Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Transl Med ; 22(1): 100, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38268004

ABSTRACT

BACKGROUND: Asthma is a chronic respiratory disease affecting millions of people worldwide, but early detection can be challenging due to the time-consuming nature of the traditional technique. Machine learning has shown great potential in the prompt prediction of asthma. However, because of the inherent complexity of asthma-related patterns, current models often fail to capture the correlation between data samples, limiting their accuracy. Our objective was to use our novel model to address the above problem via an Affinity Graph Enhanced Classifier (AGEC) to improve predictive accuracy. METHODS: The clinical dataset used in this study consisted of 152 samples, where 24 routine blood markers were extracted as features to participate in the classification due to their ease of sourcing and relevance to asthma. Specifically, our model begins by constructing a projection matrix to reduce the dimensionality of the feature space while preserving the most discriminative features. Simultaneously, an affinity graph is learned through the resulting subspace to capture the internal relationship between samples better. Leveraging domain knowledge from the affinity graph, a new classifier (AGEC) is introduced for asthma prediction. AGEC's performance was compared with five state-of-the-art predictive models. RESULTS: Experimental findings reveal the superior predictive capabilities of AGEC in asthma prediction. AGEC achieved an accuracy of 72.50%, surpassing FWAdaBoost (61.02%), MLFE (60.98%), SVR (64.01%), SVM (69.80%) and ERM (68.40%). These results provide evidence that capturing the correlation between samples can enhance the accuracy of asthma prediction. Moreover, the obtained [Formula: see text] values also suggest that the differences between our model and other models are statistically significant, and the effect of our model does not exist by chance. CONCLUSION: As observed from the experimental results, advanced statistical machine learning approaches such as AGEC can enable accurate diagnosis of asthma. This finding holds promising implications for improving asthma management.


Subject(s)
Asthma , Humans , Asthma/diagnosis , Biomarkers , Knowledge , Machine Learning
2.
Appl Environ Microbiol ; : e0068124, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109875

ABSTRACT

Parasitism is an important lifestyle in the Trichoderma genus but has not been studied in a genus-wide way toward Pythium and Globisporangium hosts. Our approach screened a genus-wide set of 30 Trichoderma species in dual culture assays with two soil-borne Pythium and three Globisporangium plant-parasitic species and used exo-proteomic analyses, with the aim to correlate Trichoderma antagonism with potential strategies for attacking Pythium and Globisporangium. The Trichoderma spp. showed a wide range of antagonism from strong to weak, but the same Trichoderma strain showed similar levels toward all the Pythium and Globisporangium species. The Trichoderma enzymes from strong (Trichoderma asperellum, Trichoderma atroviride, and Trichoderma virens), moderate (Trichoderma cf. guizhouense and Trichoderma reesei), and weak (Trichoderma parepimyces) antagonists were induced by the autoclaved mycelia of one of the screened Pythium species, Pythium myriotylum. The variable proportions of putative cellulases, proteases, and redox enzymes suggested diverse as well as shared strategies amongst the antagonists. There was a partial positive correlation between antagonism from microscopy and the cellulase activity induced by autoclaved P. myriotylum mycelia in different Trichoderma species. The deletion of the cellulase transcriptional activator XYR1 in T. reesei led to lower antagonism toward Pythium and Globisporangium. The antagonism of Pythium and Globisporangium appears to be a generic property of Trichoderma as most of the Trichoderma species were at least moderately antagonistic. While a role for cellulases in the antagonism was uncovered, cellulases did not appear to make a major contribution to T. reesei antagonism, and other factors are also likely contributing.IMPORTANCETrichoderma is an important genus widely distributed in nature with broad ecological impacts and applications in the biocontrol of plant diseases. The Pythium and Globisporangium genera of fungus-like water molds include many important soil-borne plant pathogens that cause various diseases. Most of the Trichoderma species showed at least a moderate ability to compete with or antagonize the Pythium and Globisporangium hosts, and microscopy showed examples of parasitism (a slow type of killing) and predation (a fast type of killing). Hydrolytic enzymes such as cellulases and proteases produced by Trichoderma likely contribute to the antagonism. A mutant deficient in cellulase activity had reduced antagonism. Interestingly, Pythium and Globisporangium species contain cellulose in their cell walls (unlike true fungi such as Trichoderma), and the cellulolytic ability of Trichoderma appears beneficial for antagonism of water molds.

3.
BMC Cancer ; 24(1): 364, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515073

ABSTRACT

BACKGROUND: Recent studies have demonstrated that APOC1 is associated with cancer progression, exerting cancer-promoting and immune infiltration-promoting effects. Nevertheless, there is currently no report on the presence of APOC1 in ovarian cancer (OV). METHOD: In this study, we conducted data analysis using the GEO and TCGA databases. We conducted a thorough bioinformatics analysis to investigate the function of APOC1 in OV, utilizing various platforms including cBioPortal, STRING, GeneMANIA, LinkedOmics, GSCALite, TIMER, and CellMarker. Additionally, we performed immunohistochemical staining on tissue microarrays and conducted in vitro cellular assays to validate our findings. RESULT: Our findings reveal that APOC1 expression is significantly upregulated in OV compared to normal tissues. Importantly, patients with high APOC1 levels show a significantly poorer prognosis. Furthermore, our study demonstrated that APOC1 exerted a crucial function in promoting the capacity of ovarian cancer cells to proliferate, migrate, and invade. Additionally, we have identified that genes co-expressed with APOC1 are primarily associated with adaptive immune responses. Notably, the levels of APOC1 in OV exhibit a correlation with the presence of M2 Tumor-associated Macrophages (TAMs). CONCLUSION: APOC1 emerges as a promising prognostic biomarker for OV and exhibits a significant association with M2 TAMs in OV.


Subject(s)
Ovarian Neoplasms , Female , Humans , Biomarkers , Macrophages , Ovarian Neoplasms/genetics , Prognosis
4.
Pediatr Allergy Immunol ; 35(6): e14182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899630

ABSTRACT

BACKGROUND: Polymorphisms in susceptibility genes are a major risk factor for the development of asthma. Understanding these genetic variants helps elucidate asthma's pathogenesis, predict its onset, expedite antiasthma medication development, and achieve precise targeted individualized treatment. This study developed a test kit based on susceptibility genes for predicting asthma in Chinese children. METHODS: The present study constructed a VariantPro Targeted Library Preparation System with 72 single nucleotide polymorphism (SNP) loci associated with asthma from the ClinVar, OMIM, and SNPedia databases. These SNP loci were detected in the peripheral blood of 499 children with asthma and 500 healthy children. Significant differences were discovered for seven SNP loci. Simultaneously, whole exome sequencing of 46 children with asthma and 50 healthy children identified eight SNP loci with significant differences. The 15 SNP loci identified from Chinese children with asthma were validated in an independent population of 97 children with asthma and 93 healthy children by conducting multiplex polymerase chain reaction (PCR)-next-generation sequencing genotyping. RESULTS: Four loci (rs12422149, rs7216389, rs4065275, and rs41453444) were identified, and a single-tube multifluorescent qPCR (real-time quantitative PCR) test kit was developed using these four SNP loci. The kit was tested on 269 children with asthma and 724 children with bronchopneumonia. CONCLUSIONS: We identified four loci as susceptibility genes and developed a quantitative PCR test kit for predicting asthma development in Chinese children.


Subject(s)
Asthma , Exome Sequencing , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Adolescent , Child , Child, Preschool , Female , Humans , Male , Asthma/genetics , Asthma/diagnosis , Case-Control Studies , China/epidemiology , Databases, Genetic , East Asian People/genetics , Exome Sequencing/methods , Genotype , High-Throughput Nucleotide Sequencing/methods
5.
Environ Sci Technol ; 58(17): 7403-7414, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38627988

ABSTRACT

Photochemically generated reactive oxygen species (ROS) are widespread on the earth's surface under sunlight irradiation. However, the nonphotochemical ROS generation in surface water (e.g., paddy overlying water) has been largely neglected. This work elucidated the drivers of nonphotochemical ROS generation and its spatial distribution in undisturbed paddy overlying water, by combining ROS imaging technology with in situ ROS monitoring. It was found that H2O2 concentrations formed in three paddy overlying waters could reach 0.03-16.9 µM, and the ROS profiles exhibited spatial heterogeneity. The O2 planar-optode indicated that redox interfaces were not always generated at the soil-water interface but also possibly in the water layer, depending on the soil properties. The formed redox interface facilitated a rapid turnover of reducing and oxidizing substances, creating an ideal environment for the generation of ROS. Additionally, the electron-donating capacities of water at soil-water interfaces increased by 4.5-8.4 times compared to that of the top water layers. Importantly, field investigation results confirmed that sustainable •OH generation through nonphotochemical pathways constituted of a significant proportion of total daily production (>50%), suggesting a comparable or even greater role than photochemical ROS generation. In summary, the nonphotochemical ROS generation process reported in this study greatly enhances the understanding of natural ROS production processes in paddy soils.


Subject(s)
Reactive Oxygen Species , Soil , Water , Reactive Oxygen Species/metabolism , Soil/chemistry , Oxidation-Reduction , Hydrogen Peroxide
6.
Environ Sci Technol ; 58(33): 14651-14661, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39121354

ABSTRACT

Edible offal of farmed animals can accumulate cadmium (Cd). However, no studies have investigated Cd bioavailability and its health effects. Here, based on mouse models, market pork kidney samples exhibited high Cd relative bioavailability of 74.5 ± 11.2% (n = 26), close to 83.8 ± 7.80% in Cd-rice (n = 5). This was mainly due to high vitamin D3 content in pork kidney, causing 1.7-2.3-fold up-regulated expression of duodenal Ca transporter genes in mice fed pork kidney compared to mice fed Cd-rice, favoring Cd intestinal absorption via Ca transporters. However, although pork kidney was high in Cd bioavailability, subchronic low-dose (5% in diet) consumption of two pork kidney samples having 0.48 and 0.97 µg Cd g-1 dw over 35 d did not lead to significant Cd accumulation in the tissue of mice fed Cd-free rice but instead remarkably decreased Cd accumulation in the tissue of mice fed Cd-rice (0.48 µg Cd g-1) by ∼50% and increased abundance of gut probiotics (Faecalibaculum and Lactobacillus). Overall, this study contributed to our understanding of the bioavailability and health effects associated with Cd in edible offal, providing mechanistic insights into pork kidney consumption safety based on Cd bioavailability.


Subject(s)
Cadmium , Kidney , Animals , Cadmium/metabolism , Mice , Kidney/metabolism , Swine , Biological Availability
7.
Environ Sci Technol ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141599

ABSTRACT

Ferrihydrite is omnipresent in nature, and its adsorption of As(III/V) decides the migration of arsenic. Although As(III) is commonly recognized as the more mobile species of inorganic arsenic, it sometimes exhibits less mobility in ferrihydrite systems, which calls for further insights. In this study, we elucidated the adsorption behavior and mechanisms of As(III/V) on ferrihydrite under different loading levels (molar ratio As/Fe = 0-0.38), solution pH (3-10), and coexisting ions [P(V) and Ca(II)] based on batch adsorption experiments, surface complexation modeling, density functional theory calculations, and X-ray photoelectron spectroscopy. Our results show that As(III) exhibits weaker adsorption affinity but a larger capacity compared with that of As(V). On ferrihydrite, As(III) and As(V) are adsorbed mainly as bidentate mononuclear complexes at type-a sites [≡Fe(OH-0.5)2] and bidentate binuclear complexes at type-b sites (2≡FeOH-0.5), respectively. As the dosage increases, As(III) further forms mononuclear monodentate complexes at both surface sites, resulting in a higher site utilization efficiency, while As(V) does not due to repulsive electrostatic interaction. The difference in surface species of As(III/V) also leads to complex responses when coexisting with high concentrations of P(V) and Ca(II). This study helps us to understand environmental behavior of As(III/V) and develop remediation strategy in As(III/V) contaminated systems.

8.
Environ Sci Technol ; 58(16): 6900-6912, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38613493

ABSTRACT

Foliar application of beneficial nanoparticles (NPs) exhibits potential in reducing cadmium (Cd) uptake in crops, necessitating a systematic understanding of their leaf-root-microorganism process for sustainable development of efficient nano-enabled agrochemicals. Herein, wheat grown in Cd-contaminated soil (5.23 mg/kg) was sprayed with different rates of four commonly used NPs, including nano selenium (SeNPs)/silica (SiO2NPs)/zinc oxide/manganese dioxide. SeNPs and SiO2NPs most effectively reduced the Cd concentration in wheat grains. Compared to the control, Cd concentration in grains was significantly decreased by 35.0 and 33.3% by applying 0.96 mg/plant SeNPs and 2.4 mg/plant SiO2NPs, and the grain yield was significantly increased by 33.9% with SeNPs application. Down-regulated gene expression of Cd transport proteins (TaNramp5 and TaLCT1) and up-regulated gene expression of vacuolar Cd fixation proteins (TaHMA3 and TaTM20) were observed with foliar SeNPs and SiO2NPs use. SeNPs increased the levels of leaf antioxidant metabolites. Additionally, foliar spray of SeNPs resulted in lower abundances of rhizosphere organic acids and reduced Cd bioavailability in rhizosphere soil, and soil microorganisms related to carbon and nitrogen (Solirubrobacter and Pedomicrobium) were promoted. Our findings underscore the potential of the foliar application of SeNPs and SiO2NPs as a plant and rhizosphere soil metabolism-regulating approach to reduce Cd accumulation in wheat grains.

9.
Environ Sci Technol ; 58(18): 7880-7890, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38670926

ABSTRACT

Flooding of paddy fields during the rice growing season enhances arsenic (As) mobilization and greenhouse gas (e.g., methane) emissions. In this study, an adsorbent for dissolved organic matter (DOM), namely, activated carbon (AC), was applied to an arsenic-contaminated paddy soil. The capacity for simultaneously alleviating soil carbon emissions and As accumulation in rice grains was explored. Soil microcosm incubations and 2-year pot experimental results indicated that AC amendment significantly decreased porewater DOM, Fe(III) reduction/Fe2+ release, and As release. More importantly, soil carbon dioxide and methane emissions were mitigated in anoxic microcosm incubations. Porewater DOM of pot experiments mainly consisted of humic-like fluorophores with a molecular structure of lignins and tannins, which could mediate microbial reduction of Fe(III) (oxyhydr)oxides. Soil microcosm incubation experiments cospiking with a carbon source and AC further consolidated that DOM electron shuttling and microbial carbon source functions were crucial for soil Fe(III) reduction, thus driving paddy soil As release and carbon emission. Additionally, the application of AC alleviated rice grain dimethylarsenate accumulation over 2 years. Our results highlight the importance of microbial extracellular electron transfer in driving paddy soil anaerobic respiration and decreasing porewater DOM in simultaneously remediating As contamination and mitigating methane emission in paddy fields.


Subject(s)
Arsenic , Carbon , Oryza , Soil , Arsenic/metabolism , Soil/chemistry , Soil Pollutants , Charcoal/chemistry , Methane
10.
Environ Sci Technol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023504

ABSTRACT

Hydroxyl radicals (•OH) play a significant role in contaminant transformation and element cycling during redox fluctuations in paddy soil. However, these important processes might be affected by widely used agricultural amendments, such as urea, pig manure, and biochar, which have rarely been explored, especially regarding their impact on soil aggregates and associated biogeochemical processes. Herein, based on five years of fertilization experiments in the field, we found that agricultural amendments, especially coapplication of fertilizers and biochar, significantly increased soil organic carbon contents and the abundances of iron (Fe)-reducing bacteria. They also substantially altered the fraction of soil aggregates, which consequently enhanced the electron-donating capacity and the formation of active Fe(II) species (i.e., 0.5 M HCl-Fe(II)) in soil aggregates (0-2 mm), especially in small aggregates (0-3 µm). The highest contents of active Fe(II) species in small aggregates were mainly responsible for the highest •OH production (increased by 1.7-2.4-fold) and naphthalene attenuation in paddy soil with coapplication of fertilizers and biochar. Overall, this study offers new insights into the effects of agricultural amendments on regulating •OH formation in paddy soil and proposes feasible strategies for soil remediation in agricultural fields, especially in soils with frequent occurrences of redox fluctuations.

11.
Mar Drugs ; 22(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38393034

ABSTRACT

Six benzophenone derivatives, carneusones A-F (1-6), along with seven known compounds (7-13) were isolated from a strain of sponge-derived marine fungus Aspergillus carneus GXIMD00543. Their chemical structures were elucidated by detailed spectroscopic data and quantum chemical calculations. Compounds 5, 6, and 8 exhibited moderate anti-inflammatory activity on NO secretion using lipopolysaccharide (LPS)-induced RAW 264.7 cells with EC50 values of 34.6 ± 0.9, 20.2 ± 1.8, and 26.8 ± 1.7 µM, while 11 showed potent effect with an EC50 value of 2.9 ± 0.1 µM.


Subject(s)
Anti-Inflammatory Agents , Aspergillus , Animals , Mice , Molecular Structure , Aspergillus/chemistry , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells
12.
J Asian Nat Prod Res ; 26(9): 1049-1056, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38753589

ABSTRACT

A pair of atropisomers secofumitremorgins C (1a) and D (1b), together with fifteen known alkaloids (2-16), were isolated from a saltern-derived fungus Aspergillus fumigatus GXIMD00544. The structures of atropisomers 1a and 1b were elucidated by the detailed spectroscopic data, chemical reaction and quantum chemical calculations. Compounds 1 and 8 displayed antifungal spore germination effects against plant pathogenic fungus associated with sugarcane Fusarium sp. with inhibitory rates of 53% and 77% at the concentration of 100 µM, repectively. Atropisomers 1 also exhibited antifouling potential against Balanus amphitrite larval settlement with an inhibitory rate of 96% at the concentration of 100 µM.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Aspergillus fumigatus/drug effects , Molecular Structure , Animals , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fusarium/chemistry , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Microbial Sensitivity Tests , Thoracica/drug effects , Larva , Stereoisomerism
13.
Bull Environ Contam Toxicol ; 113(1): 9, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981934

ABSTRACT

Cadmium (Cd) contamination of farmland soils leads to Cd accumulation in crops and reduced micronutrient uptake, posing grave risks to food safety. Herein, we investigated the enrichment and transportation patterns of Cd and trace elements in different parts of six wheat genotypes grown in weakly alkaline Cd-contaminated soils via pot experiments. The results revealed that the wheat grain variety with high Cd accumulation (Ningmai13) demonstrated a 1.94-fold increase compared to the variety with low accumulation (Yanong0428). The transfer factor of Cd from wheat straw to grain ranged from 0.319 to 0.761, while the transfer factor of Cd from root to straw ranged from 0.167 to 0.461. Furthermore, the concentrations of other metals in wheat grains followed the order of Zn > Mn > Fe > Cu. There was a significant positive correlation between Cd and Mn in grains, indicating a potential synergistic effect. Overall, this study provides valuable insights into the regulation of micronutrient intake to modulate Cd uptake in wheat.


Subject(s)
Cadmium , Genotype , Soil Pollutants , Trace Elements , Triticum , Triticum/metabolism , Cadmium/metabolism , Cadmium/analysis , Soil Pollutants/metabolism , Soil Pollutants/analysis , Trace Elements/metabolism , Trace Elements/analysis , Soil/chemistry
14.
Angew Chem Int Ed Engl ; 63(15): e202400428, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38291811

ABSTRACT

Tandem nitrate electroreduction reaction (NO3 -RR) is a promising method for green ammonia (NH3) synthesis. However, the mismatched kinetics processes between NO3 --to-NO2 - and NO2 --to-NH3 results in poor selectivity for NH3 and excess NO2 - evolution in electrolyte solution. Herein, a Ni2+ substitution strategy for developing oxide heterostructure in Co/Fe layered double oxides (LDOs) was designed and employed as tandem electrocataltysts for NO3 -RR. (Co0.83Ni0.16)2Fe exhibited a high NH3 yield rate of 50.4 mg ⋅ cm-2 ⋅ h-1 with a Faradaic efficiency of 97.8 % at -0.42 V vs. reversible hydrogen electrode (RHE) in a pulsed electrolysis test. By combining with in situ/operando characterization technologies and theoretical calculations, we observed the strong selectivity of NH3 evolution over (Co0.83Ni0.16)2Fe, with Ni playing a dual role in NO3 -RR by i) modifying the electronic behavior of Co, and ii) serving as complementary site for active hydrogen (*H) supply. Therefore, the adsorption capacity of *NO2 and its subsequent hydrogenation on the Co sites became more thermodynamically feasible. This study shows that Ni substitution promotes the kinetics of the NO3 -RR and provides insights into the design of tandem electrocatalysts for NH3 evolution.

15.
Sci Total Environ ; 926: 172046, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38552983

ABSTRACT

Cadmium (Cd) contamination in rice ecosystems posed a critical challenge to global food security and environmental health. This study aimed to unveil the key mechanisms trough hydroponic experiments by which chloride (Cl-) promoted the absorption and accumulation of cadmium (Cd) in rice plants. The findings elucidated that the addition of Cl- increased Cd uptake by rice roots (5.1 % âˆ¼ 61 %), acting both directly by enhancing root morphology and indirectly through regulating of the main transporter genes of Cd. The study unveiled that Cl- addition significantly improves Cd bioavailability in roots, which was discernible through the augmentation of Cd concentration and proportion in subcellular fractions, coupled with elevated energy values in key cellular components. Moreover, Cl- addition further augmented the intricate process of Cd transport from roots to shoots (16.1- 86.7 %), which was mainly attributed to the underexpression of OsHMA3 and the decrease in the formation of sulfuhydryl substances. This research provides a comprehensive understanding of the complex mechanisms governing Cd dynamics in rice plants in the presence of Cl-. By elucidating these processes, our findings not only contribute to fundamental knowledge in plant metal uptake but also hold promising implications for mitigating Cd contamination in rice cultivation systems.


Subject(s)
Oryza , Soil Pollutants , Cadmium , Oryza/physiology , Chlorides , Ecosystem , Biological Transport , Plant Roots
16.
Front Med (Lausanne) ; 11: 1252073, 2024.
Article in English | MEDLINE | ID: mdl-38695017

ABSTRACT

Objective: This study aims to investigate the current status of multiple HPV infection and its association with cervical lesions in the western region of Guangzhou. Methods: A retrospective analysis of clinical data from cervical cancer screening patients was conducted. The patients were grouped based on HPV genotypes and cervical pathology results to explore the prevalence of high-risk HPV infection and its relationship with cervical lesions in the western region of Guangzhou. The study also analyzed the relationship between high-risk HPV infection and cervical lesions among different age groups. Results: A total of 13,060 patients were included in the study, with an overall infection rate of 18.46% (2,411/13,060). Among them, the infection rate of HPV genotype 16 was 14.14% (341/2,411), HPV genotype 18 was 5.23% (126/2,411), and other 12 high-risk HPV genotypes accounted for 71.96% (1,735/2,411). When comparing the incidence of HSIL+ (high-grade squamous intraepithelial lesion or worse) among different HPV genotypes, the results showed that the HPV 16 infection group (47.50%) had a higher incidence than the HPV 18 infection group (25.40%) and the other 12 high-risk HPV genotypes group (15.97%; P < 0.05). In the multiple infection groups, the pathogenicity rates were 63.64% (7/11) for the 16+18 HPV infection group, 42.97% (55/128) for the 16+other 12 high-risk HPV genotypes infection group, 26.79% (15/56) for the 18+other 12 high-risk HPV genotypes infection group, and 57.14% (8/14) for the 16+18+other 12 high-risk HPV genotypes infection group. These rates were significantly different compared to the single infection group (P <0.01). Although there was no statistically significant difference in the incidence of cervical cancer between the HPV 16 infection group and the HPV 18 infection group, both groups had a higher incidence compared to the group with other 12 high-risk HPV genotypes infection (P < 0.05). Further analysis suggests that the severity of cervical lesions is not associated with the number of high-risk HPV infections, i.e., the severity of cervical lesions is unrelated to multiple HPV infections but is instead related to the pathogenicity of the HPV genotypes. The infection rate and multiple HPV infection rate of women under 35 years old were higher than those of women aged 35 and above (20% vs. 17.1%; 2% vs. 1.3%; P < 0.05). Moreover, the pathogenicity rate of HSIL+ among high-risk HPV infection increased with age. Conclusions: In the western region of Guangzhou, the overall infection rate of high-risk HPV is 18.46%. The severity of cervical lesions is unrelated to multiple HPV infections. The fundamental reason is the distinct pathogenicity of different HPV genotypes. The HSIL+ pathogenicity rates, from high to low, are in sequence for HPV 16, HPV 18, and the other 12 HPV types.

