, Electron, Scanning
9.
Proc Natl Acad Sci U S A ; 111(42): 15149-54, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25288748

ABSTRACT

The role of polyploidy, particularly allopolyploidy, in plant diversification is a subject of debate. Whole-genome duplications precede the origins of many major clades (e.g., angiosperms, Brassicaceae, Poaceae), suggesting that polyploidy drives diversification. However, theoretical arguments and empirical studies suggest that polyploid lineages may actually have lower speciation rates and higher extinction rates than diploid lineages. We focus here on the grass tribe Andropogoneae, an economically and ecologically important group of C4 species with a high frequency of polyploids. A phylogeny was constructed for ca. 10% of the species of the clade, based on sequences of four concatenated low-copy nuclear loci. Genetic allopolyploidy was documented using the characteristic pattern of double-labeled gene trees. At least 32% of the species sampled are the result of genetic allopolyploidy and result from 28 distinct tetraploidy events plus an additional six hexaploidy events. This number is a minimum, and the actual frequency could be considerably higher. The parental genomes of most Andropogoneae polyploids diverged in the Late Miocene coincident with the expansion of the major C4 grasslands that dominate the earth today. The well-documented whole-genome duplication in Zea mays ssp. mays occurred after the divergence of Zea and Sorghum. We find no evidence that polyploidization is followed by an increase in net diversification rate; nonetheless, allopolyploidy itself is a major mode of speciation.


Subject(s)
Diploidy , Genetic Speciation , Grassland , Polyploidy , Bayes Theorem , Biological Evolution , Computational Biology , Genes, Plant , Genome , Genomics , Likelihood Functions , Phylogeny , Poaceae , Sequence Analysis, DNA
10.
New Phytol ; 208(2): 330-5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26094556

ABSTRACT

One of the most striking innovations in flower development is the congenital or postgenital union of petals (sympetaly) which has enabled dramatic specialization in flower structure and possibly accelerated speciation rates. Sympetalous flowers exhibit extraordinary variation in development, including the degree and timing of fusion, and fusion with other floral organs. Different axes of corolla tube complexity can be disentangled at the developmental level, with most variation being explained by differences in coordinated growth between interconnected and lobed regions of neighboring petal primordia, and between lower and upper portions of the corolla tube, defined by the stamen insertion boundary. Genetically, inter- and intra-specific variation in the degree of petal fusion is controlled by various inputs from genes that affect organ boundary and lateral growth, signaling between different cell types, and production of the cuticle. It is thus hypothesized that the evolution and diversification of fused petals, at least within the megadiverse Asteridae clade of core eudicots, have occurred through the modification of a conserved genetic pathway previously involved in free petal development.


Subject(s)
Biological Evolution , Flowers/physiology , Body Patterning , Magnoliopsida , Models, Biological
11.
New Phytol ; 205(2): 852-68, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25329857

ABSTRACT

Duplication, retention, and expression of CYCLOIDEA2 (CYC2)-like genes are thought to affect evolution of corolla symmetry. However, exactly what and how changes in CYC2-like genes correlate with the origin of corolla zygomorphy are poorly understood. We inferred and calibrated a densely sampled phylogeny of CYC2-like genes across the Lamiales and examined their expression in early diverging (EDL) and higher core clades (HCL). CYC2-like genes duplicated extensively in Lamiales, at least six times in core Lamiales (CL) around the Cretaceous-Paleogene (K-Pg) boundary, and seven more in EDL relatively more recently. Nested duplications and losses of CYC2-like paralogs are pervasive but may not correlate with transitions in corolla symmetry. We found evidence for dN/dS (ω) variation following gene duplications. CYC2-like paralogs in HCL show differential expression with higher expression in adaxial petals. Asymmetric expression but not recurrent duplication of CYC2-like genes correlates with the origin of corolla zygomorphy. Changes in both cis-regulatory and coding domains of CYC2-like genes are probably crucial for the evolution of corolla zygomorphy. Multiple selection regimes appear likely to play important roles in gene retention. The parallel duplications of CYC2-like genes are after the initial diversification of bumble bees and Euglossine bees.


