Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.000
Filter
Add more filters

Publication year range
1.
Nature ; 604(7905): 343-348, 2022 04.
Article in English | MEDLINE | ID: mdl-35322228

ABSTRACT

Gene therapy is a potentially curative medicine for many currently untreatable diseases, and recombinant adeno-associated virus (rAAV) is the most successful gene delivery vehicle for in vivo applications1-3. However, rAAV-based gene therapy suffers from several limitations, such as constrained DNA cargo size and toxicities caused by non-physiological expression of a transgene4-6. Here we show that rAAV delivery of a suppressor tRNA (rAAV.sup-tRNA) safely and efficiently rescued a genetic disease in a mouse model carrying a nonsense mutation, and effects lasted for more than 6 months after a single treatment. Mechanistically, this was achieved through a synergistic effect of premature stop codon readthrough and inhibition of nonsense-mediated mRNA decay. rAAV.sup-tRNA had a limited effect on global readthrough at normal stop codons and did not perturb endogenous tRNA homeostasis, as determined by ribosome profiling and tRNA sequencing, respectively. By optimizing the AAV capsid and the route of administration, therapeutic efficacy in various target tissues was achieved, including liver, heart, skeletal muscle and brain. This study demonstrates the feasibility of developing a toolbox of AAV-delivered nonsense suppressor tRNAs operating on premature termination codons (AAV-NoSTOP) to rescue pathogenic nonsense mutations and restore gene function under endogenous regulation. As nonsense mutations account for 11% of pathogenic mutations, AAV-NoSTOP can benefit a large number of patients. AAV-NoSTOP obviates the need to deliver a full-length protein-coding gene that may exceed the rAAV packaging limit, elicit adverse immune responses or cause transgene-related toxicities. It therefore represents a valuable addition to gene therapeutics.


Subject(s)
Codon, Nonsense , Dependovirus , Genetic Therapy , Adenoviridae , Animals , Codon, Nonsense/genetics , Codon, Terminator/genetics , Codon, Terminator/metabolism , Dependovirus/genetics , Genetic Diseases, Inborn/therapy , Genetic Vectors , Humans , Mice , Nonsense Mediated mRNA Decay/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism
2.
Nature ; 609(7927): 616-621, 2022 09.
Article in English | MEDLINE | ID: mdl-35917926

ABSTRACT

The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development1,2. Here we present cryo-electron microscopy structures of PIN3 from Arabidopsis thaliana in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor N-1-naphthylphthalamic acid (NPA). A. thaliana PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Apoproteins/chemistry , Apoproteins/metabolism , Apoproteins/ultrastructure , Arabidopsis/chemistry , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/ultrastructure , Biological Transport/drug effects , Cryoelectron Microscopy , Indoleacetic Acids/chemistry , Indoleacetic Acids/metabolism , Phthalimides/chemistry , Phthalimides/pharmacology , Protein Domains , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism
3.
Proc Natl Acad Sci U S A ; 120(52): e2311673120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38109541

ABSTRACT

The unbalanced immune state is the dominant feature of myocardial injury. However, the complicated pathology of cardiovascular diseases and the unique structure of cardiac tissue lead to challenges for effective immunoregulation therapy. Here, we exploited oral fullerene nanoscavenger (OFNS) to maintain intestinal redox homeostasis to resolve systemic inflammation for effectively preventing distal myocardial injury through bidirectional communication along the heart-gut immune axis. Observably, OFNS regulated redox microenvironment to repair cellular injury and reduce inflammation in vitro. Subsequently, OFNS prevented myocardial injury by regulating intestinal redox homeostasis and recovering epithelium barrier integrity in vivo. Based on the profiles of transcriptomics and proteomics, we demonstrated that OFNS balanced intestinal and systemic immune homeostasis for remote cardioprotection. Of note, we applied this principle to intervene myocardial infarction in mice and mini-pigs. These findings highlight that locally addressing intestinal redox to inhibit systemic inflammation could be a potent strategy for resolving remote tissue injury.


Subject(s)
Fullerenes , Myocardial Infarction , Swine , Mice , Animals , Fullerenes/pharmacology , Swine, Miniature , Inflammation/pathology , Myocardial Infarction/prevention & control , Homeostasis , Intestinal Mucosa
4.
J Proteome Res ; 23(6): 1960-1969, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38770571

ABSTRACT

Peptide identification is important in bottom-up proteomics. Post-translational modifications (PTMs) are crucial in regulating cellular activities. Many database search methods have been developed to identify peptides with PTMs and characterize the PTM patterns. However, the PTMs on peptides hinder the peptide identification rate and the PTM characterization precision, especially for peptides with multiple PTMs. To address this issue, we present a sensitive open search engine, PIPI2, with much better performance on peptides with multiple PTMs than other methods. With a greedy approach, we simplify the PTM characterization problem into a linear one, which enables characterizing multiple PTMs on one peptide. On the simulation data sets with up to four PTMs per peptide, PIPI2 identified over 90% of the spectra, at least 56% more than five other competitors. PIPI2 also characterized these PTM patterns with the highest precision of 77%, demonstrating a significant advantage in handling peptides with multiple PTMs. In the real applications, PIPI2 identified 30% to 88% more peptides with PTMs than its competitors.


Subject(s)
Databases, Protein , Peptides , Protein Processing, Post-Translational , Proteomics , Search Engine , Peptides/chemistry , Peptides/metabolism , Proteomics/methods , Humans , Software , Amino Acid Sequence , Algorithms
5.
Clin Immunol ; 260: 109919, 2024 03.
Article in English | MEDLINE | ID: mdl-38309448

ABSTRACT

Chronic granulomatous disease (CGD) in children is a rare primary immunodeficiency disorder that can lead to life-threatening infections and inflammatory complications. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is increasingly being used to treat severe CGD in children. We conducted a multicenter retrospective analysis of children with CGD who were treated with allo-HSCT at four pediatric hematopoietic stem cell transplant centers in China from September 2005 to December 2019. The study included a total of 171 patients (169 males and 2 females). The median age at the time of transplantation was 6.1 (0-16.4) years. Among them, 154 patients had X-linked recessive inheritance caused by CYBB gene mutations, 12 patients were autosomal recessive, 1 patient had DNAH11 and HYDIN gene mutations, and 4 patients had no gene mutations. The median follow-up period was 36.3 (1.9-79) months. All participating patients were applied to myeloablative conditioning (MAC) regimens. The rates of OS, EFS, and GEFS within three years were 87.5%, 85.3%, and 75.2%, respectively. The total graft failure and the total mortality rate were 5.3% and 11.1%. The cumulative incidence of acute GVHD was 53.8% and the incidence of chronic GVHD was 12.9%, The incidence of chronic GVHD was higher for patients who received unrelated donor cord blood stem cell transplantation (UD-CB) (P = 0.001). Chronic GVHD and coinfections are the risk factors for OS and EFS in patients with CGD after receiving allo-HSCT. UD-CB is a risk factor for EFS and the presence of pneumonia before transplantation is a risk factor for OS. In conclusion, through this study, we have demonstrated that allo-HSCT has excellent efficacy in the treatment of CGD in children, especially, RD-haplo is associated with a lower rate of graft failure incidence and mortality than the treatment modalities of other donor type. Therefore, allo-HSCT is strongly recommended when a well-matched donor is available. If a well-matched donor is not available, the HLA-mismatched donor should be carefully evaluated, and the conditioning regimen modified accordingly.


Subject(s)
Graft vs Host Disease , Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Male , Child , Female , Humans , Adolescent , Retrospective Studies , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , Granulomatous Disease, Chronic/complications , Graft vs Host Disease/etiology , Unrelated Donors , Hematopoietic Stem Cell Transplantation/adverse effects , China , Transplantation Conditioning
6.
Respir Res ; 25(1): 89, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341529

ABSTRACT

BACKGROUND: The morbidity and mortality among hospital inpatients with AECOPD and CVDs remains unacceptably high. Currently, no risk score for predicting mortality has been specifically developed in patients with AECOPD and CVDs. We therefore aimed to derive and validate a simple clinical risk score to assess individuals' risk of poor prognosis. STUDY DESIGN AND METHODS: We evaluated inpatients with AECOPD and CVDs in a prospective, noninterventional, multicenter cohort study. We used multivariable logistic regression analysis to identify the independent prognostic risk factors and created a risk score model according to patients' data from a derivation cohort. Discrimination was evaluated by the area under the receiver-operating characteristic curve (AUC), and calibration was assessed by the Hosmer-Lemeshow goodness-of-fit test. The model was validated and compared with the BAP-65, CURB-65, DECAF and NIVO models in a validation cohort. RESULTS: We derived a combined risk score, the ABCDMP score, that included the following variables: age > 75 years, BUN > 7 mmol/L, consolidation, diastolic blood pressure ≤ 60 mmHg, mental status altered, and pulse > 109 beats/min. Discrimination (AUC 0.847, 95% CI, 0.805-0.890) and calibration (Hosmer‒Lemeshow statistic, P = 0.142) were good in the derivation cohort and similar in the validation cohort (AUC 0.811, 95% CI, 0.755-0.868). The ABCDMP score had significantly better predictivity for in-hospital mortality than the BAP-65, CURB-65, DECAF, and NIVO scores (all P < 0.001). Additionally, the new score also had moderate predictive performance for 3-year mortality and can be used to stratify patients into different management groups. CONCLUSIONS: The ABCDMP risk score could help predict mortality in AECOPD and CVDs patients and guide further clinical research on risk-based treatment. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trail Registry NO.:ChiCTR2100044625; URL: http://www.chictr.org.cn/showproj.aspx?proj=121626 .


Subject(s)
Cardiovascular Diseases , Pulmonary Disease, Chronic Obstructive , Humans , Aged , Cohort Studies , Cardiovascular Diseases/diagnosis , Prospective Studies , Risk Factors , Hospital Mortality , Retrospective Studies
7.
Phys Rev Lett ; 132(22): 221802, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877918

ABSTRACT

To enhance the scientific discovery power of high-energy collider experiments, we propose and realize the concept of jet-origin identification that categorizes jets into five quark species (b,c,s,u,d), five antiquarks (b[over ¯],c[over ¯],s[over ¯],u[over ¯],d[over ¯]), and the gluon. Using state-of-the-art algorithms and simulated νν[over ¯]H,H→jj events at 240 GeV center-of-mass energy at the electron-positron Higgs factory, the jet-origin identification simultaneously reaches jet flavor tagging efficiencies ranging from 67% to 92% for bottom, charm, and strange quarks and jet charge flip rates of 7%-24% for all quark species. We apply the jet-origin identification to Higgs rare and exotic decay measurements at the nominal luminosity of the Circular Electron Positron Collider and conclude that the upper limits on the branching ratios of H→ss[over ¯],uu[over ¯],dd[over ¯] and H→sb,db,uc,ds can be determined to 2×10^{-4} to 1×10^{-3} at 95% confidence level. The derived upper limit for H→ss[over ¯] decay is approximately 3 times the prediction of the standard model.

8.
BMC Cancer ; 24(1): 438, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594670

ABSTRACT

PURPOSE: Based on the quantitative and qualitative features of CT imaging, a model for predicting the invasiveness of ground-glass nodules (GGNs) was constructed, which could provide a reference value for preoperative planning of GGN patients. MATERIALS AND METHODS: Altogether, 702 patients with GGNs (including 748 GGNs) were included in this study. The GGNs operated between September 2020 and July 2022 were classified into the training group (n = 555), and those operated between August 2022 and November 2022 were classified into the validation group (n = 193). Clinical data and the quantitative and qualitative features of CT imaging were harvested from these patients. In the training group, the quantitative and qualitative characteristics in CT imaging of GGNs were analyzed by using performing univariate and multivariate logistic regression analyses, followed by constructing a nomogram prediction model. The differentiation, calibration, and clinical practicability in both the training and validation groups were assessed by the nomogram models. RESULTS: In the training group, multivariate logistic regression analysis disclosed that the maximum diameter (OR = 4.707, 95%CI: 2.06-10.758), consolidation/tumor ratio (CTR) (OR = 1.027, 95%CI: 1.011-1.043), maximum CT value (OR = 1.025, 95%CI: 1.004-1.047), mean CT value (OR = 1.035, 95%CI: 1.008-1.063; P = 0.012), spiculation sign (OR = 2.055, 95%CI: 1.148-3.679), and vascular convergence sign (OR = 2.508, 95%CI: 1.345-4.676) were independent risk parameters for invasive adenocarcinoma. Based on these findings, we established a nomogram model for predicting the invasiveness of GGN, and the AUC was 0.910 (95%CI: 0.885-0.934) and 0.902 (95%CI: 0.859-0.944) in the training group and the validation group, respectively. The internal validation of the Bootstrap method showed an AUC value of 0.905, indicating a good differentiation of the model. Hosmer-Lemeshow goodness of fit test for the training and validation groups indicated that the model had a good fitting effect (P > 0.05). Furthermore, the calibration curve and decision analysis curve of the training and validation groups reflected that the model had a good calibration degree and clinical practicability. CONCLUSION: Combined with the quantitative and qualitative features of CT imaging, a nomogram prediction model can be created to forecast the invasiveness of GGNs. This model has good prediction efficacy for the invasiveness of GGNs and can provide help for the clinical management and decision-making of GGNs.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Nomograms , Tomography, X-Ray Computed/methods , Neoplasm Invasiveness/pathology , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/surgery , Adenocarcinoma of Lung/pathology , Retrospective Studies
9.
J Magn Reson Imaging ; 59(1): 242-252, 2024 01.
Article in English | MEDLINE | ID: mdl-37183807

ABSTRACT

BACKGROUND: Cognitive impairment frequently occurs in patients with brain metastases (BM) after whole-brain radiotherapy (WBRT). It is crucial to explore the underlying mechanisms of cognitive impairment in BM patients receiving WBRT. PURPOSE: To detect brain microstructural alterations in patients after WBRT by neurite orientation dispersion and density imaging (NODDI), and evaluate the performance of microstructural alterations in predicting cognitive impairment. STUDY TYPE: Prospective. POPULATION: Twenty-six patients (seven female; mean age, 60.9 years). FIELD STRENGTH/SEQUENCE: 3-T, multi-shell diffusion-weighted single-shot echo-planar sequence. Three-dimensional magnetization-prepared rapid acquisition with gradient echo sequence. ASSESSMENT: Mini-mental state examination (MMSE) evaluations were conducted prior to, following, 1 and 3 months after WBRT. The diffusion data were collected twice, 1 week before and 1 week after WBRT. NODDI analysis was conducted to assess microstructural alterations in whole brain (orientation dispersion index, neurite density index, volume fraction of isotropic water molecules). Reliable change indices (RCI) of MMSE were used to measure cognitive decline. The performance of support vector machine models based on NODDI parameters and clinical features (prednisone usage, tumor volume, etc.) in predicting MMSE-RCI was evaluated. STATISTICAL TESTS: Paired t-test to assess alterations of NODDI measures and MMSE during follow-up. Statistical significance level of P-value <0.05. RESULTS: Significantly decreased MMSE score was found at 3 months after WBRT. After WBRT, corpus callosum, medial prefrontal cortex, limbic lobe, occipital lobe, parietal lobe, putamen, globus pallidus lentiform, and thalamus demonstrated damage in NODDI parameters. The predicted MMSE-RCI based on NODDI features was significantly associated with the measured MMSE-RCI at 1 month (R = 0.573; P = 0.003) and 3 months (R = 0.687; P < 0.0001) after WBRT. DATA CONCLUSION: Microstructural alterations in several brain regions including the middle prefrontal and limbic cortexes were observed in patients with BM following WBRT, which may contribute to subsequent cognitive decline. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Brain Neoplasms , Cognitive Dysfunction , Humans , Female , Middle Aged , Neurites/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology , Prospective Studies , Cranial Irradiation , Brain/diagnostic imaging , Brain/pathology , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology
10.
Pharmacol Res ; 201: 107084, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295915

ABSTRACT

The endocytic trafficking pathway is a highly organized cellular program responsible for the regulation of membrane components and uptake of extracellular substances. Molecules internalized into the cell through endocytosis will be sorted for degradation or recycled back to membrane, which is determined by a series of sorting events. Many receptors, enzymes, and transporters on the membrane are strictly regulated by endocytic trafficking process, and thus the endocytic pathway has a profound effect on cellular homeostasis. However, the endocytic trafficking process is typically dysregulated in cancers, which leads to the aberrant retention of receptor tyrosine kinases and immunosuppressive molecules on cell membrane, the loss of adhesion protein, as well as excessive uptake of nutrients. Therefore, hijacking endocytic trafficking pathway is an important approach for tumor cells to obtain advantages of proliferation and invasion, and to evade immune attack. Here, we summarize how dysregulated endocytic trafficking process triggers tumorigenesis and progression from the perspective of several typical cancer hallmarks. The impact of endocytic trafficking pathway to cancer therapy efficacy is also discussed.


Subject(s)
Neoplasms , Signal Transduction , Humans , Signal Transduction/physiology , Neoplasms/metabolism , Endocytosis/physiology , Cell Membrane/metabolism , Protein Transport
11.
Environ Sci Technol ; 58(26): 11514-11524, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38757358

ABSTRACT

PFAS (poly- and per-fluorinated alkyl substances) represent a large family of recalcitrant organic compounds that are widely used and pose serious threats to human and ecosystem health. Here, palladium (Pd0)-catalyzed defluorination and microbiological mineralization were combined in a denitrifying H2-based membrane biofilm reactor to remove co-occurring perfluorooctanoic acid (PFOA) and nitrate. The combined process, i.e., Pd-biofilm, enabled continuous removal of ∼4 mmol/L nitrate and ∼1 mg/L PFOA, with 81% defluorination of PFOA. Metagenome analysis identified bacteria likely responsible for biodegradation of partially defluorinated PFOA: Dechloromonas sp. CZR5, Kaistella koreensis, Ochrobacterum anthropic, and Azospira sp. I13. High-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and metagenome analyses revealed that the presence of nitrate promoted microbiological oxidation of partially defluorinated PFOA. Taken together, the results point to PFOA-oxidation pathways that began with PFOA adsorption to Pd0, which enabled catalytic generation of partially or fully defluorinated fatty acids and stepwise oxidation and defluorination by the bacteria. This study documents how combining catalysis and microbiological transformation enables the simultaneous removal of PFOA and nitrate.


Subject(s)
Biotransformation , Nitrates , Palladium , Nitrates/metabolism , Palladium/chemistry , Palladium/metabolism , Catalysis , Water Pollutants, Chemical/metabolism , Fluorocarbons/metabolism , Caprylates/metabolism , Biodegradation, Environmental
12.
Environ Sci Technol ; 58(2): 1390-1398, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38165826

ABSTRACT

The efficient transfer of H2 plays a critical role in catalytic hydrogenation, particularly for the removal of recalcitrant contaminants from water. One of the most persistent contaminants, perfluorooctanoic acid (PFOA), was used to investigate how the method of H2 transfer affected the catalytic hydrodefluorination ability of elemental palladium nanoparticles (Pd0NPs). Pd0NPs were synthesized through an in situ autocatalytic reduction of Pd2+ driven by H2 from the membrane. The Pd0 nanoparticles were directly deposited onto the membrane fibers to form the catalyst film. Direct delivery of H2 to Pd0NPs through the walls of nonporous gas transfer membranes enhanced the hydrodefluorination of PFOA, compared to delivering H2 through the headspace. A higher H2 lumen pressure (20 vs 5 psig) also significantly increased the defluorination rate, although 5 psig H2 flux was sufficient for full reductive defluorination of PFOA. Calculations made using density functional theory (DFT) suggest that subsurface hydrogen delivered directly from the membrane increases and accelerates hydrodefluorination by creating a higher coverage of reactive hydrogen species on the Pd0NP catalyst compared to H2 delivery through the headspace. This study documents the crucial role of the H2 transfer method in the catalytic hydrogenation of PFOA and provides mechanistic insights into how membrane delivery accelerates hydrodefluorination.


Subject(s)
Caprylates , Fluorocarbons , Metal Nanoparticles , Palladium , Hydrogen
13.
Bioorg Med Chem ; 99: 117595, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38244254

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme in the nicotinamide adenine dinucleotide (NAD+) salvage pathway, primarily catalyzing the synthesis of nicotinamide mononucleotide (NMN) from nicotinamide (NAM), phosphoribosyl pyrophosphate (PRPP), and adenosine triphosphate (ATP). Metabolic diseases, aging-related diseases, inflammation, and cancers can lead to abnormal expression levels of NAMPT due to the pivotal role of NAD+ in redox metabolism, aging, the immune system, and DNA repair. In addition, NAMPT can be secreted by cells as a cytokine that binds to cell membrane receptors to regulate intracellular signaling pathways. Furthermore, NAMPT is able to reduce therapeutic efficacy by enhancing acquired resistance to chemotherapeutic agents. Recently, a few novel activators and inhibitors of NAMPT for neuroprotection and anti-tumor have been reported, respectively. However, NAMPT activators are still in preclinical studies, and only five NAMPT inhibitors have entered the clinical stage, unfortunately, three of which were terminated or withdrawn due to safety concerns. Novel drug design strategies such as proteolytic targeting chimera (PROTAC), antibody-drug conjugate (ADC), and dual-targeted inhibitors also provide new directions for the development of NAMPT inhibitors. In this perspective, we mainly discuss the structure, biological function, and role of NAMPT in diseases and the currently discovered activators and inhibitors. It is our hope that this work will provide some guidance for the future design and optimization of NAMPT activators and inhibitors.


Subject(s)
NAD , Neoplasms , Humans , NAD/metabolism , Nicotinamide Phosphoribosyltransferase , Cytokines/metabolism , Niacinamide , Drug Discovery , Neoplasms/drug therapy
14.
J Fluoresc ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691280

ABSTRACT

A novel fluorescent sensor for the detection of Cu2+ was developed based on carbazole derivatives. After the addition of Cu2+, the sensor exhibited obvious fluorescence quenching phenomenon, and the optical signal variation also enabled the sensor to quantitatively analyze Cu2+ due to the formation of a stable 1:1 metal-ligand complex in a short time. In addition, the sensor possessed chemical reversibility and pH stability. The cell imaging and zebra fish experiments also verified its application value in biological system.

15.
Mol Biol Rep ; 51(1): 113, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227102

ABSTRACT

BACKGROUND: Essential tremor (ET) is a neurological disease characterized by action tremor in upper arms. Although its high heritability and prevalence worldwide, its etiology and association with other diseases are still unknown. METHOD: We investigated 10 common spinocerebellar ataxias (SCAs), including SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, SCA36, dentatorubral-pallidoluysian atrophy (DRPLA) in 92 early-onset familial ET pedigrees in China collected from 2016 to 2022. RESULT: We found one SCA12 proband carried 51 CAG repeats within PPP2R2B gene and one SCA3 proband with intermediate CAG repeats (55) with ATXN3 gene. The other 90 ET probands all had normal repeat expansions. CONCLUSION: Tremor can be the initial phenotype of certain SCA. For early-onset, familial ET patients, careful physical examinations are needed before genetic SCA screening.


Subject(s)
Essential Tremor , Spinocerebellar Ataxias , Humans , Essential Tremor/epidemiology , Essential Tremor/genetics , China/epidemiology , Spinocerebellar Ataxias/epidemiology , Spinocerebellar Ataxias/genetics , Nucleotides
16.
Brain ; 146(4): 1299-1315, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36572966

ABSTRACT

Accumulation of neurotoxic protein aggregates is the pathological hallmark of neurodegenerative disease. Proper clearance of these waste metabolites is an essential process for maintaining brain microenvironment homeostasis and may delay or even halt the onset and progression of neurodegeneration. Vascular endothelial cells regulate the molecular exchange between the circulation and brain parenchyma, thereby protecting the brain against the entry of xenobiotics and decreasing the accumulation of neurotoxic proteins. In this review, we provide an overview of cerebrovascular endothelial cell characteristics and their impact on waste metabolite clearance. Lastly, we speculate that molecular changes in cerebrovascular endothelial cells are the drivers of neurodegenerative diseases.


Subject(s)
Endothelial Cells , Neurodegenerative Diseases , Humans , Endothelial Cells/metabolism , Neurodegenerative Diseases/pathology , Brain/pathology , Homeostasis
17.
Phys Chem Chem Phys ; 26(5): 4505-4510, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38240530

ABSTRACT

There is a growing demand for high purity ethanol as an electronic chemical. The conventional distillation process is effective for separating ethanol from water but consumes a significant amount of energy. Selective membrane separation using the LTA-type molecular sieve has been introduced as an alternative. The density functional theory simulation indicates that aluminum (Al) sites are evenly distributed throughout the framework, while sodium (Na+) ions are preferentially located in the six-membered ring. The movement of ethanol molecules can cause Na+ ions to be transported towards the eight-membered ring, hindering the passage of ethanol through the channel. In contrast, the energy barrier for water molecules passing through the channel occupied by Na+ ions is significantly lower, leading to a high level of selectivity for ethanol-water separation.

18.
Acta Pharmacol Sin ; 45(4): 844-856, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38057506

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy prone to recurrence and metastasis. Studies show that tumor cells with increased invasive and metastatic potential are more likely to undergo ferroptosis. SMAD4 is a critical molecule in the transforming growth factor ß (TGF-ß) pathway, which affects the TGF-ß-induced epithelial-mesenchymal transition (EMT) status. SMAD4 loss is observed in more than half of patients with PDAC. In this study, we investigated whether SMAD4-positive PDAC cells were prone to ferroptosis because of their high invasiveness. We showed that SMAD4 status almost determined the orientation of transforming growth factor ß1 (TGF-ß1)-induced EMT via the SMAD4-dependent canonical pathway in PDAC, which altered ferroptosis vulnerability. We identified glutathione peroxidase 4 (GPX4), which inhibited ferroptosis, as a SMAD4 down-regulated gene by RNA sequencing. We found that SMAD4 bound to the promoter of GPX4 and decreased GPX4 transcription in PDAC. Furthermore, TGF-ß1-induced high invasiveness enhanced sensitivity of SMAD4-positive organoids and pancreas xenograft models to the ferroptosis inducer RAS-selective lethal 3 (RSL3). Moreover, SMAD4 enhanced the cytotoxic effect of gemcitabine combined with RSL3 in highly invasive PDAC cells. This study provides new ideas for the treatment of PDAC, especially SMAD4-positive PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Ferroptosis , Pancreatic Neoplasms , Smad4 Protein , Transforming Growth Factor beta1 , Humans , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Smad4 Protein/genetics , Smad4 Protein/metabolism , Transforming Growth Factor beta1/metabolism
19.
Acta Pharmacol Sin ; 45(1): 36-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37684382

ABSTRACT

The gut-brain axis plays a vital role in Parkinson's disease (PD). The mechanisms of gut-brain transmission mainly focus on α-synuclein deposition, intestinal inflammation and microbiota function. A few studies have shown the trigger of PD pathology in the gut. α-Synuclein is highly conserved in food products, which was able to form ß-folded aggregates and to infect the intestinal mucosa. In this study we investigated whether α-synuclein-preformed fibril (PFF) exposure could modulate the intestinal environment and induce rodent models replicating PD pathology. We first showed that PFF could be internalized into co-cultured Caco-2/HT29/Raji b cells in vitro. Furthermore, we demonstrated that PFF perfusion caused the intestinal inflammation and activation of enteric glial cells in an ex vivo intestinal organ culture and in an in vivo intestinal mouse coloclysis model. Moreover, we found that PFF exposure through regular coloclysis induced PD pathology in wild-type (WT) and A53T α-synuclein transgenic mice with various phenotypes. Particularly in A53T mice, PFF induced significant behavioral disorders, intestinal inflammation, α-synuclein deposition, microbiota dysbiosis, glial activation as well as degeneration of dopaminergic neurons in the substantia nigra. In WT mice, however, the PFF induced only mild behavioral abnormalities, intestinal inflammation, α-synuclein deposition, and glial activation, without significant changes in microbiota and dopaminergic neurons. Our results reveal the possibility of α-synuclein aggregates binding to the intestinal mucosa and modeling PD in mice. This study may shed light on the investigation and early intervention of the gut-origin hypothesis in neurodegenerative diseases.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , Humans , Mice , Animals , alpha-Synuclein/metabolism , Caco-2 Cells , Parkinsonian Disorders/metabolism , Parkinson Disease/metabolism , Mice, Transgenic , Dopaminergic Neurons/metabolism , Inflammation/metabolism
20.
Mol Cell ; 64(6): 1062-1073, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27916660

ABSTRACT

The methylcytosine oxidase TET proteins play important roles in DNA demethylation and development. However, it remains elusive how exactly they target substrates and execute oxidation. Interestingly, we found that, in mice, the full-length TET1 isoform (TET1e) is restricted to early embryos, embryonic stem cells (ESCs), and primordial germ cells (PGCs). By contrast, a short isoform (TET1s) is preferentially expressed in somatic cells, which lacks the N terminus including the CXXC domain, a DNA-binding module that often recognizes CpG islands (CGIs) where TET1 predominantly occupies. Unexpectedly, TET1s can still bind CGIs despite the fact that its global chromatin binding is significantly reduced. Interestingly, global chromatin binding, but not targeted binding at CGIs, is correlated with TET1-mediated demethylation. Finally, mice with exclusive expression of Tet1s failed to erase imprints in PGCs and displayed developmental defects in progeny. These data show that isoform switch of TET1 regulates epigenetic memory erasure and mouse development.


Subject(s)
DNA-Binding Proteins/genetics , Genomic Imprinting , Mouse Embryonic Stem Cells/metabolism , Ovum/metabolism , Proto-Oncogene Proteins/genetics , Spermatozoa/metabolism , Animals , Binding Sites , Chromatin/chemistry , Chromatin/metabolism , CpG Islands , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Embryo, Mammalian , Gene Expression Regulation, Developmental , Male , Mice , Mouse Embryonic Stem Cells/cytology , Ovum/cytology , Promoter Regions, Genetic , Protein Binding , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Spermatozoa/cytology
SELECTION OF CITATIONS
SEARCH DETAIL