Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 818
Filter
Add more filters

Publication year range
1.
Cell ; 186(22): 4773-4787.e12, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37806310

ABSTRACT

Pollen-pistil interactions establish interspecific/intergeneric pre-zygotic hybridization barriers in plants. The rejection of undesired pollen at the stigma is crucial to avoid outcrossing but can be overcome with the support of mentor pollen. The mechanisms underlying this hybridization barrier are largely unknown. Here, in Arabidopsis, we demonstrate that receptor-like kinases FERONIA/CURVY1/ANJEA/HERCULES RECEPTOR KINASE 1 and cell wall proteins LRX3/4/5 interact on papilla cell surfaces with autocrine stigmatic RALF1/22/23/33 peptide ligands (sRALFs) to establish a lock that blocks the penetration of undesired pollen tubes. Compatible pollen-derived RALF10/11/12/13/25/26/30 peptides (pRALFs) act as a key, outcompeting sRALFs and enabling pollen tube penetration. By treating Arabidopsis stigmas with synthetic pRALFs, we unlock the barrier, facilitating pollen tube penetration from distantly related Brassicaceae species and resulting in interspecific/intergeneric hybrid embryo formation. Therefore, we uncover a "lock-and-key" system governing the hybridization breadth of interspecific/intergeneric crosses in Brassicaceae. Manipulating this system holds promise for facilitating broad hybridization in crops.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Peptide Hormones , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassicaceae/genetics , Brassicaceae/metabolism , Peptide Hormones/metabolism , Peptides/metabolism , Pollen/metabolism , Pollen Tube/metabolism , Reproductive Isolation
2.
Mol Cell ; 83(18): 3234-3235, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37738962

ABSTRACT

A recent study by Liang et al.1 reveals that interacting enhancer RNAs (eRNAs) and promoter-transcribed upstream antisense RNAs (uaRNAs) can identify enhancer-promoter interactions. Complementary sequences within the interacting eRNAs and uaRNAs, predominantly Alu sequences, confer the specificity for eRNA-uaRNA pairing and hence enhancer-promoter recognition.


Subject(s)
DNA Transposable Elements , Regulatory Sequences, Nucleic Acid , DNA Transposable Elements/genetics , Promoter Regions, Genetic , RNA, Antisense , Alu Elements/genetics
3.
Mol Cell ; 83(15): 2624-2640, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37419111

ABSTRACT

The four-dimensional nucleome (4DN) consortium studies the architecture of the genome and the nucleus in space and time. We summarize progress by the consortium and highlight the development of technologies for (1) mapping genome folding and identifying roles of nuclear components and bodies, proteins, and RNA, (2) characterizing nuclear organization with time or single-cell resolution, and (3) imaging of nuclear organization. With these tools, the consortium has provided over 2,000 public datasets. Integrative computational models based on these data are starting to reveal connections between genome structure and function. We then present a forward-looking perspective and outline current aims to (1) delineate dynamics of nuclear architecture at different timescales, from minutes to weeks as cells differentiate, in populations and in single cells, (2) characterize cis-determinants and trans-modulators of genome organization, (3) test functional consequences of changes in cis- and trans-regulators, and (4) develop predictive models of genome structure and function.


Subject(s)
Cell Nucleus , Genome , Genome/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatin/metabolism
4.
Nature ; 628(8008): 648-656, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538789

ABSTRACT

Dynamically organized chromatin complexes often involve multiplex chromatin interactions and sometimes chromatin-associated RNA1-3. Chromatin complex compositions change during cellular differentiation and ageing, and are expected to be highly heterogeneous among terminally differentiated single cells4-7. Here we introduce the multinucleic acid interaction mapping in single cells (MUSIC) technique for concurrent profiling of multiplex chromatin interactions, gene expression and RNA-chromatin associations within individual nuclei. When applied to 14 human frontal cortex samples from older donors, MUSIC delineated diverse cortical cell types and states. We observed that nuclei exhibiting fewer short-range chromatin interactions were correlated with both an 'older' transcriptomic signature and Alzheimer's disease pathology. Furthermore, the cell type exhibiting chromatin contacts between cis expression quantitative trait loci and a promoter tends to be that in which these cis expression quantitative trait loci specifically affect the expression of their target gene. In addition, female cortical cells exhibit highly heterogeneous interactions between XIST non-coding RNA and chromosome X, along with diverse spatial organizations of the X chromosomes. MUSIC presents a potent tool for exploration of chromatin architecture and transcription at cellular resolution in complex tissues.


Subject(s)
Aging , Cell Nucleus , Chromatin , Frontal Lobe , RNA , Single-Cell Analysis , Aged , Female , Humans , Male , Aging/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Cell Nucleus/genetics , Cellular Senescence/genetics , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Human, X/genetics , Chromosomes, Human, X/metabolism , Frontal Lobe/metabolism , Gene Expression Profiling/methods , Promoter Regions, Genetic , Quantitative Trait Loci , RNA/genetics , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Single-Cell Analysis/methods , Transcription, Genetic
5.
Mol Cell ; 81(19): 4091-4103.e9, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34348091

ABSTRACT

We describe PROPER-seq (protein-protein interaction sequencing) to map protein-protein interactions (PPIs) en masse. PROPER-seq first converts transcriptomes of input cells into RNA-barcoded protein libraries, in which all interacting protein pairs are captured through nucleotide barcode ligation, recorded as chimeric DNA sequences, and decoded at once by sequencing and mapping. We applied PROPER-seq to human embryonic kidney cells, T lymphocytes, and endothelial cells and identified 210,518 human PPIs (collected in the PROPER v.1.0 database). Among these, 1,365 and 2,480 PPIs are supported by published co-immunoprecipitation (coIP) and affinity purification-mass spectrometry (AP-MS) data, 17,638 PPIs are predicted by the prePPI algorithm without previous experimental validation, and 100 PPIs overlap human synthetic lethal gene pairs. In addition, four previously uncharacterized interaction partners with poly(ADP-ribose) polymerase 1 (PARP1) (a critical protein in DNA repair) known as XPO1, MATR3, IPO5, and LEO1 are validated in vivo. PROPER-seq presents a time-effective technology to map PPIs at the transcriptome scale, and PROPER v.1.0 provides a rich resource for studying PPIs.


Subject(s)
Computational Biology , Gene Expression Profiling , Protein Interaction Mapping , Protein Interaction Maps , Proteins/genetics , Proteins/metabolism , RNA-Seq , Transcriptome , Databases, Genetic , Female , Genes, Lethal , HEK293 Cells , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Jurkat Cells , Karyopherins/genetics , Karyopherins/metabolism , Kidney/metabolism , Male , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Software , T-Lymphocytes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , beta Karyopherins/genetics , beta Karyopherins/metabolism , Exportin 1 Protein
6.
Cell ; 149(6): 1381-92, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22682255

ABSTRACT

Despite the explosive growth of genomic data, functional annotation of regulatory sequences remains difficult. Here, we introduce "comparative epigenomics"-interspecies comparison of DNA and histone modifications-as an approach for annotation of the regulatory genome. We measured in human, mouse, and pig pluripotent stem cells the genomic distributions of cytosine methylation, H2A.Z, H3K4me1/2/3, H3K9me3, H3K27me3, H3K27ac, H3K36me3, transcribed RNAs, and P300, TAF1, OCT4, and NANOG binding. We observed that epigenomic conservation was strong in both rapidly evolving and slowly evolving DNA sequences, but not in neutrally evolving sequences. In contrast, evolutionary changes of the epigenome and the transcriptome exhibited a linear correlation. We suggest that the conserved colocalization of different epigenomic marks can be used to discover regulatory sequences. Indeed, seven pairs of epigenomic marks identified exhibited regulatory functions during differentiation of embryonic stem cells into mesendoderm cells. Thus, comparative epigenomics reveals regulatory features of the genome that cannot be discerned from sequence comparisons alone.


Subject(s)
Conserved Sequence , DNA Methylation , Epigenomics/methods , Histone Code , Regulatory Elements, Transcriptional , Animals , Base Sequence , Embryonic Stem Cells/metabolism , Gene Expression Regulation , Humans , Mice , Pluripotent Stem Cells/metabolism , Swine , Transcription Factors/metabolism , Transcription, Genetic
7.
Plant J ; 117(1): 212-225, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37828913

ABSTRACT

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is a key enzyme producing the signaling lipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] in eukaryotes. Although PIP5K genes are reported to be involved in pollen tube germination and growth, the essential roles of PIP5K in these processes remain unclear. Here, we performed a comprehensive genetic analysis of the Arabidopsis thaliana PIP5K4, PIP5K5, and PIP5K6 genes and revealed that their redundant function is essential for pollen germination. Pollen with the pip5k4pip5k5pip5k6 triple mutation was sterile, while pollen germination efficiency and pollen tube growth were reduced in the pip5k6 single mutant and further reduced in the pip5k4pip5k6 and pip5k5pip5k6 double mutants. YFP-fusion proteins, PIP5K4-YFP, PIP5K5-YFP, and PIP5K6-YFP, which could rescue the sterility of the triple mutant pollen, preferentially localized to the tricolpate aperture area and the future germination site on the plasma membrane prior to germination. Triple mutant pollen grains under the germination condition, in which spatiotemporal localization of the PtdIns(4,5)P2 fluorescent marker protein 2xmCHERRY-2xPHPLC as seen in the wild type was abolished, exhibited swelling and rupture of the pollen wall, but neither the conspicuous protruding site nor site-specific deposition of cell wall materials for germination. These data indicate that PIP5K4-6 and their product PtdIns(4,5)P2 are essential for pollen germination, possibly through the establishment of the germination polarity in a pollen grain.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Germination/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phosphatidylinositol Phosphates/metabolism , Pollen Tube/metabolism , Pollen
8.
Plant Cell ; 33(9): 3042-3056, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34125904

ABSTRACT

In eukaryotes, homotypic fusion and vacuolar protein sorting (HOPS) as well as class C core vacuole/endosome tethering (CORVET) are evolutionarily conserved membrane tethering complexes that play important roles in lysosomal/vacuolar trafficking. Whether HOPS and CORVET control endomembrane trafficking in pollen tubes, the fastest growing plant cells, remains largely elusive. In this study, we demonstrate that the four core components shared by the two complexes, Vacuole protein sorting 11 (VPS11), VPS16, VPS33, and VPS18, are all essential for pollen tube growth in Arabidopsis thaliana and thus for plant reproduction success. We used VPS18 as a representative core component of the complexes to show that the protein is localized to both multivesicular bodies (MVBs) and the tonoplast in a growing pollen tube. Mutant vps18 pollen tubes grew more slowly in vivo, resulting in a significant reduction in male transmission efficiency. Additional studies revealed that membrane fusion from MVBs to vacuoles is severely compromised in vps18 pollen tubes, corroborating the function of VPS18 in late endocytic trafficking. Furthermore, vps18 pollen tubes produce excessive exocytic vesicles at the apical zone and excessive amounts of pectin and pectin methylesterases in the cell wall. In conclusion, this study establishes an additional conserved role of HOPS/CORVET in homotypic membrane fusion during vacuole biogenesis in pollen tubes and reveals a feedback regulation of HOPS/CORVET in the secretion of cell wall modification enzymes of rapidly growing plant cells.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Pectins/metabolism , Pollen Tube/growth & development , Vesicular Transport Proteins/genetics , Arabidopsis/enzymology , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Multivesicular Bodies/enzymology , Pollen Tube/genetics , Vesicular Transport Proteins/metabolism
9.
BMC Cancer ; 24(1): 118, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38262954

ABSTRACT

BACKGROUND: Observational studies have explored the association of psychiatric disorders and the risk of brain cancers. However, the causal effect of specific mental illness on glioma remains elusive due to the lack of solid evidence. METHODS: We performed a two-sample bidirectional Mendelian randomization (MR) analysis to explore the causal relationships between 5 common psychiatric disorders (schizophrenia, major depressive disorder, bipolar disorder, autism spectrum disorder, and panic disorder) and glioma. Summary statistics for psychiatric disorders and glioma were extracted from Psychiatric Genomics Consortium (PGC) and 8 genome-wide association study (GWAS) datasets respectively. We calculated the MR estimates for odds ratio of glioma associated with each psychiatric disorder by using inverse-variance weighting (IVW) method. Sensitivity analyses such as weighted median estimator, MR-Egger and MR-PRESSO were leveraged to assess the strength of causal inference. RESULTS: A total of 30,657 participants of European ancestry were included in this study. After correction for multiple testing, we found that genetically predicted schizophrenia was associated with a statistically significant increase in odds of non-glioblastoma multiforme (non-GBM) (OR = 1.13, 95% CI: 1.03-1.23, P = 0.0096). There is little evidence for the causal relationships between the other 4 psychiatric disorders with the risk of glioma. CONCLUSIONS: In this MR analysis, we revealed an increased risk of non-GBM glioma in individuals with schizophrenia, which gives an insight into the etiology of glioma.


Subject(s)
Autism Spectrum Disorder , Depressive Disorder, Major , Glioma , Mental Disorders , Humans , Mendelian Randomization Analysis , Genome-Wide Association Study
10.
Langmuir ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950193

ABSTRACT

The key to enhancing water electrolysis efficiency lies in selecting highly efficient catalysts. Currently, high-entropy alloys (HEAs) are utilized in electrocatalysis applications owing to their diverse elemental composition, disordered elemental distribution, and the high solubility of each element, endowing them with excellent catalytic performance. The experiments were conducted using isoatomic FeNiCrMo HEA as a precursor, with a high-activity three-dimensional nanoporous structure rapidly synthesized via electrochemical one-step dealloying in a choline chloride-thiourea (ChCl-TU) deep eutectic solvent (DES). The results indicate that the dealloyed Fe20Co20Ni20Cr20Mo20 HEA mainly consists of two phases: face-centered cubic and σ phases. The imbalance in the distribution of elements in these two phases leads to quite different corrosion speeds with the FCC phase being preferentially corroded. Furthermore, synergistic electron coupling between surface atoms in the three-dimensional nanoporous structure strengthens the behavior of the oxygen evolution reaction (OER). At a current density of 40 mA cm-2, the overpotential after dealloying decreased to 370 mV, demonstrating excellent stability. The technique demonstrated in this work provides a novel approach to improve the catalytic activity of OER.

11.
Eur Radiol ; 34(7): 4352-4363, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38127071

ABSTRACT

OBJECTIVES: This study aims to develop and validate a radiomics model based on 18F-fluorodeoxyglucose positron emission tomography-computed tomography ([18F]FDG PET-CT) images to predict pathological complete response (pCR) to neoadjuvant chemoimmunotherapy in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: One hundred eighty-five patients receiving neoadjuvant chemoimmunotherapy for NSCLC at 5 centers from January 2019 to December 2022 were included and divided into a training cohort and a validation cohort. Radiomics models were constructed via the least absolute shrinkage and selection operator (LASSO) method. The performances of models were evaluated by the area under the receiver operating characteristic curve (AUC). In addition, genetic analyses were conducted to reveal the underlying biological basis of the radiomics score. RESULTS: After the LASSO process, 9 PET-CT radiomics features were selected for pCR prediction. In the validation cohort, the ability of PET-CT radiomics model to predict pCR was shown to have an AUC of 0.818 (95% confidence interval [CI], 0.711, 0.925), which was better than the PET radiomics model (0.728 [95% CI, 0.610, 0.846]), CT radiomics model (0.732 [95% CI, 0.607, 0.857]), and maximum standard uptake value (0.603 [95% CI, 0.473, 0.733]) (p < 0.05). Moreover, a high radiomics score was related to the upregulation of pathways suppressing tumor proliferation and the infiltration of antitumor immune cell. CONCLUSION: The proposed PET-CT radiomics model was capable of predicting pCR to neoadjuvant chemoimmunotherapy in NSCLC patients. CLINICAL RELEVANCE STATEMENT: This study indicated that the generated 18F-fluorodeoxyglucose positron emission tomography-computed tomography radiomics model could predict pathological complete response to neoadjuvant chemoimmunotherapy, implying the potential of our radiomics model to personalize the neoadjuvant chemoimmunotherapy in lung cancer patients. KEY POINTS: • Recognizing patients potentially benefiting neoadjuvant chemoimmunotherapy is critical for individualized therapy of lung cancer. • [18F]FDG PET-CT radiomics could predict pathological complete response to neoadjuvant immunotherapy in non-small cell lung cancer. • [18F]FDG PET-CT radiomics model could personalize neoadjuvant chemoimmunotherapy in lung cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Fluorodeoxyglucose F18 , Lung Neoplasms , Neoadjuvant Therapy , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Positron Emission Tomography Computed Tomography/methods , Male , Female , Neoadjuvant Therapy/methods , Middle Aged , Aged , Immunotherapy/methods , Treatment Outcome , Retrospective Studies , Predictive Value of Tests , Radiomics
13.
J Biopharm Stat ; : 1-14, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860696

ABSTRACT

Accurate prediction of a rare and clinically important event following study treatment has been crucial in drug development. For instance, the rarity of an adverse event is often commensurate with the seriousness of medical consequences, and delayed detection of the rare adverse event can pose significant or even life-threatening health risks to patients. In this machine learning case study, we demonstrate with an example originated from a real clinical trial setting how to define and solve the rare clinical event prediction problem using machine learning in pharmaceutical industry. The unique contributions of this work include the proposal of a six-step investigation framework that facilitates the communication with non-technical stakeholders and the interpretation of the model performance in terms of practical consequences in the context of patient screenings for conducting a future clinical trial. In terms of machine learning methodology, for data splitting into the training and test sets, we adapt the rare-event stratified split approach (from scikit-learn) to further account for group splitting for multiple records of a patient simultaneously. To handle imbalanced data due to rare events in model training, the cost-sensitive learning approach is employed to give more weights to the minor class and the metrics precision together with recall are used to capture prediction performance instead of the raw accuracy rate. Finally, we demonstrate how to apply the state-of-the-art SHAP values to identify important risk factors to improve model interpretability.

14.
Int J Behav Med ; 31(1): 19-30, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36788172

ABSTRACT

BACKGROUND: Delineating the compound psychological effect of the pandemic on cancer care, and the interdependency across cancer patient-caregiver dyads have yet to be explored. This study examines the levels of psychological impact of COVID-19 on patient-caregiver dyads anxiety, and the interdependent associations between their COVID-19 and cancer concerns, and risk perceptions. METHOD: There were 352 patients and caregivers (patient-caregiver dyads, N = 176) included in this study (43.2% spousal dyads). Generalized Anxiety Disorder-7 and questionnaires regarding risk perception, perceived confidence in healthcare system, COVID-19, and cancer-related concerns were administered. Actor-Partner Interdependence Model (APIM) analyses were used to determine the interdependent effects. Indirect effects were tested using mediation pathway analyses. RESULTS: Patients reported significantly higher levels of risk perceptions and anxiety than their caregivers (p < 0.01). Anxiety rates (GAD-7 ≥ 10) were also significantly higher (26.7% vs 18.2%, p < 0.01). Dyads' anxiety, "general COVID-19 concerns," "cancer-related concerns," and risk perceptions were correlated (ps < 0.01). APIM showed only actor effects of general COVID-19 concerns, cancer-related COVID-19 concerns, and risk perceptions on anxiety (ßs = 0.19-0.53, ps < 0.01). No partner effects were observed. Similar results were found in the composite APIM. Indirect effects of the patient/caregiver's variables on their partner's anxiety were observed in the mediation analyses. CONCLUSION: Concerns about COVID-19 and cancer care could be indirectly associated in patient-caregiver dyads and need to be proactively addressed. As pandemic evolves into endemicity, engagement with patients and caregivers should strive to be sensitive to their differential needs and messages should be tailored to the informational needs of each.


Subject(s)
COVID-19 , Neoplasms , Humans , Caregivers/psychology , COVID-19/epidemiology , Anxiety/epidemiology , Anxiety/psychology , Anxiety Disorders/psychology , Neoplasms/psychology , Quality of Life/psychology
15.
J Integr Neurosci ; 23(6): 123, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38940081

ABSTRACT

OBJECTIVE: Perioperative neurocognitive disorders (PND) are a group of prevalent neurological complications that often occur in elderly individuals following major or emergency surgical procedures. The etiologies are not fully understood. This study endeavored to investigate novel targets and prediction methods for the occurrence of PND. METHODS: A total of 229 elderly patients diagnosed with prostatic hyperplasia who underwent transurethral resection of the prostate (TURP) combined with spinal cord and epidural analgesia were included in this study. The patients were divided into two groups, the PND group and non-PND group, based on the Z-score method. According to the principle of maintaining consistency between preoperative and intraoperative conditions, three patients from each group were randomly chosen for serum sample collection. isobaric tags for relative and absolute quantification (iTRAQ) proteomics technology was employed to analyze and identify the proteins that exhibited differential expression in the serum samples from the two groups. Bioinformatics analysis was performed on the proteins that exhibited differential expression. RESULTS: Among the 1101 serum proteins analyzed in the PND and non-PND groups, eight differentially expressed proteins were identified in PND patients. Of these, six proteins showed up-regulation, while two proteins showed down-regulation. Further bioinformatics analysis of the proteins that exhibited differential expression revealed their predominant involvement in cellular biological processes, cellular component formation, as well as endocytosis and phagocytosis Additionally, these proteins were found to possess the RING domain of E3 ubiquitin ligase. CONCLUSION: The iTRAQ proteomics technique was employed to analyze the variation in protein expression in serum samples from patients with PND and those without PND. This study successfully identified eight proteins that exhibited differential expression levels between the two groups. Bioinformatics analysis indicates that proteins exhibiting differential expression are primarily implicated in the biological processes associated with microtubules. Investigating the microtubule formation process as it relates to neuroplasticity and synaptic formation may offer valuable insights for enhancing our comprehension and potential prevention of PND. CLINICAL TRIAL REGISTRATION: Registered (ChiCTR2000028836). Date (20190306).


Subject(s)
Transurethral Resection of Prostate , Humans , Male , Aged , Transurethral Resection of Prostate/adverse effects , Proteomics , Prostatic Hyperplasia/surgery , Prostatic Hyperplasia/blood , Neurocognitive Disorders/etiology , Neurocognitive Disorders/blood , Neurocognitive Disorders/metabolism , Postoperative Cognitive Complications/etiology , Postoperative Cognitive Complications/blood , Perioperative Period , Aged, 80 and over , Blood Proteins/metabolism , Blood Proteins/analysis , Computational Biology
16.
Pharm Stat ; 23(2): 151-167, 2024.
Article in English | MEDLINE | ID: mdl-37871925

ABSTRACT

An accurate forecast of a clinical trial enrollment timeline at the planning phase is of great importance to both corporate strategic planning and trial operational excellence. The naive approach often calculates an average enrollment rate from historical data and generates an inaccurate prediction based on a linear trend with the average rate. Under the traditional framework of a Poisson-Gamma model, site activation delays are often modeled with either fixed initiation time or a simple random distribution while incorporating the user-provided site planning information to achieve good forecast accuracy. However, such user-provided information is not available at the early portfolio planning stage. We present a novel statistical approach based on generalized linear mixed-effects models and the use of non-homogeneous Poisson processes through the Bayesian framework to model the country initiation, site activation, and subject enrollment sequentially in a systematic fashion. We validate the performance of our proposed enrollment modeling framework based on a set of 25 preselected studies from four therapeutic areas. Our modeling framework shows a substantial improvement in prediction accuracy in comparison to the traditional statistical approach. Furthermore, we show that our modeling and simulation approach calibrates the data variability appropriately and gives correct coverage rates for prediction intervals of various nominal levels. Finally, we demonstrate the use of our approach to generate the predicted enrollment curves through time with confidence bands overlaid.


Subject(s)
Models, Statistical , Humans , Bayes Theorem , Computer Simulation , Linear Models
17.
Int Orthop ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874668

ABSTRACT

PURPOSE: To compare the efficacy and safety of MAKO robot-assisted total knee arthroplasty (MA-TKA) with conventional manual total knee arthroplasty (CM-TKA) in patients with end-stage knee osteoarthritis (KOA) during the early postoperative period. METHOD: A retrospective analysis was conducted on 22 patients with KOA who underwent MA-TKA and 26 patients who underwent CM-TKA from April 2023 to July 2023. Hip-knee-ankle angle (HKA), lateral distal femoral angle (LDFA), medial proximal tibial angle (MPTA), American Knee Society Score (AKSS), Forgotten Joint Score-12 (FJS-12), visual analogue scale (VAS), and postoperative complications were recorded and compared between the two groups. RESULT: Both groups successfully completed the surgeries. In terms of radiographic parameters, postoperative one month LDFA and HKA in the MA-TKA group were significantly lower than those in the CM-TKA group (P < 0.05). At the one month follow-up, 19 patients (86.4%) in the MA-TKA group had an HKA less than 3°, compared to 20 patients (76.9%) in the CM-TKA group. Clinically, VAS scores at 24 h, 48 h, and 72 h postoperatively were lower in the MA-TKA group both at rest and during activity. At one month and three months postoperatively, AKSS Function Scores and FJS-12 scores in the MA-TKA group were significantly higher than those in the CM-TKA group (P < 0.05). Regarding postoperative complications, no complications occurred in the MA-TKA group, while one patient in the CM-TKA group experienced postoperative knee stiffness, which resolved after physical therapy, with no statistically significant difference (P > 0.05). CONCLUSION: Compared with conventional manual total knee arthroplasty, MAKO robot-assisted TKA demonstrates better short-term clinical efficacy, achieves better alignment planning, and maintains good safety.

18.
J Prosthet Dent ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38942715

ABSTRACT

Maxillary defects pose challenges for prosthodontists, especially when patients have no remaining teeth. This clinical report describes rehabilitation with a complete denture obturator fabricated in 2 visits for an edentulous patient after a maxillectomy. The obturator base and artificial teeth were digitally designed and merged into a 1-piece prosthesis. Following a virtual reduction, the integrated prosthesis and a gingival veneer were calculated and then printed and bonded together to complete the fabrication. Balanced occlusion was achieved with the assistance of a digital occlusion analyzer at the insertion visit. This approach avoided base-tooth assembly deviations and provided a prosthesis with good patient-reported outcomes at the 6-month follow-up.

19.
J Prosthet Dent ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38760310

ABSTRACT

A digital workflow for the rapid design and fabrication of interim fixed prostheses using an open-access software program and 3-dimensional printing technology is described. After obtaining intraoral scanning data, the prostheses are designed by offset, margin sculpting, and a Boolean operation. Then, the prostheses are finalized and manufactured additively. The use of the open-access software program and simplified design steps enhances the manufacturing efficiency and accessibility of computer-aided design and computer-aided manufacturing of interim restorations.

20.
J Prosthodont ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38566576

ABSTRACT

The purpose of this technical report is to demonstrate a fully digital workflow for designing and fabricating metal frameworks and removable partial dentures. After obtaining a digital cast of the dental arch with bilateral distal extension defect, computer-aided design software and 3D printing technology are used for the design and fabrication of the removable partial denture frameworks, denture teeth, and denture bases, instead of the traditional workflow. The assembly of the three components is facilitated through a meticulously structured framework. The technology, which prints metal frameworks, denture bases, and denture teeth through different processes with different materials, achieves full 3D printing technology for making removable partial dentures.

SELECTION OF CITATIONS
SEARCH DETAIL