Subject(s)
Flowers/physiology , Gene Duplication , Gene Expression Regulation, Plant , Magnoliopsida/genetics , Biological Evolution , Evolution, Molecular , Phylogeny , Plant Proteins/genetics
12.
Am J Bot ; 102(8): 1260-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26290549

ABSTRACT

UNLABELLED: • PREMISE OF THE STUDY: CYCLOIDEA2 (CYC2)-like and RADIALIS (RAD)-like genes are needed for the normal development of corolla bilateral symmetry in Antirrhinum majus L. (snapdragon, Plantaginaceae, Lamiales). However, if and how changes in expression of CYC2-like and RAD-like genes correlate with the origin of corolla bilateral symmetry early in Lamiales remains largely unknown. The asymmetrical expression of CYC2-like and/or RAD-like genes during floral meristem development could be ancestral or derived in Plantaginaceae.• METHODS: We used in situ RNA localization to examine the expression of CYC2-like and RAD-like genes in two early-diverging Lamiales.• KEY RESULTS: CYC2-like and RAD-like genes are expressed broadly in the floral meristems in early-diverging Lamiales with radially symmetrical corollas, in contrast to their restricted expression in adaxial/lateral regions in core Lamiales. The expression pattern of CYC2-like genes has evolved in stepwise fashion, in that CYC2-like genes are likely expressed briefly in the floral meristem during flower development in sampled Oleaceae; prolonged expression of CYC2-like genes in petals originated in the common ancestor of Tetrachondraceae and core Lamiales, and asymmetrical expression in adaxial/lateral petals appeared later, in the common ancestor of the core Lamiales. Likewise, expression of RAD-like genes in petals appeared in early-diverging Lamiales or earlier; asymmetrical expression in adaxial/lateral petals then appeared in core Lamiales.• CONCLUSIONS: These data plus published reports of CYC2-like and RAD-like genes show that asymmetrical expression of these two genes is likely derived and correlates with the origins of corolla bilateral symmetry.


Subject(s)
Biological Evolution , Flowers/growth & development , Gene Expression Regulation, Plant , Lamiales/classification , Lamiales/genetics , Plant Proteins/genetics , Flowers/genetics , Lamiales/growth & development , Lamiales/metabolism , Phylogeny , Plant Proteins/metabolism
13.
Curr Opin Plant Biol ; 81: 102574, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917775

ABSTRACT

Reiterative shoot branching largely defines important yield components of crops and is essentially controlled by programs that direct the initiation, dormancy release, and differentiation of meristems in the axils of leaves. Here, we focus on meristem determinacy, defining the number of reiterations that shape the shoot architectures and exhibit enormous diversity in a wide range of species. The meristem determinacy per se is hierarchically complex and context-dependent for the successively emerged meristems, representing a crucial mechanism in shaping the complexity of the shoot branching. In addition, we have highlighted that two key components of axillary meristem developmental programs may have been co-opted in controlling flower/ear number of an axillary inflorescence in legumes/maize, hinting at the diversification of axillary-meristem-patterning programs in different lineages. This begs the question how axillary meristem patterning programs may have diversified during plant evolution and hence helped shape the rich variation in shoot branching systems.

14.
Am J Bot ; 99(11): e443-6, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23108465

ABSTRACT

PREMISE OF THE STUDY: Polyploidy is common in the grasses and low-copy nuclear loci are needed to further our understanding of phylogenetic relationships. METHODS AND RESULTS: Genetic and genomic resources were combined to identify loci known to influence plant and inflorescence architecture. Degenerate primers were designed and tested to amplify regions of 11 nuclear-encoded loci across the panicoid grasses. CONCLUSIONS: The primers designed in this study amplify regions of a diverse set of genes within the panicoid grasses. Properly employed, these markers will allow the identification of allopolyploid taxa and their diploid progenitors.


Subject(s)
Cell Nucleus/genetics , Genes, Plant/genetics , Phylogeny , Poaceae/genetics , DNA Primers/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Genetic Variation , Molecular Sequence Data , Poaceae/classification , Polymerase Chain Reaction , Sequence Analysis, DNA , Species Specificity
15.
Trends Plant Sci ; 27(6): 564-576, 2022 06.
Article in English | MEDLINE | ID: mdl-34973922

ABSTRACT

A major challenge in biology is to understand how organisms have increased developmental complexity during evolution. Inflorescences, with remarkable variation in branching systems, are a fitting model to understand architectural complexity. Inflorescences bear flowers that may become fruits and/or seeds, impacting crop productivity and species fitness. Great advances have been achieved in understanding the regulation of complex inflorescences, particularly in economically and ecologically important grasses and legumes. Surprisingly, a synthesis is still lacking regarding the common or distinct principles underlying the regulation of inflorescence complexity. Here, we synthesize the similarities and differences in the regulation of compound inflorescences in grasses and legumes, and propose that the emergence of novel higher-order repetitive modules is key to the evolution of inflorescence complexity.


Subject(s)
Fabaceae , Inflorescence , Flowers , Inflorescence/physiology , Poaceae
16.
Sci Adv ; 6(11): eaay3240, 2020 03.
Article in English | MEDLINE | ID: mdl-32195345

ABSTRACT

Seeds of the desert shrub, jojoba (Simmondsia chinensis), are an abundant, renewable source of liquid wax esters, which are valued additives in cosmetic products and industrial lubricants. Jojoba is relegated to its own taxonomic family, and there is little genetic information available to elucidate its phylogeny. Here, we report the high-quality, 887-Mb genome of jojoba assembled into 26 chromosomes with 23,490 protein-coding genes. The jojoba genome has only the whole-genome triplication (γ) shared among eudicots and no recent duplications. These genomic resources coupled with extensive transcriptome, proteome, and lipidome data helped to define heterogeneous pathways and machinery for lipid synthesis and storage, provided missing evolutionary history information for this taxonomically segregated dioecious plant species, and will support efforts to improve the agronomic properties of jojoba.


Subject(s)
Caryophyllales , Genome, Plant , Seeds , Waxes/metabolism , Caryophyllales/classification , Caryophyllales/genetics , Caryophyllales/metabolism , Esters/metabolism , Seeds/genetics , Seeds/metabolism
17.
G3 (Bethesda) ; 6(5): 1239-49, 2016 05 03.
Article in English | MEDLINE | ID: mdl-26921300

ABSTRACT

The timing of reproduction in response to variable environmental conditions is critical to plant fitness, and is a major driver of taxon differentiation. In the yellow monkey flower, Mimulus guttatus, geographically distinct North American populations vary in their photoperiod and chilling (vernalization) requirements for flowering, suggesting strong local adaptation to their surroundings. Previous analyses revealed quantitative trait loci (QTL) underlying short-day mediated vernalization responsiveness using two annual M. guttatus populations that differed in their vernalization response. To narrow down candidate genes responsible for this variation, and to reveal potential downstream genes, we conducted comparative transcriptomics and quantitative PCR (qPCR) in shoot apices of parental vernalization responsive IM62, and unresponsive LMC24 inbred lines grown under different photoperiods and temperatures. Our study identified several metabolic, hormone signaling, photosynthetic, stress response, and flowering time genes that are differentially expressed between treatments, suggesting a role for their protein products in short-day-mediated vernalization responsiveness. Only a small subset of these genes intersected with candidate genes from the previous QTL study, and, of the main candidates tested with qPCR under nonpermissive conditions, only SHORT VEGETATIVE PHASE (SVP) gene expression met predictions for a population-specific short-day-repressor of flowering that is repressed by cold.


Subject(s)
Cold Temperature , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene-Environment Interaction , Genes, Plant , Mimulus/genetics , Transcriptome , Computational Biology/methods , Flowers/genetics , Gene Expression Profiling/methods , Mimulus/classification , Molecular Sequence Annotation , Phenotype , Photoperiod , Phylogeny , Plant Leaves , Quantitative Trait Loci
18.
Stand Genomic Sci ; 9(3): 562-73, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-25197444

ABSTRACT

Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Anabaena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40(°) C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence.

19.
PLoS One ; 7(6): e38702, 2012.
Article in English | MEDLINE | ID: mdl-22719924

ABSTRACT

Polyploidy poses challenges for phylogenetic reconstruction because of the need to identify and distinguish between homoeologous loci. This can be addressed by use of low copy nuclear markers. Panicum s.s. is a genus of about 100 species in the grass tribe Paniceae, subfamily Panicoideae, and is divided into five sections. Many of the species are known to be polyploids. The most well-known of the Panicum polyploids are switchgrass (Panicum virgatum) and common or Proso millet (P. miliaceum). Switchgrass is in section Virgata, along with P. tricholaenoides, P. amarum, and P. amarulum, whereas P. miliaceum is in sect. Panicum. We have generated sequence data from five low copy nuclear loci and two chloroplast loci and have clarified the origin of P. virgatum. We find that all members of sects. Virgata and Urvilleana are the result of diversification after a single allopolyploidy event. The closest diploid relatives of switchgrass are in sect. Rudgeana, native to Central and South America. Within sections Virgata and Urvilleana, P. tricholaenoides is sister to the remaining species. Panicum racemosum and P. urvilleanum form a clade, which may be sister to P. chloroleucum. Panicum amarum, P. amarulum, and the lowland and upland ecotypes of P. virgatum together form a clade, within which relationships are complex. Hexaploid and octoploid plants are likely allopolyploids, with P. amarum and P. amarulum sharing genomes with P. virgatum. Octoploid P. virgatum plants are formed via hybridization between disparate tetraploids. We show that polyploidy precedes diversification in a complex set of polyploids; our data thus suggest that polyploidy could provide the raw material for diversification. In addition, we show two rounds of allopolyploidization in the ancestry of switchgrass, and identify additional species that may be part of its broader gene pool. This may be relevant for development of the crop for biofuels.


Subject(s)
Cell Nucleus/genetics , Genes, Plant , Panicum/genetics , Polyploidy , Base Sequence , Bayes Theorem , Chloroplasts/genetics , Cloning, Molecular , DNA Primers , Flow Cytometry , Panicum/classification , Phylogeny , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL