ABSTRACT
Throughout human life, the brain undergoes intricate structural changes that support cognition. A study in PLOS Biology introduces new avenues for depicting the trajectory of the brain morphometric connectome and its underlying genetic and molecular mechanisms.
Subject(s)
Brain , Connectome , Brain/growth & development , Brain/anatomy & histology , Brain/physiology , Humans , Longevity/physiology , Magnetic Resonance Imaging/methodsABSTRACT
A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.
Subject(s)
Cerebral Cortex , Cognition , Magnetic Resonance Imaging , Humans , Cognition/physiology , Cognition/drug effects , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Male , Magnetic Resonance Imaging/methods , Female , Adolescent , Child , Connectome/methods , Alprazolam/pharmacology , Receptors, GABA-A/metabolism , Young AdultABSTRACT
We determined the genetic association between specific human leucocyte antigen (HLA) loci and autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy. Our results showed that autoimmune GFAP astrocytopathy was associated with HLA-A*3303 (odds ratio [OR] = 2.02, 95% confidence interval [CI] = 1.32-3.06, p = 0.00072, padj. = 0.046) and HLA-DBP1*0501 (OR = 0.51, 95% CI = 0.36-0.71, p = 0.000048, padj. = 0.0062). Moreover, HLA-A*3303 carriers with the disease had a longer hospital stay (p = 0.0005) than non-carriers. This study for the first time provides evidence for a role of genetic factor in the development of autoimmune GFAP astrocytopathy. ANN NEUROL 2024;95:901-906.
Subject(s)
Astrocytes , Glial Fibrillary Acidic Protein , HLA-A Antigens , HLA-DP beta-Chains , Humans , Glial Fibrillary Acidic Protein/genetics , Male , Female , Middle Aged , HLA-DP beta-Chains/genetics , Adult , HLA-A Antigens/genetics , Astrocytes/metabolism , Astrocytes/pathology , AgedABSTRACT
Worldwide, approximately 15 million people per year suffer from stroke. With about 5 million deaths, stroke is the second most common cause of death and a major cause of long-term disability. It is estimated that about 25% of people older than 85 years will develop stroke. Cannabis sativa and derived cannabinoids have been used for recreational and medical purposes for many centuries. However, due to the legal status in the past, research faced restrictions, and cannabis use was stigmatized for potential negative impacts on health. With the changes in legal status in many countries of the world, cannabis and cannabis-derived substances such as cannabinoids and terpenes have gained more interest in medical research. Several medical effects of cannabis have been scientifically proven, and potential risks identified. In the context of stroke, the role of cannabis is controversial. The negative impact of cannabis use on stroke has been reported through case reports and population-based studies. However, potential beneficial effects of specific cannabinoids are described in animal studies under certain conditions. In this narrative review, the existing body of evidence regarding the negative and positive impacts of cannabis use prior to stroke will be critically appraised.
ABSTRACT
BACKGROUND: Inflammatory factors are being recognized as critical modulators of host antitumor immunity in liver cancer. We have previously shown that tumor cell-released LC3B positive extracellular vesicles (LC3B+ EVs) are responsible for malignant progression by dampening antitumor immunity. However, the relationship between LC3B+ EVs and inflammatory factors in the regulation of the liver cancer microenvironment remains unclear. METHODS: Flow cytometry analyses were performed to examine the panel of 12 cytokines, the main source of positive cytokines, and plasma LC3B+ EVs carrying HSP90α in peripheral blood of liver cancer patients. We correlated the levels of plasma IL-6, IL-8 with LC3B+ EVs carrying HSP90α and with prognosis. In vitro culture of healthy donor leukocytes with liver cancer-derived LC3B+ EVs was performed to evaluate the potential effect of blocking HSP90α, IL-6 or IL-8 alone or in combination with PD-1 inhibitor on CD8+ T cell function. We also investigated the potential associations of MAP1LC3B, HSP90AA1, IL6 or IL8 with immunotherapy efficacy using the TCGA databases. RESULTS: In liver cancer patients, plasma IL-6 and IL-8 levels were significantly higher than in healthy controls and associated with poor clinical outcome. In peripheral blood, levels of plasma LC3B+ EVs carrying HSP90α were significantly elevated in HCC patients and positively associated with IL-6 and IL-8 levels, which are predominantly secreted by monocytes and neutrophils. Moreover, LC3B+ EVs from human liver cancer cells promoted the secretion of IL-6 and IL-8 by leukocytes through HSP90α. Besides, we show that the cytokines IL-6 and IL-8 secreted by LC3B+ EVs-induced leukocytes were involved in the inhibition of CD8+ T-cell function, while blockade of the HSP90α on the LC3B+ EVs, IL-6, or IL-8 could enhance anti-PD-1-induced T cell reinvigoration. Finally, patients who received anti-PD-1/PD-L1 immunotherapy with high MAP1LC3B, HSP90AA1, IL6, or IL8 expression had a lower immunotherapy efficacy. CONCLUSIONS: Our data suggest that liver cancer-derived LC3B+ EVs promote a pro-oncogenic inflammatory microenvironment by carrying membrane-bound HSP90α. Targeting HSP90α on the LC3B+ EVs, IL-6, or IL-8 may synergize with anti-PD-1 treatment to enhance the CD8+ T-cell functions, which may provide novel combination strategies in the clinic for the treatment of liver cancer.
Subject(s)
Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Interleukin-6/metabolism , Interleukin-8/metabolism , Liver Neoplasms/drug therapy , Tumor Microenvironment , Cytokines/metabolism , Immunotherapy , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathologyABSTRACT
BACKGROUND: The role of ELAVL1 in the progression of various tumors has been demonstrated. Our research aims to investigate how ELAVL1 controls the glycolytic process in nasopharyngeal carcinoma cells through the HMGB3/ß-catenin pathway. METHODS: The expression of ELAVL1 was detected in clinical tumor samples and nasopharyngeal carcinoma cell lines. A subcutaneous tumor model was established in nude mice to investigate the role of ELAVL1 in tumor progression. The relationship between HMGB3 and ELAVL1 was validated by RNA pull down and RIP assays. TOPFlash/FOPFlash reporter assay was used to detect ß-catenin activity. Assay kits were utilized to measure glucose consumption, lactate production, and G6PD activity in nasopharyngeal carcinoma cells. Western blot was conducted to detect the expression of glycolysis-related proteins. The glycolytic capacity was analyzed through extracellular acidification rate (ECAR). RESULTS: In both clinical samples and nasopharyngeal carcinoma cell lines, the expression levels of ELAVL1 mRNA and protein were found to be upregulated. Knockdown of ELAVL1 significantly inhibited the in vivo proliferation of nasopharyngeal carcinoma and suppressed the glycolytic capacity of nasopharyngeal carcinoma cells. ELAVL1 interacts with HMGB3, leading to an increase in the stability of HMGB3 mRNA. Overexpression of HMGB3 elevated the reduced ß-catenin activity caused by sh-ELAVL1 and reversed the inhibitory effect of sh-ELAVL1 on cellular glycolytic capacity. Treatment with ß-catenin inhibitor (FH535) effectively suppressed the promotion of glycolytic capacity induced by HMGB3 overexpression. CONCLUSIONS: ELAVL1 promotes glycolysis in nasopharyngeal carcinoma cells by interacting with HMGB3 to stabilize HMGB3 mRNA, thereby activating ß-catenin pathway. Therefore, targeting the ELAVL1-HMGB3-ß-catenin axis has the potential to be a novel approach for treating nasopharyngeal carcinoma.
Subject(s)
ELAV-Like Protein 1 , Glycolysis , HMGB3 Protein , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , beta Catenin , Animals , Female , Humans , Mice , beta Catenin/metabolism , Cell Line, Tumor , Cell Proliferation , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Gene Expression Regulation, Neoplastic , HMGB3 Protein/metabolism , HMGB3 Protein/genetics , Mice, Nude , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Signal TransductionABSTRACT
Microcystin-LR (MC-LR) is a severe threat to human and animal health; thus, monitoring it in the environment is essential, especially in water quality protections. Herein, in this work, we synthesize PVDF/CNT/Ag molecular imprinted membranes (PCA-MIMs) via an innovative combination of surface-enhanced Raman spectroscopy (SERS) detection, membrane separation, and molecular-imprinted technique toward the analysis of MC-LR in water. In particular, a light-initiated imprint is employed to protect the chemical structure of the MC-LR molecules. Furthermore, in order to ensure the detection sensitivity, the SERS substrates are combined with the membrane via the assistance of magnetism. The effect of synthesis conditions on the SERS sensitivity was investigated in detail. It is demonstrated from the characteristic results that the PCA-MIMs present high sensitivity to the MC-LR molecules with excellent selectivity against the interfere molecules. Results clearly show that the as-prepared PCA-MIMs hold great potential applications to detect trace MC-LR for the protection of water quality.
Subject(s)
Biomimetics , Fluorocarbon Polymers , Polyvinyls , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Microcystins/analysis , Marine ToxinsABSTRACT
As a potential preclinical stage of Alzheimer's dementia, subjective cognitive decline (SCD) reveals a higher risk of future cognitive decline and conversion to dementia. However, it has not been clear whether SCD status increases the clinical progression of older adults in the context of amyloid deposition, cerebrovascular disease (CeVD), and psychiatric symptoms. We identified 99 normal controls (NC), 15 SCD individuals who developed mild cognitive impairment in the next 2 years (P-SCD), and 54 SCD individuals who did not (S-SCD) from ADNI database with both baseline and 2-year follow-up data. Total white matter hyperintensity (WMH), WMH in deep (DWMH) and periventricular (PWMH) regions, and voxel-wise grey matter volumes were compared among groups. Furthermore, using structural equation modelling method, we constructed path models to explore SCD-related brain changes longitudinally and to determine whether baseline SCD status, age, and depressive symptoms affect participants' clinical outcomes. Both SCD groups showed higher baseline amyloid PET SUVR, baseline PWMH volumes, and larger increase of PWMH volumes over time than NC. In contrast, only P-SCD had higher baseline DWMH volumes and larger increase of DWMH volumes over time than NC. No longitudinal differences in grey matter volume and amyloid was observed among NC, S-SCD, and P-SCD. Our path models demonstrated that SCD status contributed to future WMH progression. Further, baseline SCD status increases the risk of future cognitive decline, mediated by PWMH; baseline depressive symptoms directly contribute to clinical outcomes. In conclusion, both S-SCD and P-SCD exhibited more severe CeVD than NC. The CeVD burden increase was more pronounced in P-SCD. In contrast with the direct association of depressive symptoms with dementia severity progression, the effects of SCD status on future cognitive decline may manifest via CeVD pathologies. Our work highlights the importance of multi-modal longitudinal designs in understanding the SCD trajectory heterogeneity, paving the way for stratification and early intervention in the preclinical stage. PRACTITIONER POINTS: Both S-SCD and P-SCD exhibited more severe CeVD at baseline and a larger increase of CeVD burden compared to NC, while the burden was more pronounced in P-SCD. Baseline SCD status increases the risk of future PWMH and DWMH volume accumulation, mediated by baseline PWMH and DWMH volumes, respectively. Baseline SCD status increases the risk of future cognitive decline, mediated by baseline PWMH, while baseline depression status directly contributes to clinical outcome.
Subject(s)
Cognitive Dysfunction , Disease Progression , Magnetic Resonance Imaging , Positron-Emission Tomography , Humans , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Female , Male , Aged , Gray Matter/diagnostic imaging , Gray Matter/pathology , Aged, 80 and over , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , White Matter/pathology , Longitudinal Studies , Diagnostic Self Evaluation , Depression/diagnostic imaging , Depression/pathologyABSTRACT
High temperature stress is one of the most severe forms of abiotic stress in alfalfa. With the intensification of climate change, the frequency of high temperature stress will further increase in the future, which will bring challenges to the growth and development of alfalfa. Therefore, untargeted metabolomic and RNA-Seq profiling were implemented to unravel the possible alteration in alfalfa seedlings subjected to different temperature stress (25 â, 30 â, 35 â, 40 â) in this study. Results revealed that High temperature stress significantly altered some pivotal transcripts and metabolites. The number of differentially expressed genes (DEGs) markedly up and down-regulated was 1876 and 1524 in T30_vs_CK, 2, 815 and 2667 in T35_vs_CK, and 2115 and 2, 226 in T40_vs_CK, respectively. The number for significantly up-regulated and down-regulated differential metabolites was 173 and 73 in T30_vs_CK, 188 and 57 in T35_vs_CK, and 220 and 66 in T40_vs_CK, respectively. It is worth noting that metabolomics and transcriptomics co-analysis characterized enriched in plant hormone signal transduction (ko04705), glyoxylate and dicarboxylate metabolism (ko00630), from which some differentially expressed genes and differential metabolites participated. In particular, the content of hormone changed significantly under T40 stress, suggesting that maintaining normal hormone synthesis and metabolism may be an important way to improve the HTS tolerance of alfalfa. The qRT-PCR further showed that the expression pattern was similar to the expression abundance in the transcriptome. This study provides a practical and in-depth perspective from transcriptomics and metabolomics in investigating the effects conferred by temperature on plant growth and development, which provided the theoretical basis for breeding heat-resistant alfalfa.
Subject(s)
Medicago sativa , Metabolomics , Transcriptome , Medicago sativa/genetics , Medicago sativa/metabolism , Medicago sativa/physiology , Gene Expression Profiling , Metabolome , Gene Expression Regulation, Plant , Hot Temperature , Stress, Physiological/genetics , Seedlings/genetics , Seedlings/metabolism , Seedlings/physiology , Seedlings/growth & development , Heat-Shock Response/geneticsABSTRACT
PURPOSE OF REVIEW: In this article, we aimed to summarize the results from recent phase III clinical trials that have evaluated the use of immune checkpoint inhibitors (ICIs) in elderly patients with lung cancer. RECENT FINDINGS: Lung cancer is the second most diagnosed malignant tumor and the leading cause of cancer-related deaths worldwide. ICIs have a significant role in the treatment of lung cancer, both as monotherapy and combination therapy prolonged survival benefits. At present, a significant proportion of clinical patients comprise individuals aged 70âyears or older. However, the inclusion of elderly patients, particularly in clinical trials involving immunotherapy, remains inadequate, with a limited number of participants from this age group. The lack of evidence regarding the use of ICIs in elderly patients is primarily attributed to the significant underrepresentation of elderly individuals in clinical trials. SUMMARY: In this article, we summarize the results from recent phase III clinical trials that have evaluated the use of ICIs as first-line or second-line monotherapy, in combination with chemotherapy and other immunotherapies in elderly patients with lung cancer.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Aged , Humans , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Molecular Targeted Therapy/methods , Clinical Trials, Phase III as TopicABSTRACT
The free-to-total prostate-specific antigen (f/t-PSA) ratio is of great significance in the accurate diagnosis of prostate cancer. Herein, a smartphone-based detection system is reported using a colorimetric reaction integrated with proximity-induced bio-barcode and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a assay for f/t-PSA ratio detection. DNA/antibody recognition probes are designed to bind f-PSA or t-PSA and induce the release of the DNA bio-barcode. The CRISPR/Cas12a system is activated by the DNA bio-barcode to release Ag+ from the C-Ag+-C structure of the hairpin DNA. The released Ag+ is used to affect the tetramethylbenzidine (TMB)-H2O2-based colorimetric reaction catalyzed by Pt nanoparticles (NPs), as the peroxidase-like activity of the Pt NPs can be efficiently inhibited by Ag+. A smartphone with a self-developed app is used as an image reader and analyzer to analyze the colorimetric reaction and provide the results. A limit of detection of 0.06 and 0.04 ng mL-1 is achieved for t-PSA and f-PSA, respectively. The smartphone-based method showed a linear response between 0.1 and 100 ng mL-1 of t-PSA or f-PSA. In tests with clinical samples, the smartphone-based method successfully diagnosed prostate cancer patients from benign prostatic hyperplasia patients and healthy cases with high sensitivity and specificity.
Subject(s)
CRISPR-Cas Systems , Colorimetry , Metal Nanoparticles , Prostate-Specific Antigen , Smartphone , Colorimetry/methods , Humans , Male , Metal Nanoparticles/chemistry , Prostatic Neoplasms/diagnosis , Benzidines/chemistry , Silver/chemistry , Hydrogen Peroxide/chemistry , Platinum/chemistry , Biosensing Techniques/methodsABSTRACT
Pulmonary sarcoidosis is an immune-mediated disorder closely related to Th17/Treg cell imbalance. Dexamethasone has been shown to regulate inflammation and immune responses in sarcoidosis patients. However, the underlying mechanisms of dexamethasone regulating Th17/Treg balance in sarcoidosis remain elusive. Herein, we elucidated the function role of TGF-ß/Smad3 signaling in pulmonary sarcoidosis development and explored the underlying mechanism of dexamethasone in treating pulmonary sarcoidosis. We found that the TGF-ß/Smad3 pathway was inactivated in pulmonary sarcoidosis patients. Propionibacterium acnes (PA) induced mouse model was generated to investigate the function of TGF-ß/Smad3 signaling in vivo. Data indicated that IL17A inhibition with neutralizing antibody and activation of TGF-ß/Smad3 signaling with SRI-011381 alleviated granuloma formation in the sarcoidosis mouse model. Moreover, we revealed that the Th17/Treg cell ratio was increased with PA treatment in mouse bronchoalveolar lavage fluid (BALF) and peripheral blood. The concentration of cytokines produced by Th17 cells (IL-17A, IL-23) was up-regulated in the BALF of PA-treated mice, while those produced by Tregs (IL-10, TGF-ß1) presented significant reduction. The treatment of IL-17A neutralizing antibody or SRI-011381 was demonstrated to rescue the PA-induced changes in the concentration of IL-17A, IL-23, IL-10, and TGF-ß1. Additionally, we demonstrated that dexamethasone treatment activated the TGF-ß/Smad3 signaling in the lung tissues of pulmonary sarcoidosis mice. Dexamethasone was also revealed to promote the rebalancing of the Th17/Treg ratio and attenuated the granuloma formation in pulmonary sarcoidosis. In conclusion, dexamethasone activates the TGF-ß/Smad3 signaling and induces Th17/Treg rebalance, alleviating pulmonary sarcoidosis, which suggests the potential of dexamethasone in treating pulmonary sarcoidosis.
Subject(s)
Dexamethasone , Sarcoidosis, Pulmonary , Animals , Humans , Mice , Antibodies, Neutralizing/pharmacology , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Granuloma/prevention & control , Interleukin-10/metabolism , Interleukin-17 , Interleukin-23/metabolism , Sarcoidosis, Pulmonary/drug therapy , T-Lymphocytes, Regulatory , Th17 Cells , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1ABSTRACT
Tuberculosis (TB) remains the second leading cause of death from a single infectious agent and long-term medication could lead to antituberculosis drug-induced liver injury (ATB-DILI). We established a prospective longitudinal cohort of ATB-DILI with multiple timepoint blood sampling and used untargeted metabolomics to analyze the metabolic profiles of 107 plasma samples from healthy controls and newly diagnosed TB patients who either developed ATB-DILI within 2 months of anti-TB treatment (ATB-DILI subjects) or completed their treatment without any adverse drug reaction (ATB-Ctrl subjects). The untargeted metabolome revealed that 77 metabolites (of 895 total) were significantly changed with ATB-DILI progression. Among them, levels of multiple fatty acids and bile acids significantly increased over time in ATB-DILI subjects. Meanwhile, metabolites of the same class were highly correlated with each other and pathway analysis indicated both fatty acids metabolism and bile acids metabolism were up-regulated with ATB-DILI progression. The targeted metabolome further validated that 5 fatty acids had prediction capability at the early stage of the disease and 6 bile acids had a better diagnostic performance when ATB-DILI occurred. These findings provide evidence indicating that fatty acids metabolism and bile acids metabolism play a vital role during ATB-DILI progression. Our report adds a dynamic perspective better to understand the pathological process of ATB-DILI in clinical settings.
Subject(s)
Antitubercular Agents , Biomarkers , Chemical and Drug Induced Liver Injury , Metabolomics , Humans , Antitubercular Agents/adverse effects , Male , Metabolomics/methods , Female , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/metabolism , Longitudinal Studies , Adult , Middle Aged , Biomarkers/blood , Prospective Studies , Predictive Value of Tests , Tuberculosis/drug therapy , Tuberculosis/blood , Tuberculosis/metabolism , Bile Acids and Salts/blood , Bile Acids and Salts/metabolismABSTRACT
BACKGROUND: Screen time in infancy is linked to changes in social-emotional development but the pathway underlying this association remains unknown. We aim to provide mechanistic insights into this association using brain network topology and to examine the potential role of parent-child reading in mitigating the effects of screen time. METHODS: We examined the association of screen time on brain network topology using linear regression analysis and tested if the network topology mediated the association between screen time and later socio-emotional competence. Lastly, we tested if parent-child reading time was a moderator of the link between screen time and brain network topology. RESULTS: Infant screen time was significantly associated with the emotion processing-cognitive control network integration (p = 0.005). This network integration also significantly mediated the association between screen time and both measures of socio-emotional competence (BRIEF-2 Emotion Regulation Index, p = 0.04; SEARS total score, p = 0.04). Parent-child reading time significantly moderated the association between screen time and emotion processing-cognitive control network integration (ß = -0.640, p = 0.005). CONCLUSION: Our study identified emotion processing-cognitive control network integration as a plausible biological pathway linking screen time in infancy and later socio-emotional competence. We also provided novel evidence for the role of parent-child reading in moderating the association between screen time and topological brain restructuring in early childhood.
Subject(s)
Parent-Child Relations , Reading , Screen Time , Humans , Male , Female , Child Development/physiology , Infant , Child, Preschool , Child , Brain/physiology , Emotions/physiology , Social Skills , Magnetic Resonance Imaging , Emotional Regulation/physiologyABSTRACT
There are inter-individual differences in susceptibility to the influence of early life experiences for which the underlying neurobiological mechanisms are poorly understood. Microglia play a role in environmental surveillance and may influence individual susceptibility to environmental factors. As an index of neurodevelopment, we estimated individual slopes of mean white matter fractional anisotropy (WM-FA) across three time-points (age 4.5, 6.0, and 7.5 years) for 351 participants. Individual variation in microglia reactivity was derived from an expression-based polygenic score(ePGS) comprised of Single Nucleotide Polymorphisms (SNPs) functionally related to the expression of microglia-enriched genes.A higher ePGS denotes an increased genetic capacity for the expression of microglia-related genes, and thus may confer a greater capacity to respond to the early environment and to influence brain development. We hypothesized that this ePGS would associate with the WM-FA index of neurodevelopment and moderate the influence of early environmental factors.Our findings show sex dependency, where a significant association between WM-FA and microglia ePGS was only obtained for females.We then examined associations with perinatal factors known to decrease (optimal birth outcomes and familial conditions) or increase (systemic inflammation) the risk for later mental health problems.In females, individuals with high microglia ePGS showed a negative association between systemic inflammation and WM-FA and a positive association between more advantageous environmental conditions and WM-FA. The microglia ePGS in females thus accounted for variations in the influence of the quality of the early environment on WM-FA.Finally, WM-FA slopes mediated the association of microglia ePGS with interpersonal problems and social hostility in females. Our findings suggest the genetic capacity for microglia function as a potential factor underlying differential susceptibility to early life exposuresthrough influences on neurodevelopment.
Subject(s)
Microglia , Polymorphism, Single Nucleotide , White Matter , Humans , Microglia/metabolism , Female , Male , Child , Child, Preschool , Brain/growth & development , Brain/metabolism , Sex Factors , Multifactorial InheritanceABSTRACT
Aberrant anatomical brain connections in attention-deficit/hyperactivity disorder (ADHD) are reported inconsistently across diffusion weighted imaging (DWI) studies. Based on a pre-registered protocol (Prospero: CRD42021259192), we searched PubMed, Ovid, and Web of Knowledge until 26/03/2022 to conduct a systematic review of DWI studies. We performed a quality assessment based on imaging acquisition, preprocessing, and analysis. Using signed differential mapping, we meta-analyzed a subset of the retrieved studies amenable to quantitative evidence synthesis, i.e., tract-based spatial statistics (TBSS) studies, in individuals of any age and, separately, in children, adults, and high-quality datasets. Finally, we conducted meta-regressions to test the effect of age, sex, and medication-naïvety. We included 129 studies (6739 ADHD participants and 6476 controls), of which 25 TBSS studies provided peak coordinates for case-control differences in fractional anisotropy (FA)(32 datasets) and 18 in mean diffusivity (MD)(23 datasets). The systematic review highlighted white matter alterations (especially reduced FA) in projection, commissural and association pathways of individuals with ADHD, which were associated with symptom severity and cognitive deficits. The meta-analysis showed a consistent reduced FA in the splenium and body of the corpus callosum, extending to the cingulum. Lower FA was related to older age, and case-control differences did not survive in the pediatric meta-analysis. About 68% of studies were of low quality, mainly due to acquisitions with non-isotropic voxels or lack of motion correction; and the sensitivity analysis in high-quality datasets yielded no significant results. Findings suggest prominent alterations in posterior interhemispheric connections subserving cognitive and motor functions affected in ADHD, although these might be influenced by non-optimal acquisition parameters/preprocessing. Absence of findings in children may be related to the late development of callosal fibers, which may enhance case-control differences in adulthood. Clinicodemographic and methodological differences were major barriers to consistency and comparability among studies, and should be addressed in future investigations.
Subject(s)
Attention Deficit Disorder with Hyperactivity , White Matter , Adult , Humans , Child , Attention Deficit Disorder with Hyperactivity/psychology , Diffusion Tensor Imaging , Brain , Corpus Callosum/diagnostic imaging , AnisotropyABSTRACT
Immune checkpoint therapy (ICT) has greatly improved the survival of cancer patients in the past few years, but only a small number of patients respond to ICT. To predict ICT response, we developed a multi-modal feature fusion model based on deep learning (MFMDL). This model utilizes graph neural networks to map gene-gene relationships in gene networks to low dimensional vector spaces, and then fuses biological pathway features and immune cell infiltration features to make robust predictions of ICT. We used five datasets to validate the predictive performance of the MFMDL. These five datasets span multiple types of cancer, including melanoma, lung cancer, and gastric cancer. We found that the prediction performance of multi-modal feature fusion model based on deep learning is superior to other traditional ICT biomarkers, such as ICT targets or tumor microenvironment-associated markers. In addition, we also conducted ablation experiments to demonstrate the necessity of fusing different modal features, which can improve the prediction accuracy of the model.
Subject(s)
Deep Learning , Lung Neoplasms , Melanoma , Humans , Immunotherapy , Gene Regulatory Networks , Lung Neoplasms/therapy , Tumor MicroenvironmentABSTRACT
PURPOSE: This study aims to use bibliometric methods to explore the evolving landscape, hotspots, and emerging frontiers of pertussis vaccine research, providing deeper insights into the current research landscape and guiding future vaccine development efforts. METHODS: We conducted a comprehensive search of the Web of Science Core Collection database (WoSCC) from January 1, 1994, to December 31, 2023, employing search terms related to vaccination (vacc* or immun*) and pertussis (pertussis, Whooping Cough, Bordetella pertussis, B. pertussis, Bordetella pertussis infection, or B. pertussis infection) in the Title or Author keywords fields. Bibliometrics analysis of pertussis research was performed utilizing the bibliometrix-biblioshiny package in RStudio, alongside CiteSpace and VOSviewer software. RESULTS: In total, 2,623 records were analyzed, comprising 89.63% (n = 2,351) original research articles and 10.37% (n = 272) review articles. The study revealed that academic research on the pertussis vaccine was growing at a rate of 4.64% per year. The United States and Canada lead in the number of publications. GlaxoSmithKline and the Centers for Disease Control & Prevention- United States emerged as leading institutions, with Halperin SA and Locht C as the most active authors. Vaccine was the most influential journal. Most studies focused on vaccine effectiveness duration, vaccination schedules for high-risk groups, and people's attitudes toward vaccination. CONCLUSION: Our analysis showed increasing interest of researchers in pertussis literature, yet current research mainly emphasized expanding vaccine coverage and optimizing strategies, neglecting new vaccine development. This emphasized the need for prioritizing novel pertussis vaccines to tackle the resurgence challenge.
ABSTRACT
Developing and cultivating rice varieties is a potent strategy for reclaiming salinity-affected soils for rice production. Nevertheless, the molecular mechanisms conferring salt tolerance, especially in conventional high-yield japonica rice varieties, remain obscure. In this study, Zhendao 23309 (ZD23309) exhibited significantly less grain yield reduction under a salt stress gradient than the control variety Wuyunjing 30 (WYJ30). High positive correlations between grain yield and dry matter accumulation at the jointing, heading and maturity stages indicated that early salt tolerance performance is a crucial hallmark for yield formation. After a mild salt stress (85 mM NaCl) of young seedlings, RNA sequencing (RNA-seq) of shoot and root separately identified a total of 1952 and 3647 differentially expressed genes (DEGs) in ZD23309, and 2114 and 2711 DEGs in WYJ30, respectively. Gene ontology (GO) analysis revealed numerous DEGs in ZD23309 that play pivotal roles in strengthening salt tolerance, encompassing the response to stimulus (GO:0050896) in shoots and nucleoside binding (GO:0001882) in roots. Additionally, distinct expression patterns were observed in a fraction of genes in the two rice varieties under salt stress, corroborating the efficacy of previously reported salt tolerance genes. Our research not only offers fresh insights into the differences in salt stress tolerance among conventional high-yield rice varieties but also unveils the intricate nature of salt tolerance mechanisms. These findings lay a solid groundwork for deciphering the mechanisms underlying salt tolerance.
Subject(s)
Oryza , Oryza/physiology , Gene Expression Profiling , Salt Stress , Seedlings/physiology , Salt Tolerance/geneticsABSTRACT
For stage III colorectal cancer (CRC) patients with a high risk of recurrence, intensified adjuvant chemotherapy can improve overall survival. We aimed to develop a circulating tumor DNA (ctDNA) methylation marker model for predicting the relapse risk of stage III CRC patients. Differentially methylated markers identified between 53 normal mucosa samples and 165 CRC tissue samples, as well as between plasma samples from 75 stage I/II (early-stage) CRC patients and 55 stage IV (late-stage) CRC patients, were analyzed using Student's t-tests. The overlapping methylation markers shared by plasma and tissue samples were used to establish a methylation marker model to evaluate the tumor burden in the peripheral blood of CRC patients using the random forest method. This model was verified in the validation cohort (n = 44) and then applied to predict recurrence risk in 50 stage III CRC patients and monitor the clinical disease course in serial samples from four CRC patients. We built a five-marker-based ctDNA methylation model that had high sensitivity (84.21%) and specificity (84%) in identifying late-stage CRC in a validation cohort containing 24 stage I/II CRC patients and 20 stage IV CRC patients. The model achieved high sensitivity (87.5%) and specificity (94.12%) in predicting tumor relapse in an independent cohort of 50 stage III CRC patients and could be an independent recurrence risk factor for stage III patients [Hazard ratio (HR), 60.4; 95% confidence interval (CI): 7.68-397; p = 9.73e-5]. Analysis of serial blood samples of CRC showed that the model could monitor disease relapse earlier than imaging examination and serum carcinoembryonic antigen (CEA) and so may provide an opportunity for the early adjustment of therapeutic strategies. Moreover, the model could potentially monitor the clinical course and treatment response dynamically. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.