17.
Chemosphere ; 360: 142359, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782133

ABSTRACT

The excessive usage and emissions of triclosan (TCS) pose a serious threat to aquatic environments. Iron-based bimetallic particles (Pd/Fe, Ni/Fe, and Cu/Fe, etc.) were widely used for the degradation of chlorophenol pollutants. This study proposed a novel synthesis method for the preparation of Ni/Fe bimetallic particles (Ni-Febm) by ball milling microscale zero valent iron ZVI (mZVI) and NiSO4. Ball-milling conditions such as ball-milling time, ball-milling speed and ball-to-powder ratio were optimized to prepare high activity Ni-Febm bimetallic particles. During the ball-milling process, Ni2+ was reduced to Ni0 and formed a coupled structure with ZVI. The amount of Ni0 on ZVI significantly affected the activity of Ni-Febm bimetallic particles. The highest activity Ni-Febm bimetallic particles with Ni/Fe ratio of 0.03 were synthesized under optimized conditions, which could remove 86.56% of TCS (10 µM) in aerobic aqueous solution within 60 min. In addition, higher particle dosage, lower pH condition and higher reaction temperature were more conducive for TCS degradation. The higher corrosion current and lower electron transfer impedance of Ni-Febm bimetallic particles were the main reasons for its high activity. The hydrogen atom (•H) on the surface of Ni-Febm bimetallic particles was mainly contributed to the removal of TCS, as reductive transformation products of TCS were detected by LC-TOF-MS. Notably, a small amount of oxidation products were discovered. The total dechlorination rate of TCS was calculated to be 39.67%. After eight reaction cycles, the residual Ni-Febm bimetallic particles could still degrade 28.34% of TCS within 6 h. Low Ni2+ leaching during reaction indicated that Ni-Febm bimetallic particles did not pose potential environmental risks. The prepared environmental-friendly Ni-Febm bimetallic particles with high activity have great potential in the degradation of other chlorinated organic compounds in wastewater.


Subject(s)
Iron , Nickel , Triclosan , Water Pollutants, Chemical , Triclosan/chemistry , Nickel/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Powders
18.
Sci Total Environ ; 950: 175091, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39079643

ABSTRACT

Due to the wastewater irrigation or biosolid application, per- and polyfluoroalkyl substances (PFASs) have been widely detected in agriculture soil and hence crops or vegetables. Consumption of contaminated crops and vegetables is considered as an important route of human exposure to PFASs. Machine learning (ML) models have been developed to predict PFAS uptake by plants with majority focus on roots. However, ML models for predicting accumulation of PFASs in above ground edible tissues have yet to be investigated. In this study, 811 data points covering 22 PFASs represented by molecular fingerprints and 5 plant categories (namely the root class, leaf class, cereals, legumes, and fruits) were used for model development. The Extreme Gradient Boosting (XGB) model demonstrated the most favorable performance to predict the bioaccumulation factors (BAFs) in all the 4 plant tissues (namely root, leaf, stem, and fruit) achieving coefficients of determination R2 as 0.82-0.93. Feature importance analysis showed that the top influential factors for BAFs varied among different plant tissues, indicating that model developed for root concentration prediction may not be feasible for above ground parts. The XGB model's performance was further demonstrated by comparing with data from pot experiments measuring BAFs of 12 PFASs in lettuce. The correlation between predicted and measured results was favorable for BAFs in both lettuce roots and leaves with R2 values of 0.76 and 0.81. This study developed a robust approach to comprehensively understand the uptake of PFASs in both plant roots and above ground parts, offering key insights into PFAS risk assessment and food safety.

19.
Sci Total Environ ; 912: 169378, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38101648

ABSTRACT

Arsenic (As) contamination is widespread in soil and poses a threat to agricultural products and human health due to its high susceptibility to absorption by rice. Fe-bearing materials (Fe-Mat) display significant potential for reducing As bioavailability in soil and bioaccumulation in rice. However, the remediation effect of various Fe-Mat is often inconsistent, and the response to diverse environmental factors is ambiguous. Here, we conducted a meta-analysis to quantitatively assess the effects of As in soils, rice roots, and grains based on 673, 321, and 305 individual observations from 67 peer-reviewed articles, respectively. On average, Fe-Mat reduced As bioavailability in soils, rice roots, and grains by 28.74 %, 33.48 %, and 44.61 %, respectively. According to the analysis of influencing factors, the remediation efficiency of Fe-Mat on As-contaminated soil was significantly enhanced with increasing Fe content in the material, in which the industry byproduct was the most effective in soils (-42.31 %) and rice roots (-44.57 %), while Fe-biochar was superior in rice grains (-54.62 %). The efficiency of Fe-Mat in minimizing soil As mobility was negatively correlated with soil Fe content, CEC, and pH. In addition, applying Fe-Mat in alkaline soils with higher silt, lower clay and available P was more effective in reducing As in rice grains. A higher efficiency of applying Fe-Mat under continuous flooding conditions (27.39 %) compared with alternate wetting and drying conditions (23.66 %) was also identified. Our results offer an important reference for the development of remediation strategies and methods for various As-contaminated paddy soils.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Humans , Arsenic/analysis , Soil/chemistry , Biological Availability , Environmental Pollution , Soil Pollutants/analysis , Cadmium/analysis
20.
Water Res ; 261: 122052, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38991245

ABSTRACT

Recognizing the pervasive presence of alumina minerals and low-molecular-weight organic acids (LMWOAs) in the environment, this study addressed the gap in the interaction mechanisms within the ternary system involving these two components and Fe(II). Specifically, the impacts of LMWOAs on hydroxyl radicals (•OH) production and iron species transformation during Fe(II) oxidation on γ-Al2O3 mineral surface were examined. Results demonstrated that adding 0.5 mM oxalate (OA) or citrate (CA) to the γ-Al2O3/Fe(II) system (28.1 µM) significantly enhanced •OH production by 1.9-fold (51.9 µM) and 1.3-fold (36.2 µM), respectively, whereas succinate (SA) exhibited limited effect (30.7 µM). Raising OA concentration to 5 mM further promoted •OH yield to 125.0 µM after 24 h. Deeper analysis revealed that CA facilitated the dissolution of adsorbed Fe(II) and its subsequent oxygenation by O2 through both one- and two-electron transfer mechanisms, whereas OA enhanced the adsorption of dissolved Fe(II) and more efficient two-electron transfer for H2O2 production. Additionally, LMWOAs presence favored the formation of iron minerals with poor crystallinity like ferrihydrite and lepidocrocite rather than well-crystallized forms such as goethite. The distinct impacts of various LMWOAs on Fe(II) oxidation and •OH generation underscore their unique roles in the redox processes at mineral surface, consequently modulating the environmental fate of prototypical pollutants like phenol.


Subject(s)
Aluminum Oxide , Hydroxyl Radical , Oxidation-Reduction , Hydroxyl Radical/chemistry , Aluminum Oxide/chemistry , Minerals/chemistry , Iron/chemistry , Adsorption , Citric Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL