Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Opt Lett ; 49(12): 3520-3523, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875660

ABSTRACT

Nonreciprocal devices are essential and crucial in optics for source protection and signal separation. A hybrid grating system consisting of a silicon grating, a graphene layer, and a silicon waveguide layer is employed to create a high-Q quasi-BIC (bound state in the continuum). Then, the high-Q properties of the quasi-BIC are harnessed to enhance the third-order nonlinear effect of silicon, thereby improving the nonreciprocal characteristics of the device. The nonreciprocal transmittance ratio of the device can be tunable by adjusting the graphene Fermi energy level, achieving tunability ranging from 0.0865 to 30.57 dB. It also enables the best performance of the device over a wider range of frequency bands. This study provides a new, to the best of our knowledge, method for designing tunable nonreciprocal devices with a wide range of potential applications.

2.
Ophthalmic Res ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38555640

ABSTRACT

INTRODUCTION: This study aimed to investigate the relationship between age of myopia onset and high myopia and to explore if age of onset mediated the associations of high myopia with parental myopia and time spent on electronics. METHODS: This cross-sectional study enrolled 1118 myopic patients aged 18 to 40. Information was obtained via a detailed questionnaire. Multivariable logistic regression and linear regression models were utilized to assess age of onset in relation to high myopia and spherical equivalent refractive error, respectively. Structural equation models examined the mediated effect of onset age on the association between parental myopia, time spent on electronics and high myopia. RESULTS: An early age at myopia onset was negatively correlated with spherical equivalent refractive power. Subjects who developed myopia before the age of 12 were more likely to suffer from high myopia than those who developed myopia after the age of 15. Age of myopia onset was the strongest predictor of high myopia, with an area under the curve (AUC) in Receiver Operator Characteristic (ROC) analysis of 0.80. Additionally, age of myopia onset served as a mediator in the relationships between parental myopia, electronic device usage duration, and the onset of high myopia in adulthood. CONCLUSIONS: Age of myopia onset might be the single best predictor for high myopia, and age at onset appeared to mediate the associations of high myopia with parental myopia and time spent on electronics.

3.
J Transl Med ; 21(1): 22, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635757

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) have been shown to be essential for the emergence and growth of different cancers. However, further research is required to validate the function of circRNA in glioblastoma (GBM). METHODS: CircNDC80 expression in both normal brain tissues (NBTs) and glioma tissues was determined using real-time PCR. The impact of circNDC80 on GBM cell proliferation, migration, and invasion was then confirmed by CCK-8, colony formation, EdU incorporation, Transwell, and wound healing assays. To determine how circNDC80 affects the capacity of glioma stem cells (GSCs) to maintain their stemness and self-renewal, a CellTiter-Glo assay, clonogenic assay and extreme limiting dilution assay were utilized. To ascertain the impact of circNDC80 in vivo, intracranial xenograft models were established. RESULTS: When compared to NBT, glioblastoma tissue had a higher level of circNDC80 expression. In functional assays, circNDC80 promoted glioblastoma cell proliferation, migration, and invasion, while sustaining the stemness and fostering the self-renewal of glioma stem cells. In addition, a dual luciferase reporter assay and circRIP were used to verify that circNDC80 simultaneously affects the expression of ECE1 mRNA by sponging miR-139-5p, and a rescue experiment was used to verify the above results further. CONCLUSIONS: According to our research, circNDC80 is an oncogenic factor that promotes glioblastoma through the miR-139-5p/ECE1 pathway. This implies that circNDC80 may be employed as a novel therapeutic target and a possible predictive biomarker.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , MicroRNAs , RNA, Circular , Humans , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic , Endothelin-Converting Enzymes , Glioblastoma/genetics , Glioblastoma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism
4.
J Opt Soc Am A Opt Image Sci Vis ; 40(5): 841-848, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37133181

ABSTRACT

A single-layer graphene metamaterial consisting of a horizontal graphene strip, four vertical graphene strips, and two graphene rings is proposed to realize tunable multi-plasma-induced transparency (MPIT) by the coupled mode theory and the finite-difference time-domain method. A switch with three modulation modes is realized by dynamically adjusting the Fermi level of graphene. Moreover, the effect of symmetry breaking on MPIT is investigated by controlling the geometric parameters of graphene metamaterials. Triple-PIT, dual-PIT, single-PIT can be transformed into each other. The proposed structure and results provide guidance for applications such as designing photoelectric switches and modulators.

5.
Opt Express ; 30(26): 47647-47658, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558688

ABSTRACT

This paper proposes a novel and perfect absorber based on patterned graphene and vanadium dioxide hybrid metamaterial, which can not only achieve wide-band perfect absorption and dual-channel absorption in the terahertz band, but also realize their conversion by adjusting the temperature to control the metallic or insulating phase of VO2. Firstly, the absorption spectrum of the proposed structure is analyzed without graphene, where the absorption can reach as high as 100% at one frequency point (f = 5.956 THz) when VO2 is in the metal phase. What merits attention is that the addition of graphene above the structure enhances the almost 100% absorption from one frequency point (f = 5.956 THz) to a wide frequency band, in which the broadband width records 1.683 THz. Secondly, when VO2 is the insulating phase, the absorption of the metamaterial structure with graphene outperforms better, and two high absorption peaks are formed, logging 100% and 90.7% at f3 = 5.545 THz and f4 = 7.684 THz, respectively. Lastly, the adjustment of the Fermi level of graphene from 0.8 eV to 1.1 eV incurs an obvious blueshift of the absorption spectra, where an asynchronous optical switch can be achieved at fK1 = 5.782 THz and fK2 = 6.898 THz. Besides, the absorber exhibits polarization sensitivity at f3 = 5.545 THz, and polarization insensitivity at f4 = 7.684 THz with the shift in the polarization angle of incident light from 0° to 90°. Accordingly, this paper gives insights into the new method that increases the high absorption width, as well as the great potential in the multifunctional modulator.

6.
J Opt Soc Am A Opt Image Sci Vis ; 39(3): 377-382, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35297420

ABSTRACT

A terahertz-band metamaterial composed of multilayer patterned graphene is proposed and triple plasmon-induced transparency is excited by coupling three bright modes with one dark mode. The Lorentz curve calculated by the coupled-mode theory agrees well with the finite-difference time-domain results. Dynamic tuning is investigated by changing the Fermi level. Multimode electro-optics switching can be designed and achieved, and the amplitude modulations of four resonance frequencies are 94.3%, 92.8%, 90.7%, and 93%, respectively, which can realize the design of synchronous and asynchronous electro-optics switches. It is hoped that these results can provide theoretical support and guidance for the future design and application of photonic and optoelectronic devices.

7.
J Opt Soc Am A Opt Image Sci Vis ; 39(4): 594-599, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35471382

ABSTRACT

A simple monolayer graphene metamaterial based on silicon/silica substrates is proposed, and typical triple-plasmon-induced transparency (PIT) is realized in the terahertz band. The physical mechanism is analyzed by coupled mode theory (CMT), and the results of CMT agree well with the finite-difference time-domain simulation. A multimode electro-optical switch can be designed by dynamic tuning, and the modulation degrees of its resonant frequencies are 84.0%, 87.3%, 83.0%, 88.1%, and 76.7%. In addition, triple-PIT gradually degenerates into dual-PIT with a decrease in the length of one bright mode. Interestingly, the group index can reach 770 at Ef=0.8eV, which shows that it can be designed as a slow light device with extraordinary ability. Therefore, the results of this paper are of great significance to the research and design of electro-optical switches and slow light devices in the terahertz band.

8.
Sensors (Basel) ; 22(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808464

ABSTRACT

Aiming at non-stationary signals with complex components, the performance of a variational mode decomposition (VMD) algorithm is seriously affected by the key parameters such as the number of modes K, the quadratic penalty parameter α and the update step τ. In order to solve this problem, an adaptive empirical variational mode decomposition (EVMD) method based on a binary tree model is proposed in this paper, which can not only effectively solve the problem of VMD parameter selection, but also effectively reduce the computational complexity of searching the optimal VMD parameters using intelligent optimization algorithm. Firstly, the signal noise ratio (SNR) and refined composite multi-scale dispersion entropy (RCMDE) of the decomposed signal are calculated. The RCMDE is used as the setting basis of the α, and the SNR is used as the parameter value of the τ. Then, the signal is decomposed into two components based on the binary tree mode. Before decomposing, the α and τ need to be reset according to the SNR and MDE of the new signal. Finally, the cycle iteration termination condition composed of the least squares mutual information and reconstruction error of the components determines whether to continue the decomposition. The components with large least squares mutual information (LSMI) are combined, and the LSMI threshold is set as 0.8. The simulation and experimental results indicate that the proposed empirical VMD algorithm can decompose the non-stationary signals adaptively, with lower complexity, which is O(n2), good decomposition effect and strong robustness.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Least-Squares Analysis
9.
Sensors (Basel) ; 22(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36298330

ABSTRACT

In order to diagnose an incipient fault in rotating machinery under complicated conditions, a fast sparse decomposition based on the Teager energy operator (TEO) is proposed in this paper. In this proposed method, firstly, the TEO is employed to enhance the envelope of the impulses, which is more sensitive to frequency and can eliminate the low-frequency harmonic component and noise; secondly, a smoothing filtering algorithm was adopted to suppress the noise in the TEO envelope; thirdly, the fault signal was reconstructed by multiplication of the filtered TEO envelope and the original fault signal; finally, sparse decomposition was used based on a generalized S-transform (GST) to obtain the sparse representation of the signal. The proposed preprocessing method using the filtered TEO can overcome the interference of high-frequency noise while maintaining the structure of fault impulses, which helps the processed signal perform better on sparse decomposition; sparse decomposition based on GST was used to represent the fault signal more quickly and more accurately. Simulation and application prove that the proposed method has good accuracy and efficiency, especially in conditions of very low SNR, such as impulses with anSNR of -8.75 dB that are submerged by noise of the same amplitude.

10.
Opt Express ; 29(18): 29387-29401, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34615049

ABSTRACT

This study proposes a graphene metamaterial desensitized to the polarized angle to produce tunable quadruple plasmon-induced transparency (PIT). As a tool employed to explain the PIT, n-order coupled mode theory (CMT) is deduced for the first time and closely agrees with finite-difference time-domain (FDTD) simulations according to the quadruple PIT results in the case of n = 5. Additionally, the response of the proposed structure to the angle of polarized light is investigated. As a result, the Boltzmann function satisfied by the response of graphene strips to the polarization direction of incident light is proposed for the first time. Its property of polarization desensitization can be attributed to structural centrosymmetry, and conjugated variety which the Boltzmann functions result in. Therefore, a quintuple-mode modulation based on simultaneous electro-optical switch is realized by tuning Fermi levels within graphene. Its modulation degrees of amplitude and dephasing times are obtained. Given that the slow-light property is an important application of PIT, the n-order group index is thereby obtained. Hence, not only do the insights gained into polarization-desensitization structure provide new ideas for the design of novel optoelectronic devices, but also the results from the n-order CMT offer new research progress and references in theory.

11.
Opt Express ; 29(9): 13949-13959, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33985121

ABSTRACT

A mono-layer metamaterial comprising four graphene-strips and one graphene-square-ring is proposed herein to realize triple plasmon-induced transparency (PIT). Theoretical results based on the coupled mode theory (CMT) are in agreement with the simulation results obtained using the finite-difference time-domain (FDTD). An optical switch is investigated based on the characteristics of graphene dynamic modulation, with modulation degrees of the amplitude of 90.1%, 80.1%, 94.5%, and 84.7% corresponding to 1.905 THz, 2.455 THz, 3.131 THz, and 4.923 THz, respectively. Moreover, the proposed metamaterial is insensitive to the change in the angle of polarized light, for which the triple-PIT is equivalent in the cases of both x- and y-polarized light. The optical switch based on the proposed structure is effective not only for the linearly polarized light in different directions but also for left circularly polarized and right circularly polarized light. As such, this work provides insight into the design of optoelectronic devices based on the polarization characteristics of the incident light field on the optical switch and PIT.

12.
Phys Chem Chem Phys ; 23(31): 17041-17048, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34342321

ABSTRACT

Solar energy absorption is a very important field in photonics. The successful development of an efficient, wide-band solar absorber is an extremely powerful driver in this field. We propose an ultra-wideband (UWB) solar energy absorber composed of a Ti ring and SiO2-Si3N4-Ti thin films. In the range of 300-4000 nm, the wide band has an absorption efficiency of more than 90% and can reach 3683 nm, and it has four absorption peaks with a high absorptivity. Moreover, the weighted average absorption efficiency of the solar absorber under AM 1.5 is maintained above 97.03%, which indicates it has great potential for use in the field of solar energy absorption. Moreover, we proved that the polarization is insensitive by analyzing the absorption characteristics at arbitrary polarization angles. For both the transverse electric (TE) and transverse magnetic (TM) modes, the UWB absorption is maintained at more than 90% in the wide incidence angle range of 60°. The UWB solar energy absorber has great potential for use in a variety of applications, such as converting solar light and heat into electricity for public use and reducing the side effects of coal-fired power generation. It can also be used in information detection and infrared thermal imaging owing to its UWB characteristics.

13.
J Opt Soc Am A Opt Image Sci Vis ; 38(6): 784-789, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34143147

ABSTRACT

In this study, multilayer graphene metamaterials comprising graphene blocks and graphene ribbon are proposed to realize dynamic plasmon-induced transparence (PIT). By changing the position between the graphene blocks, PIT phenomenon will occur in different terahertz bands. Furthermore, PIT with a transparent window width of 1 THz has been realized. In addition, the PIT shows redshifts or blueshifts or disappears altogether upon changing the Fermi level of graphene, and hence a frequency selector from 3.91 to 7.84 THz and an electro-optical switch can be realized. Surprisingly, the group index of this structure can be increased to 469. Compared with the complex and fixed structure of previous studies, our proposed structure is simple and can be dynamically adjusted according to demands, which makes it a valuable platform for ideas to inspire the design of novel electro-optic devices.

14.
Nano Lett ; 20(1): 353-362, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31793787

ABSTRACT

Photodynamic therapy (PDT) capable of eliciting a robust antitumor immune response has been considered an attractive therapeutic approach. However, adaptive immune resistance in PDT underlines the need to develop alternative strategies. The exquisite power of checkpoint blockade can be harnessed to reinvigorate antitumor immune response. Here, we demonstrate that PDT-triggered adaptive immune resistance can be overcome by inactivating indoleamine 2,3-dioxygenase 1 (IDO-1). We rationally designed a tumor-microenvironment-sheddable prodrug vesicle by integrating a PEGylated photosensitizer (PS) and a reduction-sensitive prodrug of IDO-1 inhibitor. The prodrug vesicles were inert during the blood circulation, whereas they specifically accumulated and penetrated at the tumor site through matrix metalloproteinase-2 (MMP-2)-mediated cleavage of the PEG corona to achieve fluorescence-imaging-guided photodynamic therapy (PDT). Compared to PDT alone, the prodrug-vesicle-mediated combination immunotherapy provoked augmented antitumor immunity to eradicate the tumor in both CT26 colorectal and 4T1 breast immunocompetent mouse models. The prodrug vesicles dramatically suppressed tumor reoccurrence, particularly in overexpressing IDO-1 tumor models, i.e., CT26. This study might provide novel insight into the development of new nanomedicine to enhance the efficacy of photodynamic immunotherapy while addressing the adaptive immune resistance.


Subject(s)
Adaptive Immunity/drug effects , Delayed-Action Preparations , Neoplasms, Experimental , Photochemotherapy , Photosensitizing Agents , Prodrugs , Animals , Cell Line, Tumor , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacokinetics , Photosensitizing Agents/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Prodrugs/pharmacology
15.
Opt Express ; 28(24): 36771-36783, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379763

ABSTRACT

A monolayer graphene metamaterial comprising four graphene strips and four graphene blocks is proposed to produce triple plasmon-induced transparency (PIT) by the interaction of three bright modes and one dark mode. The response of the proposed structure is analyzed by using couple mode theory and finite-difference time-domain simulations, with the results of each method showing close agreement. A quadruple-mode on-to-off modulation based on synchronous or asynchronous switching is realized by tuning the Fermi levels in the graphene, its modulation degrees of amplitude are 77.7%, 58.9%, 75.4%, and 77.6% corresponding to 2.059 THz, 2.865 THz, 3.381 THz, and 3.878 THz, respectively. Moreover, the influence of the polarized light angle on triple-PIT is investigated in detail, demonstrating that the polarization angle affects PIT significantly. As a result, a multi-frequency polarizer is realized, its polarization extinction ratios are 4.2 dB, 7.8 dB, and 12.5 dB. Combined, the insights gained into the synchronous or asynchronous switching and the polarization sensitivity of triple-PIT provide a valuable platform and ideas to inspire the design of novel optoelectronic devices.

16.
J Opt Soc Am A Opt Image Sci Vis ; 37(6): 1002-1007, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32543602

ABSTRACT

A multilayer patterned graphene metamaterial composed of rectangular graphene, square graphene, and X-shaped graphene is proposed to achieve dual plasmon-induced transparency (PIT) at terahertz frequency. The coupled mode theory calculations are highly consistent with the finite-difference time-domain numerical results. Interestingly, a photoelectric switch has been realized, whose extinction ratio and modulation degree of amplitude can be 7.77 dB and 83.3% with the insertion loss of 7.2%. In addition, any dips can be modulated by tuning the Fermi levels of three graphene layers with minor or ignorable changes of the other two dips. The modulation degrees of frequency are 8.0%, 7.4% and 11.7%, respectively, which can be used to design a triple-mode frequency modulator. Moreover, the group index of the multilayer structure can be as high as 150. Therefore, it is reasonable to believe that a multifunctional device can be realized by the proposed structure.

17.
Opt Express ; 27(10): 13884-13894, 2019 May 13.
Article in English | MEDLINE | ID: mdl-31163846

ABSTRACT

Dual plasmon-induced transparency (PIT) and plasmon-induced absorption (PIA) are simultaneously achieved in an integrated metamaterial composed of single layer of graphene. Electric field distribution and coupled mode theory (CMT) are used to demonstrate the physical mechanism of dual PIT and PIA, and the theoretical result of CMT is highly consistent with the finite-difference time-domain (FDTD) method simulation result. Further research shows that both the dual PIT and PIA phenomenon can be effectively modulated by the Fermi level, the carrier mobility of the graphene and the refractive index of the surrounding environment. It is meaningful that the absorption of the dual PIA spectrum can be abruptly increased to 93.5% when the carrier mobility of graphene is 0.8m2/Vs. In addition, the group index can be as high as 328. Thus, our work can pave new way for developing excellent slow-light and light absorption functional devices.

18.
J Opt Soc Am A Opt Image Sci Vis ; 36(8): 1306-1311, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31503555

ABSTRACT

An H-type-graphene-based slow-light metamaterial is proposed to produce a dual plasmon-induced transparency phenomenon, which can be effectively modulated by Fermi level, carrier mobility of graphene, and the medium environment. The data calculated by coupled mode theory and results of numerical simulation show prominent agreement. In addition, both the simplicity and continuity of the units of graphene-based metamaterial are extraordinary advantages. Furthermore, the slow-light characteristics of the proposed structure show that the group refractive index is as high as 237, which is more competitive than some other slow-light devices.

19.
Br J Ophthalmol ; 108(3): 476-483, 2024 02 21.
Article in English | MEDLINE | ID: mdl-36828619

ABSTRACT

AIMS: To report the incidence and associated risk factors for developing suspected and definitive glaucoma after bilateral congenital cataract (CC) removal with a 5-year follow-up. METHODS: Secondary analysis of a prospective longitudinal cohort study. Bilateral CC patients who had undergone cataract surgery between January 2011 and December 2014 at Zhongshan Ophthalmic Centre were recruited. Suspected glaucoma was defined as persistent ocular hypertension requiring medical treatment. Definitive glaucoma was defined as accompanied by the progression of glaucomatous clinical features. According to postoperative lens status in 5 years follow-up: 130 eyes in the aphakia group; 219 in the primary intraocular lens (IOL) implantation group and 337 in the secondary IOL implantation group. The Kaplan-Meier survival and Cox regression analyses were used to explore the cumulative incidence and risk factors for suspected and definitive glaucoma. RESULTS: Three hundred fifty-one children (686 eyes) with bilateral CCs were enrolled in the study. The mean age at surgery was 1.82±2.08 years, and the mean follow-up duration was 6.26±0.97 years. Suspected and definitive glaucoma developed at a mean time of 2.84±1.75 years (range 0.02-7.33 years) postoperatively. The cumulative incidence of suspected and definitive glaucoma was 9.97% (35 of 351 patients), including 6.12% (42 eyes) for definitive glaucoma and 2.48% (17 eyes) for suspected glaucoma. Microcornea (HR 4.103, p<0.0001), CC family history (HR 3.285, p=0.001) and initial anterior vitrectomy (HR 2.365 p=0.036) were risk factors for suspected and definitive glaucoma. Gender, age at surgery, intraocular surgery frequency, length of follow-up and frequency of neodymium-doped yttrium aluminumaluminium garnet laser were non-statistically significant. Primary IOL implantation was a protective factor (HR 0.378, p=0.007). CONCLUSIONS: Identifying suspected and definitive glaucoma after bilateral CC surgery can lower the risk of secondary blindness in children. Patients with related risk factors need to pay more attention and thus reach early intervention and treatment during clinical practice. Primary IOL implantation may be a potential protective factor, need more clinical trials to be verified. TRIAL REGISTRATION NUMBER: NCT04342052.


Subject(s)
Cataract Extraction , Cataract , Glaucoma , Ocular Hypertension , Child , Humans , Infant , Incidence , Follow-Up Studies , Longitudinal Studies , Prospective Studies , Visual Acuity , Postoperative Complications , Cataract/complications , Cataract/epidemiology , Cataract/congenital , Cataract Extraction/adverse effects , Glaucoma/diagnosis , Glaucoma/epidemiology , Glaucoma/etiology , Ocular Hypertension/surgery , Risk Factors
20.
BMJ Open ; 14(6): e084068, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839388

ABSTRACT

BACKGROUND: In adult patients with high myopia (HM), progressive axial elongation poses a significant risk for the development of subsequent ocular complications that may lead to visual impairment. Effective strategies to reduce or prevent further axial elongation in highly myopic adult patients have not been available so far. Recent studies suggested that medically lowering intraocular pressure (IOP) may reduce axial elongation. OBJECTIVE: This clinical randomised controlled trial (RCT) aims to evaluate the efficacy of medical IOP reduction in adult patients with progressive HM (PHM). TRIAL DESIGN: Single-centre, open-label, prospective RCT. METHODS: This RCT will recruit 152 participants with PHM at the Zhongshan Ophthalmic Center (ZOC). Randomised in a ratio of 1:1, participants will receive IOP-lowering eyedrops (intervention group) or will be followed without treatment (control group) for 12 months. Follow-up visits will be conducted at 1, 6 and 12 months after baseline. Only one eye per eligible participant will be included for analysis. The primary outcome is the change in axial length (AL) within the study period of 12 months. Secondary outcomes include the incidence and progression of visual field (VF) defects, changes in optic disc morphology and incidence and progression of myopic maculopathy. Difference in AL changes between the two groups will be analysed using linear regression analysis. For the secondary outcomes, a multifactor Poisson regression within a generalised linear model will be used to estimate the relative risk of progression in VF defects and myopic maculopathy, and the rate of thinning in retinal nerve fibre layer and ganglion cell-inner plexiform will be assessed through Kaplan-Meier curves and log-rank tests. ETHICS AND DISSEMINATION: Full ethics approval for this trial has been obtained from the Ethics Committee of ZOC, Sun Yat-sen University, China (ID: 2023KYPJ110). Results of this trial will be disseminated through peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER: NCT05850936.


Subject(s)
Intraocular Pressure , Myopia, Degenerative , Humans , Prospective Studies , Adult , Disease Progression , Randomized Controlled Trials as Topic , Ophthalmic Solutions , Male , Female , Axial Length, Eye , Middle Aged , Visual Fields
SELECTION OF CITATIONS
SEARCH DETAIL