Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 554
Filter
Add more filters

Publication year range
1.
Mol Cell ; 82(7): 1343-1358.e8, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35271816

ABSTRACT

Nucleotide excision repair (NER) counteracts the onset of cancer and aging by removing helix-distorting DNA lesions via a "cut-and-patch"-type reaction. The regulatory mechanisms that drive NER through its successive damage recognition, verification, incision, and gap restoration reaction steps remain elusive. Here, we show that the RAD5-related translocase HLTF facilitates repair through active eviction of incised damaged DNA together with associated repair proteins. Our data show a dual-incision-dependent recruitment of HLTF to the NER incision complex, which is mediated by HLTF's HIRAN domain that binds 3'-OH single-stranded DNA ends. HLTF's translocase motor subsequently promotes the dissociation of the stably damage-bound incision complex together with the incised oligonucleotide, allowing for an efficient PCNA loading and initiation of repair synthesis. Our findings uncover HLTF as an important NER factor that actively evicts DNA damage, thereby providing additional quality control by coordinating the transition between the excision and DNA synthesis steps to safeguard genome integrity.


Subject(s)
DNA Repair , DNA-Binding Proteins , DNA/genetics , DNA/metabolism , DNA Damage , DNA Replication , DNA-Binding Proteins/genetics
2.
Nucleic Acids Res ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39021334

ABSTRACT

DNA damage severely impedes gene transcription by RNA polymerase II (Pol II), causing cellular dysfunction. Transcription-Coupled Nucleotide Excision Repair (TC-NER) specifically removes such transcription-blocking damage. TC-NER initiation relies on the CSB, CSA and UVSSA proteins; loss of any results in complete TC-NER deficiency. Strikingly, UVSSA deficiency results in UV-Sensitive Syndrome (UVSS), with mild cutaneous symptoms, while loss of CSA or CSB activity results in the severe Cockayne Syndrome (CS), characterized by neurodegeneration and premature aging. Thus far the underlying mechanism for these contrasting phenotypes remains unclear. Live-cell imaging approaches reveal that in TC-NER proficient cells, lesion-stalled Pol II is swiftly resolved, while in CSA and CSB knockout (KO) cells, elongating Pol II remains damage-bound, likely obstructing other DNA transacting processes and shielding the damage from alternative repair pathways. In contrast, in UVSSA KO cells, Pol II is cleared from the damage via VCP-mediated proteasomal degradation which is fully dependent on the CRL4CSA ubiquitin ligase activity. This Pol II degradation might provide access for alternative repair mechanisms, such as GG-NER, to remove the damage. Collectively, our data indicate that the inability to clear lesion-stalled Pol II from the chromatin, rather than TC-NER deficiency, causes the severe phenotypes observed in CS.

3.
Cereb Cortex ; 34(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38997211

ABSTRACT

To explore the effects of age and gender on the brain in children with autism spectrum disorder using magnetic resonance imaging. 185 patients with autism spectrum disorder and 110 typically developing children were enrolled. In terms of gender, boys with autism spectrum disorder had increased gray matter volumes in the insula and superior frontal gyrus and decreased gray matter volumes in the inferior frontal gyrus and thalamus. The brain regions with functional alterations are mainly distributed in the cerebellum, anterior cingulate gyrus, postcentral gyrus, and putamen. Girls with autism spectrum disorder only had increased gray matter volumes in the right cuneus and showed higher amplitude of low-frequency fluctuation in the paracentral lobule, higher regional homogeneity and degree centrality in the calcarine fissure, and greater right frontoparietal network-default mode network connectivity. In terms of age, preschool-aged children with autism spectrum disorder exhibited hypo-connectivity between and within auditory network, somatomotor network, and visual network. School-aged children with autism spectrum disorder showed increased gray matter volumes in the rectus gyrus, superior temporal gyrus, insula, and suboccipital gyrus, as well as increased amplitude of low-frequency fluctuation and regional homogeneity in the calcarine fissure and precentral gyrus and decreased in the cerebellum and anterior cingulate gyrus. The hyper-connectivity between somatomotor network and left frontoparietal network and within visual network was found. It is essential to consider the impact of age and gender on the neurophysiological alterations in autism spectrum disorder children when analyzing changes in brain structure and function.


Subject(s)
Autism Spectrum Disorder , Brain , Magnetic Resonance Imaging , Humans , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/pathology , Male , Female , Child , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Child, Preschool , Sex Characteristics , Gray Matter/diagnostic imaging , Gray Matter/pathology , Adolescent , Age Factors , Brain Mapping/methods
4.
Br J Haematol ; 204(4): 1307-1324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462771

ABSTRACT

Multiple myeloma (MM) is the second most common malignant haematological disease with a poor prognosis. The limit therapeutic progress has been made in MM patients with cancer relapse, necessitating deeper research into the molecular mechanisms underlying its occurrence and development. A genome-wide CRISPR-Cas9 loss-of-function screening was utilized to identify potential therapeutic targets in our research. We revealed that COQ2 plays a crucial role in regulating MM cell proliferation and lipid peroxidation (LPO). Knockout of COQ2 inhibited cell proliferation, induced cell cycle arrest and reduced tumour growth in vivo. Mechanistically, COQ2 promoted the activation of the MEK/ERK cascade, which in turn stabilized and activated MYC protein. Moreover, we found that COQ2-deficient MM cells increased sensitivity to the LPO activator, RSL3. Using an inhibitor targeting COQ2 by 4-CBA enhanced the sensitivity to RSL3 in primary CD138+ myeloma cells and in a xenograft mouse model. Nevertheless, co-treatment of 4-CBA and RSL3 induced cell death in bortezomib-resistant MM cells. Together, our findings suggest that COQ2 promotes cell proliferation and tumour growth through the activation of the MEK/ERK/MYC axis and targeting COQ2 could enhance the sensitivity to ferroptosis in MM cells, which may be a promising therapeutic strategy for the treatment of MM patients.


Subject(s)
Multiple Myeloma , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , CRISPR-Cas Systems , Disease Models, Animal , Lipid Peroxidation , Mitogen-Activated Protein Kinase Kinases/therapeutic use , Multiple Myeloma/drug therapy
5.
Nat Mater ; 22(4): 489-494, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36959503

ABSTRACT

Pressure-induced magnetic phase transitions are attracting interest as a means to detect superconducting behaviour at high pressures in diamond anvil cells, but determining the local magnetic properties of samples is a challenge due to the small volumes of sample chambers. Optically detected magnetic resonance of nitrogen vacancy centres in diamond has recently been used for the in situ detection of pressure-induced phase transitions. However, owing to their four orientation axes and temperature-dependent zero-field splitting, interpreting these optically detected magnetic resonance spectra remains challenging. Here we study the optical and spin properties of implanted silicon vacancy defects in 4H-silicon carbide that exhibit single-axis and temperature-independent zero-field splitting. Using this technique, we observe the magnetic phase transition of Nd2Fe14B at about 7 GPa and map the critical temperature-pressure phase diagram of the superconductor YBa2Cu3O6.6. These results highlight the potential of silicon vacancy-based quantum sensors for in situ magnetic detection at high pressures.

6.
Opt Express ; 32(9): 16362-16370, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859265

ABSTRACT

Particle manipulation through the transfer of light or sound momentum has emerged as a powerful technique with immense potential in various fields, including cell biology, microparticle assembly, and lab-on-chip technology. Here, we present a novel method called Programmable Photoacoustic Manipulation (PPAM) of microparticles in liquid, which enables rapid and precise arrangement and controllable transport of numerous silica particles in water. Our approach leverages the modulation of pulsed laser using digital micromirror devices (DMD) to generate localized Lamb waves in a stainless steel membrane and acoustic waves in water. The particles undergo a mechanical force of about several µN due to membrane vibrations and an acoustic radiation force of about tens of nN from the surrounding water. Consequently, this approach surpasses the efficiency of optical tweezers by effectively countering the viscous drag imposed by water and can be used to move thousands of particles on the membrane. The high power of the pulsed laser and the programmability of the DMD enhance the flexibility in particle manipulation. By integrating the benefits of optical and acoustic manipulation, this technique holds great promise for advancing large-scale manipulation, cell assembly, and drug delivery.

7.
Opt Lett ; 49(9): 2341-2344, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691714

ABSTRACT

In the fields of biomedicine and microfluidics, the non-contact capture, manipulation, and spin of micro-particles hold great importance. In this study, we propose a programmable non-contact manipulation technique that utilizes photoacoustic effect to spin and transport living shrimp eggs. By directing a modulated pulsed laser toward a liquid-covered stainless-steel membrane, we can excite patterned Lamb waves within the membrane. These Lamb waves occur at the interface between the membrane and the liquid, enabling the manipulation of nearby particles. Experimental results demonstrate the successful capture, spin, and transport of shrimp eggs in diameter of 220 µm over a distance of about 5 mm. Calculations indicate that the acoustic radiation force and torque generated by our photoacoustic manipulation system are more than 299.5 nN and 41.0 nN·mm, respectively. The system surpasses traditional optical tweezers in terms of force and traditional acoustic tweezers in terms of flexibility. Consequently, this non-contact manipulation system significantly expands the possibilities for applications in various fields, including embryo screening, cell manipulation, and microfluidics.


Subject(s)
Ovum , Photoacoustic Techniques , Animals , Photoacoustic Techniques/methods , Pressure , Optical Tweezers , Penaeidae
8.
Eur Radiol ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421414

ABSTRACT

OBJECTIVES: We aimed to explore imaging features including tissue characterization and myocardial deformation in diabetic heart failure with preserved ejection fraction (HFpEF) patients by magnetic resonance imaging (MRI) and investigate its prognostic value for adverse outcomes. MATERIALS AND METHODS: Patients with HFpEF who underwent cardiac MRI between January 2010 and December 2016 were enrolled. Feature-tracking (FT) analysis and myocardial fibrosis were assessed by cardiac MRI. Cox proportional regression analysis was performed to determine the association between MRI variables and primary outcomes. Primary outcomes were all-cause death or heart failure hospitalization during the follow-up period. RESULTS: Of the 335 enrolled patients with HFpEF, 191 had diabetes mellitus (DM) (mean age: 58.7 years ± 10.8; 137 men). During a median follow-up of 10.2 years, 91 diabetic HFpEF and 56 non-diabetic HFpEF patients experienced primary outcomes. DM was a significant predictor of worse prognosis in HFpEF. In diabetic HFpEF, the addition of conventional imaging variables (left ventricular ejection fraction, left atrial volume index, extent of late gadolinium enhancement (LGE)) and global longitudinal strain (GLS) resulted in a significant increase in the area under the receiver operating characteristic curve (from 0.693 to 0.760, p < 0.05). After adjustment for multiple clinical and imaging variables, each 1% worsening in GLS was associated with a 9.8% increased risk of adverse events (p = 0.004). CONCLUSIONS: Diabetic HFpEF is characterized by more severely impaired strains and myocardial fibrosis, which is identified as a high-risk HFpEF phenotype. In diabetic HFpEF, comprehensive cardiac MRI provides incremental value in predicting prognosis. Particularly, MRI-FT measurement of GLS is an independent predictor of adverse outcome in diabetic HFpEF. CLINICAL RELEVANCE STATEMENT: Our findings suggested that MRI-derived variables, especially global longitudinal strain, played a crucial role in risk stratification and predicting worse prognosis in diabetic heart failure with preserved ejection fraction, which could assist in identifying high-risk patients and guiding therapeutic decision-making. KEY POINTS: • Limited data are available on the cardiac MRI features of diabetic heart failure with preserved ejection fraction, including myocardial deformation and tissue characterization, as well as their incremental prognostic value. • Diabetic heart failure with preserved ejection fraction patients was characterized by more impaired strains and myocardial fibrosis. Comprehensive MRI, including tissue characterization and global longitudinal strain, provided incremental value for risk prediction. • MRI served as a valuable tool for identifying high-risk patients and guiding clinical management in diabetic heart failure with preserved ejection fraction.

9.
Soft Matter ; 20(8): 1905-1912, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38323340

ABSTRACT

The spontaneous emulsification for the formation of water-in-oil (W/O) or oil-in-water (O/W) emulsions needs the help of at least one kind of the third component (surfactant or cosolvent) to stabilize the oil-water interface. Herein, with the water/CS2-soluble polymer poly(N,N-diethylacrylamide) (PDEAM) as a surfactant, the spontaneous formation of water-in-PDEAM/CS2 emulsions is reported for the first time. The strong affinity between PDEAM and water or the increase of PDEAM concentration will accelerate the emulsification process with high dispersed phase content. It is demonstrated that the spontaneous emulsification of condensed water droplets into the PDEAM/CS2 solution occurs during the breath figure process, resulting in porous films with two levels of pore sizes (i.e., micron and submicron). The emulsification degree and the amounts of submicron-sized pores increase with PDEAM concentration and solidifying time of the solution. This work brings about incremental interest in spontaneous emulsification that may happen during the breath figure process. The combination of these two simultaneous processes provides us with an option to build hierarchically porous structures with condensed and emulsified water droplets as templates. Such porous membranes may have great potential in fields such as separation, cell culture, and biosensing.

10.
Vet Res ; 55(1): 66, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778424

ABSTRACT

The lasso peptide microcin Y (MccY) effectively inhibits various serotypes of Salmonella in vitro, but the antibacterial effect against S. Pullorum in poultry is still unclear. This study was the first to evaluate the safety and anti-S. Pullorum infection of MccY in specific pathogen-free (SPF) chicks. The safety test showed that the body weight, IgA and IgM levels of serum, and cecal microbiota structure of 3 groups of chicks orally administrated with different doses of MccY (5 mg/kg, 10 mg/kg, 20 mg/kg) for 14 days were not significantly different from those of the control group. Then, the chicks were randomized into 3 groups for the experiment of anti-S. Pullorum infection: (I) negative control group (NC), (II) S. Pullorum-challenged group (SP, 5 × 108 CFU/bird), (III) MccY-treated group (MccY, 20 mg/kg). The results indicated that compared to the SP group, treatment of MccY increased body weight and average daily gain (P < 0.05), reduced S. Pullorum burden in feces, liver, and cecum (P < 0.05), enhanced the thymus, and decreased the spleen and liver index (P < 0.05). Additionally, MccY increased the jejunal villus height, lowered the jejunal and ileal crypt depth (P < 0.05), and upregulated the expression of IL-4, IL-10, ZO-1 in the jejunum and ileum, as well as CLDN-1 in the jejunum (P < 0.05) compared to the SP group. Furthermore, MccY increased probiotic flora (Barnesiella, etc.), while decreasing (P < 0.05) the relative abundance of pathogenic flora (Escherichia and Salmonella, etc.) compared to the SP group.


Subject(s)
Bacteriocins , Chickens , Gastrointestinal Microbiome , Poultry Diseases , Salmonella Infections, Animal , Animals , Gastrointestinal Microbiome/drug effects , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Bacteriocins/administration & dosage , Bacteriocins/pharmacology , Administration, Oral , Salmonella/drug effects , Salmonella/physiology , Specific Pathogen-Free Organisms , Animal Feed/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Random Allocation , Intestinal Barrier Function
11.
Bioorg Chem ; 147: 107335, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583250

ABSTRACT

Fifty compounds including seven undescribed (1, 13, 18-20, 30, 31) and forty-three known (2-12, 14-17, 21-29, 32-50) ones were isolated from the extract of the twigs and leaves of Aglaia odorata with anti-neuroinflammatory activities. Their structures were determined by a combination of spectral analysis and calculated spectra (ECD and NMR). Among them, compounds 13-25 were found to possess tertiary amide bonds, with compounds 16, 17, and 19-21 existing detectable cis/trans mixtures in 1H NMR spectrum measured in CDCl3. Specifically, the analysis of the cis-trans isomerization equilibrium of tertiary amides in compounds 19-24 was conducted using NMR spectroscopy and quantum chemical calculations. Bioactivity evaluation showed that the cyclopenta[b]benzofuran derivatives (2-6, 8, 10, 12) could inhibit nitric oxide production at the nanomolar concentration (IC50 values ranging from 2 to 100 nM) in lipopolysaccharide-induced BV-2 cells, which were 413-20670 times greater than that of the positive drug (minocycline, IC50 = 41.34 µM). The cyclopenta[bc]benzopyran derivatives (13-16), diterpenoids (30-35), lignan (40), and flavonoids (45, 47, 49, 50) also demonstrated significant inhibitory activities with IC50 values ranging from 1.74 to 38.44 µM. Furthermore, the in vivo anti-neuroinflammatory effect of rocaglaol (12) was evaluated via immunofluorescence, qRT-PCR, and western blot assays in the LPS-treated mice model. The results showed that rocaglaol (12) attenuated the activation of microglia and decreased the mRNA expression of iNOS, TNF-α, IL-1ß, and IL-6 in the cortex and hippocampus of mice. The mechanistic study suggested that rocaglaol might inhibit the activation of the NF-κB signaling pathway to relieve the neuroinflammatory response.


Subject(s)
Aglaia , Lipopolysaccharides , Nitric Oxide , Animals , Mice , Aglaia/chemistry , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Male , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/isolation & purification , Cell Line , Plant Leaves/chemistry
12.
Bioorg Chem ; 143: 107033, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104498

ABSTRACT

In the research on lung protective effects from the roots of Stemona sessilifolia, twenty-five Stemona alkaloids have been isolated, including four undescribed components (1, 3-5), a new natural product (2) and 20 known alkaloids (6-25). Their structures were analyzed by NMR spectra, high-resolution mass spectrum data, and other chemical methods. UPLC-QTOF/MS method was used to identify the Stemona alkaloids and summarize the fragmentation patterns of mass spectrometry. The lung-protective effects of these compounds were evaluated using MLE-12 cells induced by NNK and nm SiO2. The results showed that compounds 3, 5, 8, 10-11, 17-21 and 23 exhibited protective effects on NNK-induced cell injury. Compounds 2, 8-11, 14, 17-19 and 22 showed improvement in nm SiO2-induced lung epithelial cell injury. Compound 10 (tuberostemonine D), a representative alkaloid with a high content in Stemona sessilifolia, significantly protected C57BL/6 lung injury mice induced by nm SiO2, suggesting it a key component of Stemona alkaloids that play a protective role in lung injury. The results of in vivo activity showed that compound 10 could improve the lung injury of mice, reduce ROS content, and recover the levels of SOD and MDA in serum. Its protective effect on lung injury might be related to Nrf2 activation.


Subject(s)
Alkaloids , Lung Injury , Stemonaceae , Animals , Mice , Stemonaceae/chemistry , Silicon Dioxide , Mice, Inbred C57BL , Alkaloids/pharmacology , Alkaloids/chemistry , Stemona Alkaloids , Lung
13.
Bioorg Chem ; 149: 107484, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810482

ABSTRACT

A total of 37 characteristic terpenylated coumarins (1-25), including 17 undescribed compounds (1-5, 6a/6b, 7-10, 11a/11b-13a/13b), have been isolated from the root of Ferula ferulaeoides. Meanwhile, twelve pairs of enantiomers (6a/6b, 11a/11b-15a/15b, 17a/17b, 18a/18b, 20a/20b-22a/22b, and 25a/25b) were chirally purified. The structures of these new compounds were elucidated using HRESIMS, UV, NMR, and calculated 13C NMR with a custom DP4 + analysis. The absolute configurations of all the compounds were determined for the first time using electronic circular dichroism (ECD). Then, their inhibitory effects on nitric oxide (NO) production were evaluated with LPS-induced BV-2 microglia. Compared with the positive control minocycline (IC50 = 59.3 µM), ferulaferone B (2) exhibited stronger inhibitory potency with an IC50 value of 12.4 µM. The immunofluorescence investigation indicated that ferulaferone B (2) could inhibit Iba-1 expression in LPS-stimulated BV-2 microglia.


Subject(s)
Coumarins , Dose-Response Relationship, Drug , Ferula , Lipopolysaccharides , Microglia , Nitric Oxide , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/isolation & purification , Ferula/chemistry , Microglia/drug effects , Microglia/metabolism , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Animals , Molecular Structure , Mice , Structure-Activity Relationship , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Plant Roots/chemistry
14.
Bioorg Chem ; 150: 107570, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941695

ABSTRACT

Axially chiral compounds are well known in medicinal chemistry of natural products, but their absolute configurations and bioactivities are rarely reported and studied. In this study, eleven undescribed axially chiral dihydrophenanthrene dimers, as well as twenty-five known dihydrophenanthrenes, were isolated from the entire plant of Pholidota yunnanensis. Their structures were elucidated by comprehensive spectroscopic analysis. A method for determining the absolute configurations of enantiomers was developed based on the rotational barriers and calculated ECD spectra. Additionally, the activities of all isolated compounds were assessed in LPS-induced BV-2 microglial cells. Most dihydrophenanthrenes exhibited significant NO inhibitory activities, and compound 7 showed the most potent inhibitory effect with an IC50 value of 1.5 µM, compared to the positive control minocycline. The immunofluorescence and western blot results revealed that compound 7 suppressed the expression of Iba-1, iNOS and COX-2 in LPS-stimulated BV-2 microglial cells.


Subject(s)
Lipopolysaccharides , Microglia , Phenanthrenes , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , Phenanthrenes/isolation & purification , Animals , Mice , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Molecular Structure , Microglia/drug effects , Microglia/metabolism , Structure-Activity Relationship , Dimerization , Dose-Response Relationship, Drug , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Orchidaceae/chemistry , Cell Line , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Stereoisomerism
15.
Acta Pharmacol Sin ; 45(5): 988-1001, 2024 May.
Article in English | MEDLINE | ID: mdl-38279043

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease that is substantially associated with obesity-induced chronic inflammation. Macrophage activation and macrophage-medicated inflammation play crucial roles in the development and progression of NAFLD. Furthermore, fibroblast growth factor receptor 1 (FGFR1) has been shown to be essentially involved in macrophage activation. This study investigated the role of FGFR1 in the NAFLD pathogenesis and indicated that a high-fat diet (HFD) increased p-FGFR1 levels in the mouse liver, which is associated with increased macrophage infiltration. In addition, macrophage-specific FGFR1 knockout or administration of FGFR1 inhibitor markedly protected the liver from HFD-induced lipid accumulation, fibrosis, and inflammatory responses. The mechanistic study showed that macrophage-specific FGFR1 knockout alleviated HFD-induced liver inflammation by suppressing the activation of MAPKs and TNF signaling pathways and reduced fat deposition in hepatocytes, thereby inhibiting the activation of hepatic stellate cells. In conclusion, the results of this research revealed that FGFR1 could protect the liver of HFD-fed mice by inhibiting MAPKs/TNF-mediated inflammatory responses in macrophages. Therefore, FGFR1 can be employed as a target to prevent the development and progression of NAFLD.


Subject(s)
Diet, High-Fat , Macrophages , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Receptor, Fibroblast Growth Factor, Type 1 , Tumor Necrosis Factor-alpha , Animals , Diet, High-Fat/adverse effects , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Macrophages/metabolism , Macrophages/drug effects , Mice , Male , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Tumor Necrosis Factor-alpha/metabolism , Mice, Knockout , Liver/pathology , Liver/metabolism , Signal Transduction , Inflammation/metabolism , MAP Kinase Signaling System/drug effects
16.
Mol Ther ; 31(10): 3034-3051, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37452495

ABSTRACT

Oxidative stress plays a central role in the pathophysiology of acute kidney injury (AKI). Although RNA is one of the most vulnerable cell components to oxidative damage, it is unclear whether RNA oxidation is involved in the pathogenesis of AKI. In this study, we found that the level of RNA oxidation was significantly enhanced in kidneys of patients with acute tubular necrosis (ATN) and in the renal tubular epithelial cells (TECs) of mice with AKI, and oxidized RNA overload resulted in TEC injury. We further identified interferon-stimulated gene 20 (ISG20) as a novel regulator of RNA oxidation in AKI. Tubule-specific deficiency of ISG20 significantly aggravated renal injury and RNA oxidation in the ischemia/reperfusion-induced AKI mouse model and ISG20 restricted RNA oxidation in an exoribonuclease activity-dependent manner. Importantly, overexpression of ISG20 protected against oxidized RNA overproduction and renal ischemia/reperfusion injury in mice and ameliorated subsequent protein aggresome accumulation, endoplasmic reticulum stress, and unfolded protein response. Thus, our findings provide direct evidence that RNA oxidation contributes to the pathogenesis of AKI and that ISG20 importantly participates in the degradation of oxidized RNA, suggesting that targeting ISG20-handled RNA oxidation may be an innovative therapeutic strategy for AKI.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Animals , Humans , Mice , Acute Kidney Injury/genetics , Acute Kidney Injury/therapy , Apoptosis , Exoribonucleases/genetics , Exoribonucleases/metabolism , Interferons/metabolism , Ischemia/metabolism , Kidney/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/complications , Reperfusion Injury/metabolism , RNA/metabolism
17.
BMC Med Imaging ; 24(1): 39, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336622

ABSTRACT

BACKGROUND: Coronary computed tomography angiography stenosis score (CCTA-SS) is a proposed diagnosis score that considers the plaque characteristics, myocardial function, and the diameter reduction rate of the lesions. This study aimed to evaluate the diagnostic performance of the CCTA-SS in seeking coronary artery disease (CAD). METHODS: The 228 patients with suspected CAD who underwent CCTA and invasive coronary angiography (ICA) procedures were under examination. The diagnostic performance was evaluated with the receiver operating curve (ROC) for CCTA-SS in detecting CAD (defined as a diameter reduction of ≥ 50%) and severe CAD (defined as a diameter reduction of ≥ 70%). RESULTS: The area under ROC (AUC) of CCTA-SS was 0.909 (95% CI: 0.864-0.943), which was significantly higher than that of CCTA (AUC: 0.826; 95% CI: 0.771-0.873; P = 0.0352) in diagnosing of CAD with a threshold of 50%. The optimal cutoff point of CCTA-SS was 51% with a sensitivity of 90.66%, specificity of 95.65%, positive predictive value of 98.80%, negative predictive value of 72.13%, and accuracy of 91.67%, whereas the optimal cutoff point of CCTA was 55%, and the corresponding values were 87.36%, 93.48%, 98.15%, 65.15%, and 88.60%, respectively. With a threshold of 70%, the performance of CCTA-SS with an AUC of 0.927 (95% CI: 0.885-0.957) was significantly higher than that of CCTA with an AUC of 0.521 (95% CI: 0.454-0.587) (P < 0.0001). CONCLUSIONS: CCTA-SS significantly improved the diagnostic accuracy of coronary stenosis, including CAD and severe CAD, compared with CCTA.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Humans , Computed Tomography Angiography/methods , Constriction, Pathologic , Coronary Stenosis/diagnostic imaging , Tomography, X-Ray Computed/methods , Coronary Angiography/methods , Predictive Value of Tests
18.
World J Surg Oncol ; 22(1): 52, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38347606

ABSTRACT

BACKGROUND: Endoscopic thyroidectomy has been preliminarily proven effective and safe for thyroid diseases. The cosmetic outcomes and life quality are critical contents of postoperative assessment. This review will primarily focus on the assessment methods and results related to cosmetic outcomes, sensory alteration of surgical area, and quality of life following endoscopic thyroidectomy. METHODS: A comprehensive search of published articles within the last decade was conducted using the terms "endoscopic/robotic thyroidectomy," "patient satisfaction scores," "questionnaire," "quality of life," and "cosmetic" in PubMed. RESULTS: Assessment methods for postoperative cosmetic satisfaction and sensory alterations encompassed verbal/visual analog scales, scar evaluations, Semmes-Weinstein monofilament tests, and more. The evaluation of postoperative quality of life in endoscopic thyroidectomy involved tools such as SF-36, SF-12, thyroid-specific questionnaires, thyroid cancer-specific quality of life questionnaires (THYCA-QOL), as well as assessments related to voice and swallow function. The cosmetic results of endoscopic thyroidectomy generally surpassed those of open thyroidectomy, while the quality of life in endoscopic procedures was either superior or equivalent to that in open thyroidectomy, especially with respect to general health, role emotion, and vitality. CONCLUSIONS: Assessments of cosmetic outcomes and sensory alterations following endoscopic thyroidectomy predominantly relied on patients' subjective feelings. The objective and subjective perspectives of scar assessments remain underutilized. In addition, postoperative laryngoscopy and voice function assessments in endoscopic thyroidectomy procedures require more attention.

19.
Biochem Genet ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243003

ABSTRACT

Cystatin SN (CST1) appears to have pro-tumor effects in breast cancer (BC) and is involved in ferroptosis; however, there is no report on the regulation of ferroptosis by CST1 for BC development. The purpose of this study is to investigate the functions and mechanisms operated by CST1 in BC development and ferroptosis. Transcription Factor Activator Protein 2γ (TFAP2C) and CST1 levels in BC tissues and estrogen receptor (ER)+ cells were quantified by RT-qPCR and western blotting. After knocking down TFAP2C and CST1 expression in MCF7 and T47D cells, the proliferation, colony formation ability, apoptosis, and cell cycle were assessed. Ferroptosis was verified by detecting glutathione peroxidase 4 (GPX4) and 4-hydroxy-2-nonenal (4HNE) levels. The kits were used to test Fe2+, reactive oxygen species, malondialdehyde, and glutathione levels, and ultrastructure of mitochondria was observed through transmission electron microscope. Dual-luciferase reporter assay and chromatin immunoprecipitation test were carried out to investigate the interaction of TFAP2C and CST1. A transplanted tumor model was established to explore the function of TFAP2C in tumorigenesis by quantifying TFAP2C, CST1, Ki67, and GPX4 levels through western blotting and immunochemistry after silencing TFAP2C. TFAP2C and CST1 were predominantly expressed in BC cells. Silencing of TFAP2C or CST1 expression suppressed ER+ BC cell proliferation, promoted apoptosis and ferroptosis, and blocked cell cycle transition from G1 phase to S phase. TFAP2C knockdown in transplanted tumors inhibited tumor growth and GPX4 level. Upregulating CST1 nullified the anti-tumor effects of TFAP2C knockdown and TFAP2C promoted CST1 expression through transcription activation. TFAP2C activates CST1 transcription to facilitate BC development and block ferroptosis.

20.
Article in English | MEDLINE | ID: mdl-38430179

ABSTRACT

Background: With the development of endoscopic technology, the application of upper endoscopy can quickly target the lesion site of patients with peptic ulcer complicated with upper gastrointestinal bleeding. Objective: This study aims to discuss the clinical effect of octreotide combined with upper endoscopy in treating peptic ulcer complicated with upper gastrointestinal hemorrhage. Methods: A total of 82 patients diagnosed with peptic ulcer complicated with upper gastrointestinal hemorrhage were recruited as study objects in the researchers' hospital. According to the treatment method, this retrospective study divided the patients into a control group (n=41, receiving adrenaline injection under upper endoscopy only) and a treatment group (n=41, receiving adrenaline injection under upper endoscopy and Octreotide intravenously). Results: After treatment, the volume of blood loss, average hemostasis time, hospital stay, and time of occult blood turning negative in the treatment group were shorter than those in the control group (P < .05). After treatment, the clinical efficacy of the treatment group was better than that of the control group (P < .05). The levels of prothrombin time (PT), activated partial thromboplastin time (APTT), and thrombin time (TT) levels in the treatment group were lower than those in the control group, with significant differences (P < .05). Conclusion and Relevance: Combining octreotide and upper endoscopy has affirmative efficacy and good hemostatic effect on treating peptic ulcer complicated with upper gastrointestinal hemorrhage with less pain and short recovery time, which is worthy of clinical application.

SELECTION OF CITATIONS
SEARCH DETAIL