Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Anal Chem ; 96(12): 5006-5013, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38484040

ABSTRACT

The development of new imaging and treatment nanoprodrug systems is highly demanded for diagnosis and therapy of liver cancer, a severe disease characterized by a high recurrence rate. Currently, available small molecule drugs are not possible for cancer diagnosis because of the fast diffusion of imaging agents and low efficacy in treatment due to poor water solubility and significant toxic side effects. In this study, we report the development of a tumor microenvironment activatable nanoprodrug system for the diagnosis and treatment of liver cancer. This nanoprodrug system can accumulate in the tumor site and be selectively activated by an excess of hydrogen peroxide (H2O2) in the tumor microenvironment, releasing near-infrared solid-state organic fluorescent probe (HPQCY-1) and phenylboronic acid-modified camptothecin (CPT) prodrug. Both HPQCY-1 and CPT prodrugs can be further activated in tumor sites for achieving more precise in situ near-infrared (NIR) fluorescence imaging and treatment while reducing the toxic effects of drugs on normal tissues. Additionally, the incorporation of hydrophilic multivalent chitosan as a carrier effectively improved the water solubility of the system. This research thus provides a practical new approach for the diagnosis and treatment of liver cancer.


Subject(s)
Liver Neoplasms , Nanoparticles , Prodrugs , Humans , Tumor Microenvironment , Hydrogen Peroxide , Prodrugs/pharmacology , Prodrugs/therapeutic use , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Optical Imaging , Water , Cell Line, Tumor , Camptothecin/pharmacology
2.
Analyst ; 149(3): 638-664, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38170876

ABSTRACT

With the increase in people's living standards, the number of patients suffering from liver injury keeps on increasing. Traditional diagnostic methods can no longer meet the needs of early and accurate diagnosis due to their limitations in application. However, fluorescent probes based on different fluorophores and nanomaterials have been gradually lighting up medical research due to their unique properties, such as high specificity and non-invasiveness. In addition, accurate identification of the different types of liver injury biomarkers can significantly improve the level of early diagnosis. Therefore, this review reviews the fluorescent probes used in the detection of biomarkers of liver injury over recent years and briefly summarizes the corresponding biomarkers of different types of liver injury. Impressively, this review also lists the structures and the response mechanisms of the different probes, and concludes with an outlook, suggesting directions in which improvements can be made. Finally, we hope that this review will contribute to the further development of fluorescent probes for the early diagnosis and assessment of liver injury.


Subject(s)
Fluorescent Dyes , Nanostructures , Humans , Fluorescent Dyes/chemistry , Early Diagnosis , Optical Imaging/methods , Biomarkers
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124863, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39068845

ABSTRACT

Hydrogen sulfide (H2S) can act as a gaseous signaling mediator closely associated with inflammation development. In this work, we designed a fluorescence turn-on near-infrared (NIR) fluorescent probe CIT-H2S based on Intermolecular Charge Transfer (ICT) for the detection of H2S in living inflammatory cells and zebrafish. On this basis, a dicyanoisophorone fluorophore was chosen as the fluorescence signal reporting group of CIT-H2S, and an azide group was constructed as the recognition group of H2S. CIT-H2S is characterized by high selectivity and sensitivity for H2S over other interference species. The fluorescence intensity at 661 nm showed good linearity in the range of H2S concentration from 0 to 10 µM, with an excellent limit of detection (LOD) as low as 81.52 nM. Impressively, CIT-H2S has been visualized for detecting H2S in drug-induced inflammatory cell and zebrafish models, thus indicating that CIT-H2S is a robust tool with the ability to study the occurrence and development of hydrogen sulfide and inflammation.

4.
J Hazard Mater ; 466: 133653, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38301443

ABSTRACT

Cadmium-contaminated water and food are seriously hazardous to the human health, especially liver injury. To understand the entanglement relationship between cadmium ion (Cd2+)-induced liver injury and the biomarker sulfur dioxide (SO2), a reliable bioanalytical tool is urgently needed, detecting SO2 to diagnose and evaluate the extent of liver injury in vivo. Herein, based on the Förster resonance energy transfer (FRET) mechanism, a novel SO2-tunable NIR ratiometric fluorescent probe (SMP) was developed, it was used to diagnose and treat liver injury induced by Cd2+ in biosystems. Specifically, it was constructed by conjugating a NIR dicyanoisophorone with a NIR benzopyranate as the donor and acceptor, respectively, and the ratiometric response of SO2- regulated by the Michael addition reaction. In addition, SMP exhibits rapid reaction time (<15 s), two well-resolved emission peaks (68 nm) with less cross-talk between channels for high imaging resolution, superior selectivity, and low limit of detection (LOD=80.3 nM) for SO2 detection. Impressively, SMP has been successfully used for intracellular ratiometric imaging of Cd2+-induced SO2 and diagnostic and therapeutic evaluation in liver injury mice models with satisfactory results. Therefore, SMP may provide a powerful molecular tool for revealing the occurrence and development relationship between SO2 and Cd2+-induced liver injury. ENVIRONMENTAL IMPLICATION: Cadmium ions are one of the well-known toxic environmental pollutants, which are enriched in the human body through inhalation of cadmium-contaminated air or from the food chain, leading to damage in various organs, especially liver injury. Therefore, we developed a novel fluorescent probe that can specifically detect SO2 in Cd2+-induced liver injury, which is critically important for the diagnosis and evaluation of Cd2+-induced liver injury diseases. The specific detection of SO2 of this probe has been successfully demonstrated in live HepG2 cells and Cd2+-induced liver injury mice.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Fluorescent Dyes , Mice , Humans , Animals , Cadmium/toxicity , Hep G2 Cells , Sulfur Dioxide/toxicity , HeLa Cells
5.
Water Res ; 253: 121326, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38377928

ABSTRACT

Cadmium (Cd) is a widespread and highly toxic environmental pollutant, seriously threatening animal and plant growth. Therefore, monitoring and employing robust tools to enrich and remove Cd from the environment is a major challenge. In this work, by conjugating a fluorescent indicator (CCP) with a functionalized glass slide, a special composite material (CCPB) was constructed to enrich, remove, and monitor Cd2+ in water rapidly. Then Cd2+ could be effectively eluted by immersing the Cd-enriched CCPB in an ethylenediaminetetraacetic acid (EDTA) solution. With this, the CCPB was continuously reused. Its recovery of Cd2+was above and below 100 % after multiple uses by flame atomic absorption spectrometry (FAAS), which was excellent for practical use in enriching and removing Cd2+ in real aqueous samples. Therefore, CCPB is an ideal material for monitoring, enriching, and removing Cd2+ in wastewater, providing a robust tool for future practical applications of Cd enrichment and removal in the environment.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Cadmium/analysis , Water/chemistry , Edetic Acid/chemistry , Wastewater , Environmental Pollutants/analysis , Water Pollutants, Chemical/analysis , Spectrophotometry, Atomic/methods , Adsorption
6.
Food Chem ; 452: 139534, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38713981

ABSTRACT

In this work, based on the Förster resonance energy transfer (FRET) mechanism strategy, a new dual-increasing emission proportional near-infrared (NIR) fluorescent probe Lay-1 was designed for fast benzoyl peroxide (BPO) detection in real food samples and biosystems. Specifically, it employed a naphthylimide derivative and a NIR fluorophore dicyanoisophorone derivative as the energy transfer donor and acceptor, respectively, and a phenylboronic acid (Ph-B(OH)2) as the responding group of BPO. In addition, the results exhibited that the fluorescence color of Lay-1 was changed from red to orange in the absence and the presence of BPO with a fast response time (∼120 s), high sensitivity, and an excellent limit of detection as low as 60.8 nM. Impressively, Lay-1 has been successfully used for BPO detection in real food samples and biosystems with satisfactory results. Therefore, Lay-1 can be a robust molecular tool to further investigate the physiological and pathological function of BPO.


Subject(s)
Benzoyl Peroxide , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Fluorescent Dyes/chemistry , Benzoyl Peroxide/analysis , Benzoyl Peroxide/chemistry , Food Contamination/analysis , Food Analysis , Limit of Detection
7.
J Hazard Mater ; 476: 135117, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38972206

ABSTRACT

Benzoyl peroxide (BPO), as a widely used organic peroxide, has attracted widespread attention from all sectors of society for its environmental hazards and potential risks to human health. Herein, we employed a Förster resonance energy transfer (FRET) strategy to construct a novel ratiometric fluorescent probe CY-DCI for BPO detection in food, zebrafish, and mice. Specifically, a hemicyanine fluorophore and a dicyanoisophorone fluorophore were connected with a piperazine group as donor and acceptor, respectively, and an olefinic unsaturated bond as the reaction site. CY-DCI has favorable selectivity and an excellent detection limit as low as 58.1 nM, and the recovery rates for real-sample detection ranged from 95.8 % to 104 %, with relative standard deviations (RSD) less than 2.58 %. To further improve its practicality, silica gel plates and test strips containing CY-DCI (0-50 µM) were developed for naked-eye detection of BPO with satisfactory results. Additionally, this novel probe was then applied for ratiometric imaging of living zebrafish and mice and showed high ratiometric imaging resolution in the green and red channels, thus demonstrating its practical application for BPO detection and toxicity early warning in food and biosystems.


Subject(s)
Benzoyl Peroxide , Fluorescent Dyes , Food Contamination , Zebrafish , Animals , Fluorescent Dyes/chemistry , Fluorescent Dyes/toxicity , Benzoyl Peroxide/toxicity , Benzoyl Peroxide/analysis , Benzoyl Peroxide/chemistry , Mice , Food Contamination/analysis , Fluorescence Resonance Energy Transfer
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123806, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38154307

ABSTRACT

As one of the major reactive oxygen species (ROS), superoxide anion (O2•-) is engaged in maintaining redox homeostasis in the cell microenvironment. To identify the pathological roles in related disorders caused by abnormal expression of O2•-, it is of great significance to monitor and track the fluctuation of O2•- concentration in vivo. However, the low concentration of O2•- and the interference caused by tissue autofluorescence make the development of an ideal detection methodology full of challenges. Herein, a "Turn-On" chemical response near-infrared (NIR) fluorescence probe Dcm-Cu-OTf for O2•- detection in inflamed models, was constructed by conjugating the NIR fluorophore (dicyanisophorone derivative) with an O2•- sensing moiety (trifluoromethanesulfonate). Dcm-Cu-OTf exerted about 140-fold fluorescence enhancement after reacting 200 µM O2•- with an excellent limited of detection (LOD) as low as 149 nM. Additionally, Dcm-Cu-OTf exhibited a super large Stokes shift (260 nm) and high selectivity over other bio-analytes in stimulated conditions. Importantly, Dcm-Cu-OTf showed low toxicity and enabled imaging of the generation of O2•- in the Lipopolysaccharide (LPS)-stimulated HeLa cells, zebrafish, and LPS-induced inflamed mice. The present study provided a potential and reliable detection tool to inspect the physiological and pathological progress of O2•- in living biosystems.


Subject(s)
Fluorescent Dyes , Superoxides , Humans , Mice , Animals , Fluorescent Dyes/toxicity , Superoxides/metabolism , Zebrafish/metabolism , HeLa Cells , Lipopolysaccharides/toxicity , Optical Imaging
SELECTION OF CITATIONS
SEARCH DETAIL