Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
BMC Plant Biol ; 23(1): 146, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36927306

ABSTRACT

BACKGROUND: Tomato yellow leaf curl virus (TYLCV) is a major monopartite virus in the family Geminiviridae and has caused severe yield losses in tomato and tobacco planting areas worldwide. Wall-associated kinases (WAKs) and WAK-like kinases (WAKLs) are a subfamily of the receptor-like kinase family implicated in cell wall signaling and transmitting extracellular signals to the cytoplasm, thereby regulating plant growth and development and resistance to abiotic and biotic stresses. Recently, many studies on WAK/WAKL family genes have been performed in various plants under different stresses; however, identification and functional survey of the WAK/WAKL gene family of Nicotiana benthamiana have not yet been performed, even though its genome has been sequenced for several years. Therefore, in this study, we aimed to identify the WAK/WAKL gene family in N. benthamiana and explore their possible functions in response to TYLCV infection. RESULTS: Thirty-eight putative WAK/WAKL genes were identified and named according to their locations in N. benthamiana. Phylogenetic analysis showed that NbWAK/WAKLs are clustered into five groups. The protein motifs and gene structure compositions of NbWAK/WAKLs appear to be highly conserved among the phylogenetic groups. Numerous cis-acting elements involved in phytohormone and/or stress responses were detected in the promoter regions of NbWAK/WAKLs. Moreover, gene expression analysis revealed that most of the NbWAK/WAKLs are expressed in at least one of the examined tissues, suggesting their possible roles in regulating the growth and development of plants. Virus-induced gene silencing and quantitative PCR analyses demonstrated that NbWAK/WAKLs are implicated in regulating the response of N. benthamiana to TYLCV, ten of which were dramatically upregulated in locally or systemically infected leaves of N. benthamiana following TYLCV infection. CONCLUSIONS: Our study lays an essential base for the further exploration of the potential functions of NbWAK/WAKLs in plant growth and development and response to viral infections in N. benthamiana.


Subject(s)
Begomovirus , Geminiviridae , Nicotiana/genetics , Phylogeny , Begomovirus/physiology , Geminiviridae/genetics , Plant Diseases/genetics
2.
Virol J ; 19(1): 182, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36357910

ABSTRACT

BACKGROUND: Chrysanthemum virus B (CVB), a key member of the genus Carlavirus, family Betaflexiviridae, causes severe viral diseases in chrysanthemum (Chrysanthemum morifolium) plants worldwide. However, information on the mechanisms underlying the response of chrysanthemum plants to CVB is scant. METHODS: Here, an integrated next-generation sequencing and comparative transcriptomic analysis of chrysanthemum leaves was conducted to explore the molecular response mechanisms of plants to a Chinese isolate of CVB (CVB-CN) at the molecular level. RESULTS: In total, 4934 significant differentially expressed genes (SDEGs) were identified to respond to CVB-CN, of which 4097 were upregulated and 837 were downregulated. Gene ontology and functional classification showed that the majority of upregulated SDEGs were categorized into gene cohorts involved in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, and ribosome metabolism. Enrichment analysis demonstrated that ethylene pathway-related genes were significantly upregulated following CVB-CN infection, indicating a strong promotion of ethylene biosynthesis and signaling. Furthermore, disruption of the ethylene pathway in Nicotiana benthamiana, a model plant, using virus-induced gene silencing technology rendered them more susceptible to cysteine-rich protein of CVB-CN induced hypersensitive response, suggesting a crucial role of this pathway in response to CVB-CN infection. CONCLUSION: This study provides evidence that ethylene pathway has an essential role of plant in response to CVB and offers valuable insights into the defense mechanisms of chrysanthemum against Carlavirus.


Subject(s)
Carlavirus , Chrysanthemum , Chrysanthemum/genetics , Chrysanthemum/metabolism , Carlavirus/genetics , Transcriptome , Ethylenes/metabolism , High-Throughput Nucleotide Sequencing , Plant Leaves , China , Gene Expression Regulation, Plant
3.
Plant Dis ; 105(4): 1006-1012, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33026306

ABSTRACT

Virus-like symptoms, including leaf deformation and curling, were observed on nightshade (Solanum nigrum) in Zhejiang Province, China. To identify possible pathogenic viruses or viroids, a symptomatic sample was subjected to deep sequencing of small interfering RNAs. Assembly of the resulting sequences led to identification of a novel geminivirus, provisionally designated nightshade curly top virus (NCTV). The complete genomic DNA sequence is 2,867 nucleotides and encodes seven open reading frames. NCTV shares 77.1% overall nucleotide sequence identity, 86.3% coat protein amino acid identity, and 78.9% replication-associated protein amino acid sequence identity with Tomato pseudo-curly top virus, a member of the genus Topocuvirus. PCR screening of nightshade field isolates indicated that NCTV is widely distributed in Zhejiang. Agrobacterium-mediated inoculation revealed that NCTV is highly infectious to Nicotiana benthamiana, S. nigrum, S. lycopersicum, and S. tuberosum. Based on pairwise comparisons and phylogenetic analyses, NCTV is proposed as a provisional member of the genus Topocuvirus.


Subject(s)
Geminiviridae , Solanum nigrum , Solanum , China , Geminiviridae/genetics , Genome, Viral/genetics , Phylogeny , Plant Diseases
4.
Plant Dis ; 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34270914

ABSTRACT

Cherry (Prunus avium) has become an important economical fruit in China. In October 2020, a leaf spot disease was found on cherry in the orchard of Taizhou Academy of Agriculture Sciences, Zhejiang, China. The symptoms appeared as small, water-soaked spots on the leaves, which later became larger, dark brown, and necrotic lesions of 1 cm to 3 cm in width, 4 cm to 8 cm in length. Disease incidences of approximately 60% of the leaves were observed by sampling five locations. To isolate the causing agent, small fragments from five target symptomatic leaves were surface-sterilized with 1.0% sodium hypochlorite solution for 1 min and then rinsed three times with sterilized water. Afterwards the leaf fragments were air-dried, plated onto potato dextrose agar (PDA) medium, and incubated at 25 ℃ in the dark for 2 days. The pure cultures were obtained by transferring hyphal plug of 2 mm in diameter onto PDA, which followed single spore isolation. The colony morphology showed light to dark gray, cottony mycelium, with the underside of the culture became brownish after 7 days. Conidia (n = 28) were hyaline, smooth-walled, cylindrical, aseptate, broadly rounded ends, and average size around 3.84 × 12.82 µm (2.99 to 4.87 × 10.27 to 15.68 µm). Appressoria (n = 27) were mostly brown, ovoid and slightly irregular in shape, and average size around 8.04 × 9.68 µm (6.29 to 9.67 × 9.32 to 12.06 µm). Perithecia average size is 106.25 µm, textura angularis, thick-walled. Asci 26.35-49.18 × 5.00-12.03 µm (average size 37.44 × 7.80 µm, n = 17), unitunicate, thin-walled, clavate or cymbiform. Ascospores 13.69-20.93 × 3.86-6.69 µm (average size 16.00 × 5.42 µm, n = 30), one-celled, hyaline, one or two large guttulate at the centre, slightly rounded ends. The morphological characteristics matched well with previous descriptions of Colletotrichum species of C. gloeosporioides species complex, including C. fructicola (Prihastuti et al. 2009; Fu et al. 2019). The identity of two representative isolates (cf2-3 and cf4-4) from different leaves was confirmed by means of multi-locus gene sequencing. To this end, genomic DNA was extracted by the Plant Direct PCR kit (Vazyme Biotech Co., Ltd, China). Molecular identification was conducted by sequencing the internal transcribed spacer (ITS) rDNA region, partial glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, partial actin (ACT) gene, partial beta-tubulin 2 gene (TUB2), and partial chitin synthase gene (CHS). The obtained sequences have been deposited in GenBank under accession numbers MW581851 and MW581852 (ITS), MW590586 and MW590587 (GAPDH), MW616561 and MW616562 (ACT), MW729380 and MW729381 (TUB2), MW729378 and MW729379 (CHS). The results of Basic Local Alignment Search Tool (BLAST) analysis revealed that the ITS, GAPDH, ACT, TUB2 and CHS sequences of both isolates matched with 100% identity to Colletotrichum fructicola culture collection sequences in GenBank database (JX010165, JX009998, JX009491, JX010405, and JX009866 respectively). These morphological characteristics and molecular analyses allowed the identification of the pathogen as C. fructicola. Koch's postulates were performed with healthy detached cherry leaves of cultivar namely 'HongMi' from Taizhou Academy of Agriculture Sciences. Surface-sterilized leaves were inoculated with five-day-old cultures of C. fructicola mycelial discs of 2 mm in diameter after being wounded with a needle or non-wounded. Control leaves were inoculated with discs of same size PDA agar. Treated leaves were incubated at 25 ℃ in the dark at high relative humidity. Anthracnose symptoms appeared within 3 days both on non-wounded and wounded inoculation approaches. Mock-inoculated controls remained asymptomatic. Biological repetitions were carried out three times. The fungus was reisolated from infected leaves and confirmed as C. fructicola following the methods described above. Until recently, it has been found that C. fructicola can infect tea, apple, pear, Pouteria campechiana in China (Fu et al. 2014; Li et al. 2013; Shi et al. 2018; Yang et al. 2020). To the best of our knowledge, this is the first report of C. fructicola on cherry in China.

5.
BMC Plant Biol ; 20(1): 431, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32938390

ABSTRACT

BACKGROUND: High-temperature stress (HTS) is one of the main environmental stresses that limit plant growth and crop production in agricultural systems. Maca (Lepidium meyenii) is an important high-altitude herbaceous plant adapted to a wide range of environmental stimuli such as cold, strong wind and UV-B exposure. However, it is an extremely HTS-sensitive plant species. Thus far, there is limited information about gene/protein regulation and signaling pathways related to the heat stress responses in maca. In this study, proteome profiles of maca seedlings exposed to HTS for 12 h were investigated using a tandem mass tag (TMT)-based proteomic approach. RESULTS: In total, 6966 proteins were identified, of which 300 showed significant alterations in expression following HTS. Bioinformatics analyses indicated that protein processing in endoplasmic reticulum was the most significantly up-regulated metabolic pathway following HTS. Quantitative RT-PCR (qRT-PCR) analysis showed that the expression levels of 19 genes encoding proteins mapped to this pathway were significantly up-regulated under HTS. These results show that protein processing in the endoplasmic reticulum may play a crucial role in the responses of maca to HTS. CONCLUSIONS: Our proteomic data can be a good resource for functional proteomics of maca and our results may provide useful insights into the molecular response mechanisms underlying herbal plants to HTS.


Subject(s)
Lepidium/physiology , Proteome/physiology , Chlorophyll/metabolism , Gene Expression Regulation, Plant , Heat-Shock Response , Lepidium/genetics , Lepidium/metabolism , Metabolic Networks and Pathways , Plant Proteins/metabolism , Plant Proteins/physiology , Proteome/genetics , Proteome/metabolism , Real-Time Polymerase Chain Reaction , Seedlings/metabolism , Seedlings/physiology
6.
J Virol ; 91(16)2017 08 15.
Article in English | MEDLINE | ID: mdl-28539450

ABSTRACT

Phosphorylation of the ßC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNB-ßC1) by SNF1-related protein kinase 1 (SnRK1) plays a critical role in defense of host plants against geminivirus infection in Nicotiana benthamiana However, how phosphorylation of TYLCCNB-ßC1 impacts its pathogenic functions during viral infection remains elusive. In this study, we identified two additional tyrosine residues in TYLCCNB-ßC1 that are phosphorylated by SnRK1. The effects of TYLCCNB-ßC1 phosphorylation on its functions as a viral suppressor of RNA silencing (VSR) and a symptom determinant were investigated via phosphorylation mimic mutants in N. benthamiana plants. Mutations that mimic phosphorylation of TYLCCNB-ßC1 at tyrosine 5 and tyrosine 110 attenuated disease symptoms during viral infection. The phosphorylation mimics weakened the ability of TYLCCNB-ßC1 to reverse transcriptional gene silencing and to suppress posttranscriptional gene silencing and abolished its interaction with N. benthamiana ASYMMETRIC LEAVES 1 in N. benthamiana leaves. The mimic phosphorylation of TYLCCNB-ßC1 had no impact on its protein stability, subcellular localization, or self-association. Our data establish an inhibitory effect of phosphorylation of TYLCCNB-ßC1 on its pathogenic functions as a VSR and a symptom determinant and provide a mechanistic explanation of how SnRK1 functions as a host defense factor.IMPORTANCE Tomato yellow leaf curl China virus (TYLCCNV), which causes a severe yellow leaf curl disease in China, is a monopartite geminivirus associated with the betasatellite (TYLCCNB). TYLCCNB encodes a single pathogenicity protein, ßC1 (TYLCCNB-ßC1), which functions as both a viral suppressor of RNA silencing (VSR) and a symptom determinant. Here, we show that mimicking phosphorylation of TYLCCNB-ßC1 weakens its ability to reverse transcriptional gene silencing, to suppress posttranscriptional gene silencing, and to interact with N. benthamiana ASYMMETRIC LEAVES 1. To our knowledge, this is the first report establishing an inhibitory effect of phosphorylation of TYLCCNB-ßC1 on its pathogenic functions as both a VSR and a symptom determinant and to provide a mechanistic explanation of how SNF1-related protein kinase 1 acts as a host defense factor. These findings expand the scope of phosphorylation-mediated defense mechanisms and contribute to further understanding of plant defense mechanisms against geminiviruses.


Subject(s)
Begomovirus/pathogenicity , Host-Pathogen Interactions , Nicotiana/immunology , Plant Diseases/virology , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Viral Proteins/metabolism , Begomovirus/immunology , Phosphorylation , RNA Interference , Nicotiana/virology
7.
Viruses ; 15(4)2023 04 21.
Article in English | MEDLINE | ID: mdl-37113009

ABSTRACT

Chrysanthemum (Chrysanthemum morifolium) is an important ornamental and medicinal plant suffering from many viruses and viroids worldwide. In this study, a new carlavirus, tentatively named Chinese isolate of Carya illinoinensis carlavirus 1 (CiCV1-CN), was identified from chrysanthemum plants in Zhejiang Province, China. The genome sequence of CiCV1-CN was 8795 nucleotides (nt) in length, with a 68-nt 5'-untranslated region (UTR) and a 76-nt 3'-UTR, which contained six predicted open reading frames (ORFs) that encode six corresponding proteins of various sizes. Phylogenetic analyses based on full-length genome and coat protein sequences revealed that CiCV1-CN is in an evolutionary branch with chrysanthemum virus R (CVR) in the Carlavirus genus. Pairwise sequence identity analysis showed that, except for CiCV1, CiCV1-CN has the highest whole-genome sequence identity of 71.3% to CVR-X6. At the amino acid level, the highest identities of predicted proteins encoded by the ORF1, ORF2, ORF3, ORF4, ORF5, and ORF6 of CiCV1-CN were 77.1% in the CVR-X21 ORF1, 80.3% in the CVR-X13 ORF2, 74.8% in the CVR-X21 ORF3, 60.9% in the CVR-BJ ORF4, 90.2% in the CVR-X6 and CVR-TX ORF5s, and 79.4% in the CVR-X21 ORF6. Furthermore, we also found a transient expression of the cysteine-rich protein (CRP) encoded by the ORF6 of CiCV1-CN in Nicotiana benthamiana plants using a potato virus X-based vector, which can result in a downward leaf curl and hypersensitive cell death over the time course. These results demonstrated that CiCV1-CN is a pathogenic virus and C. morifolium is a natural host of CiCV1.


Subject(s)
Carlavirus , Chrysanthemum , Genome, Viral , Carlavirus/genetics , Phylogeny , Nucleotides , China , Open Reading Frames
8.
J Hazard Mater ; 448: 130820, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36860031

ABSTRACT

One of the significant limitations of aquaculture worldwide is the prevalence of divalent copper (Cu). Crayfish (Procambarus clarkii) are economically important freshwater species adapted to a variety of environmental stimuli, including heavy metal stresses; however, large-scale transcriptomic data of the hepatopancreas of crayfish in response to Cu stress are still scarce. Here, integrated comparative transcriptome and weighted gene co-expression network analyses were initially applied to investigate gene expression profiles of the hepatopancreas of crayfish subjected to Cu stress for different periods. As a result, 4662 significant differentially expressed genes (DEGs) were identified following Cu stress. Bioinformatics analyses revealed that the "focal adhesion" pathway was one of the most significantly upregulated response pathways following Cu stress, and seven DEGs mapped to this pathway were identified as hub genes. Furthermore, the seven hub genes were examined by quantitative PCR, and each was found to have a substantial increase in transcript abundance, suggesting a critical role of the "focal adhesion" pathway in the response of crayfish to Cu stress. Our transcriptomic data can be a good resource for the functional transcriptomics of crayfish, and these results may provide valuable insights into the molecular response mechanisms underlying crayfish to Cu stress.


Subject(s)
Astacoidea , Transcriptome , Animals , Copper , Gene Expression Profiling , Seafood
9.
Sheng Wu Gong Cheng Xue Bao ; 38(12): 4827-4837, 2022 Dec 25.
Article in Zh | MEDLINE | ID: mdl-36593215

ABSTRACT

In recent years, driven by the support of national policies and societal needs for employments, talents in biology majors have been growing rapidly. To foster high-calibre biology talents for the society in the context of the "double world-class initiative" in higher education, this study analyzed the opinion of biology undergraduates in Huzhou University on employment and their professional recognition of biology majors. The aim of this study was to propose a high-quality employments-driven talent training mode for undergraduates in biology majors, so as to serve as a reference for the reform in training modes of other relevant majors.


Subject(s)
Biology , Students , Humans , Universities , Biology/education
10.
J Proteomics ; 152: 88-101, 2017 01 30.
Article in English | MEDLINE | ID: mdl-27989946

ABSTRACT

Geminiviruses have caused serious losses in crop production. To investigate the mechanisms underlying host defenses against geminiviruses, an isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic approach was used to explore the expression profiles of proteins in Nicotiana benthamiana (N. benthamiana) leaves in response to tomato yellow leaf curl China virus (TYLCCNV) with its betasatellite (TYLCCNB) at an early phase. In total, 4155 proteins were identified and 272 proteins were changed differentially in response to TYLCCNV/TYLCCNB infection. Bioinformatics analysis indicated that S-adenosyl-l-methionine cycle II was the most significantly up-regulated biochemical process during TYLCCNV/TYLCCNB infection. The mRNA levels of three proteins in S-adenosyl-l-methionine cycle II were further analyzed by qPCR, each was found significantly up-regulated in TYLCCNV/TYLCCNB-infected N. benthamiana. This result suggested a strong promotion of the biosynthesis of available methyl groups during geminivirus infections. We further tested the potential role of RdDM in N. benthamiana by virus-induced gene silencing (VIGS) and found that a disruption in RdDM resulted in more severe infectious symptoms and higher accumulation of viral DNA after TYLCCNV/TYLCCNB infection. Although the precise functions of these proteins still need to be determined, our proteomic results enhance the understanding of plant antiviral mechanisms. BIOLOGICAL SIGNIFICANCE: One of the major limitations to crop growth in the worldwide is the prevalence of geminiviruses. They are able to infect food and cash crops and cause serious crop failures and economic losses worldwide, especially in Africa and Asia. Tomato yellow leaf curl China virus (TYLCCNV), which causes severe viral diseases in China, is a monopartite geminivirus associated with the betasatellite (TYLCCNB). However, the mechanisms underlying the TYLCCNV/TYLCCNB defense in plants are still not fully understood at the molecular level. In this study, the combined proteomic, bioinformatic and VIGS analyses revealed that TYLCCNV/TYLCCNB invasion caused complex proteomic alterations in the leaves of N. benthamiana involving the processes of stress and defense, energy production, photosynthesis, protein homeostasis, metabolism, cell structure, signal transduction, transcription, transportation, and cell growth/division. Promotion of available methyl groups via the S-adenosyl-l-methionine cycle II pathway in N. benthamiana appeared crucial for antiviral responses. These findings enhance our understanding in the proteomic aspects of host antiviral defenses against geminiviruses, and also demonstrate that the combination of proteomics with bioinformatics and VIGS analysis is an effective approach to investigate systemic plant responses to geminiviruses and to shed light on plant-virus interactions.


Subject(s)
DNA Methylation/physiology , Geminiviridae/pathogenicity , Nicotiana/microbiology , Plant Diseases/virology , Plant Leaves/metabolism , Proteome/analysis , Computational Biology , Disease Resistance , Host-Pathogen Interactions/immunology , Metabolic Networks and Pathways , Plant Immunity , Plant Proteins/immunology , Plant Proteins/metabolism , S-Adenosylmethionine/metabolism , Nicotiana/immunology
11.
PLoS One ; 9(4): e96420, 2014.
Article in English | MEDLINE | ID: mdl-24769870

ABSTRACT

Detection of somatic mutations for targeted therapy is increasingly used in clinical settings. However, due to the difficulties of detecting rare mutations in excess of wild-type DNA, current methods often lack high sensitivity, require multiple procedural steps, or fail to be quantitative. We developed real-time bidirectional pyrophosphorolysis-activated polymerization (real-time Bi-PAP) that allows quantitative detection of somatic mutations. We applied the method to quantify seven mutations at codons 12 and 13 in KRAS, and 2 mutations (L858R, and T790M) in EGFR in clinical samples. The real-time Bi-PAP could detect 0.01% mutation in the presence of 100 ng template DNA. Of the 34 samples from the colon cancer patients, real-time Bi-PAP detected 14 KRAS mutant samples whereas the traditional real-time allele-specific PCR missed two samples with mutation abundance <1% and DNA sequencing missed nine samples with mutation abundance <10%. The detection results of the two EGFR mutations in 45 non-small cell lung cancer samples further supported the applicability of the real-time Bi-PAP. The real-time Bi-PAP also proved to be more efficient than the real-time allele-specific PCR in the detection of templates prepared from formalin-fixed paraffin-embedded samples. Thus, real-time Bi-PAP can be used for rapid and accurate quantification of somatic mutations. This flexible approach could be widely used for somatic mutation detection in clinical settings.


Subject(s)
ErbB Receptors/genetics , Proto-Oncogene Proteins/genetics , ras Proteins/genetics , Base Sequence , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Colonic Neoplasms/genetics , DNA Mutational Analysis/methods , Dyssomnias , HEK293 Cells , Humans , Lung Neoplasms/genetics , Mutation, Missense , Proto-Oncogene Proteins p21(ras) , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL