Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters

Publication year range
1.
Nature ; 620(7975): 737-745, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37612393

ABSTRACT

The substantial investments in human genetics and genomics made over the past three decades were anticipated to result in many innovative therapies. Here we investigate the extent to which these expectations have been met, excluding cancer treatments. In our search, we identified 40 germline genetic observations that led directly to new targets and subsequently to novel approved therapies for 36 rare and 4 common conditions. The median time between genetic target discovery and drug approval was 25 years. Most of the genetically driven therapies for rare diseases compensate for disease-causing loss-of-function mutations. The therapies approved for common conditions are all inhibitors designed to pharmacologically mimic the natural, disease-protective effects of rare loss-of-function variants. Large biobank-based genetic studies have the power to identify and validate a large number of new drug targets. Genetics can also assist in the clinical development phase of drugs-for example, by selecting individuals who are most likely to respond to investigational therapies. This approach to drug development requires investments into large, diverse cohorts of deeply phenotyped individuals with appropriate consent for genetically assisted trials. A robust framework that facilitates responsible, sustainable benefit sharing will be required to capture the full potential of human genetics and genomics and bring effective and safe innovative therapies to patients quickly.


Subject(s)
Drug Development , Human Genetics , Molecular Targeted Therapy , Humans , Drug Approval/statistics & numerical data , Drug Development/statistics & numerical data , Therapies, Investigational/statistics & numerical data , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/statistics & numerical data , Rare Diseases/genetics , Rare Diseases/therapy , Germ-Line Mutation , Time Factors
2.
J Transl Med ; 22(1): 302, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38521921

ABSTRACT

BACKGROUND: Myasthenia gravis (MG) is a chronic autoimmune disorder characterized by fluctuating muscle weakness. Despite the availability of established therapies, the management of MG symptoms remains suboptimal, partially attributed to lack of efficacy or intolerable side-effects. Therefore, new effective drugs are warranted for treatment of MG. METHODS: By employing an analytical framework that combines Mendelian randomization (MR) and colocalization analysis, we estimate the causal effects of blood druggable expression quantitative trait loci (eQTLs) and protein quantitative trait loci (pQTLs) on the susceptibility of MG. We subsequently investigated whether potential genetic effects exhibit cell-type specificity by utilizing genetic colocalization analysis to assess the interplay between immune-cell-specific eQTLs and MG risk. RESULTS: We identified significant MR results for four genes (CDC42BPB, CD226, PRSS36, and TNFSF12) using cis-eQTL genetic instruments and three proteins (CTSH, PRSS8, and CPN2) using cis-pQTL genetic instruments. Six of these loci demonstrated evidence of colocalization with MG susceptibility (posterior probability > 0.80). We next undertook genetic colocalization to investigate cell-type-specific effects at these loci. Notably, we identified robust evidence of colocalization, with a posterior probability of 0.854, linking CTSH expression in TH2 cells and MG risk. CONCLUSIONS: This study provides crucial insights into the genetic and molecular factors associated with MG susceptibility, singling out CTSH as a potential candidate for in-depth investigation and clinical consideration. It additionally sheds light on the immune-cell regulatory mechanisms related to the disease. However, further research is imperative to validate these targets and evaluate their feasibility for drug development.


Subject(s)
Genetic Predisposition to Disease , Myasthenia Gravis , Humans , Multiomics , Genome-Wide Association Study , Myasthenia Gravis/genetics , Quantitative Trait Loci/genetics , Polymorphism, Single Nucleotide/genetics
3.
Med Sci Monit ; 30: e943168, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38555491

ABSTRACT

Native vertebral osteomyelitis, also termed spondylodiscitis, is an antibiotic-resistant disease that requires long-term treatment. Without proper treatment, NVO can lead to severe nerve damage or even death. Therefore, it is important to accurately diagnose the cause of NVO, especially in spontaneous cases. Infectious NVO is characterized by the involvement of 2 adjacent vertebrae and intervertebral discs, and common infectious agents include Staphylococcus aureus, Mycobacterium tuberculosis, Brucella abortus, and fungi. Clinical symptoms are generally nonspecific, and early diagnosis and appropriate treatment can prevent irreversible sequelae. Advances in pathologic histologic imaging have led physicians to look more forward to being able to differentiate between tuberculous and septic spinal discitis. Therefore, research in identifying and differentiating the imaging features of these 4 common NVOs is essential. Due to the diagnostic difficulties, clinical and radiologic diagnosis is the mainstay of provisional diagnosis. With the advent of the big data era and the emergence of convolutional neural network algorithms for deep learning, the application of artificial intelligence (AI) technology in orthopedic imaging diagnosis has gradually increased. AI can assist physicians in imaging review, effectively reduce the workload of physicians, and improve diagnostic accuracy. Therefore, it is necessary to present the latest clinical research on NVO and the outlook for future AI applications.


Subject(s)
Discitis , Osteomyelitis , Humans , Anti-Bacterial Agents/pharmacology , Artificial Intelligence , Discitis/diagnosis , Discitis/drug therapy , Discitis/microbiology , Osteomyelitis/diagnostic imaging , Spine/pathology
4.
Hum Genet ; 142(10): 1461-1476, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37640912

ABSTRACT

Identifying causal genes at GWAS loci can help pinpoint targets for therapeutic interventions. Expression studies can disentangle such loci but signals from expression quantitative trait loci (eQTLs) often fail to colocalize-which means that the genetic control of measured expression is not shared with the genetic control of disease risk. This may be because gene expression is measured in the wrong cell type, physiological state, or organ. We tested whether Mendelian randomization (MR) could identify genes at loci influencing COVID-19 outcomes and whether the colocalization of genetic control of expression and COVID-19 outcomes was influenced by cell type, cell stimulation, and organ. We conducted MR of cis-eQTLs from single cell (scRNA-seq) and bulk RNA sequencing. We then tested variables that could influence colocalization, including cell type, cell stimulation, RNA sequencing modality, organ, symptoms of COVID-19, and SARS-CoV-2 status among individuals with symptoms of COVID-19. The outcomes used to test colocalization were COVID-19 severity and susceptibility as assessed in the Host Genetics Initiative release 7. Most transcripts identified using MR did not colocalize when tested across cell types, cell state and in different organs. Most that did colocalize likely represented false positives due to linkage disequilibrium. In general, colocalization was highly variable and at times inconsistent for the same transcript across cell type, cell stimulation and organ. While we identified factors that influenced colocalization for select transcripts, identifying 33 that mediate COVID-19 outcomes, our study suggests that colocalization of expression with COVID-19 outcomes is partially due to noisy signals even after following quality control and sensitivity testing. These findings illustrate the present difficulty of linking expression transcripts to disease outcomes and the need for skepticism when observing eQTL MR results, even accounting for cell types, stimulation state and different organs.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Linkage Disequilibrium , Quality Control , Quantitative Trait Loci
5.
Eur Respir J ; 59(2)2022 02.
Article in English | MEDLINE | ID: mdl-34172473

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal fibrotic interstitial lung disease. Few circulating biomarkers have been identified to have causal effects on IPF. METHODS: To identify candidate IPF-influencing circulating proteins, we undertook an efficient screen of circulating proteins by applying a two-sample Mendelian randomisation (MR) approach with existing publicly available data. For instruments, we used genetic determinants of circulating proteins which reside cis to the encoded gene (cis-single nucleotide polymorphisms (SNPs)), identified by two genome-wide association studies (GWASs) in European individuals (3301 and 3200 subjects). We then applied MR methods to test if the levels of these circulating proteins influenced IPF susceptibility in the largest IPF GWAS (2668 cases and 8591 controls). We validated the MR results using colocalisation analyses to ensure that both the circulating proteins and IPF shared a common genetic signal. RESULTS: MR analyses of 834 proteins found that a 1 sd increase in circulating galactoside 3(4)-l-fucosyltransferase (FUT3) and α-(1,3)-fucosyltransferase 5 (FUT5) was associated with a reduced risk of IPF (OR 0.81, 95% CI 0.74-0.88; p=6.3×10-7 and OR 0.76, 95% CI 0.68-0.86; p=1.1×10-5, respectively). Sensitivity analyses including multiple cis-SNPs provided similar estimates both for FUT3 (inverse variance weighted (IVW) OR 0.84, 95% CI 0.78-0.91; p=9.8×10-6 and MR-Egger OR 0.69, 95% CI 0.50-0.97; p=0.03) and FUT5 (IVW OR 0.84, 95% CI 0.77-0.92; p=1.4×10-4 and MR-Egger OR 0.59, 95% CI 0.38-0.90; p=0.01). FUT3 and FUT5 signals colocalised with IPF signals, with posterior probabilities of a shared genetic signal of 99.9% and 97.7%, respectively. Further transcriptomic investigations supported the protective effects of FUT3 for IPF. CONCLUSIONS: An efficient MR scan of 834 circulating proteins provided evidence that genetically increased circulating FUT3 level is associated with reduced risk of IPF.


Subject(s)
Fucosyltransferases , Idiopathic Pulmonary Fibrosis , Fucosyltransferases/genetics , Genome-Wide Association Study , Humans , Idiopathic Pulmonary Fibrosis/genetics , Mendelian Randomization Analysis/methods , Polymorphism, Single Nucleotide
6.
Clin Proteomics ; 19(1): 34, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36171541

ABSTRACT

INTRODUCTION: Severe COVID-19 leads to important changes in circulating immune-related proteins. To date it has been difficult to understand their temporal relationship and identify cytokines that are drivers of severe COVID-19 outcomes and underlie differences in outcomes between sexes. Here, we measured 147 immune-related proteins during acute COVID-19 to investigate these questions. METHODS: We measured circulating protein abundances using the SOMAscan nucleic acid aptamer panel in two large independent hospital-based COVID-19 cohorts in Canada and the United States. We fit generalized additive models with cubic splines from the start of symptom onset to identify protein levels over the first 14 days of infection which were different between severe cases and controls, adjusting for age and sex. Severe cases were defined as individuals with COVID-19 requiring invasive or non-invasive mechanical respiratory support. RESULTS: 580 individuals were included in the analysis. Mean subject age was 64.3 (sd 18.1), and 47% were male. Of the 147 proteins, 69 showed a significant difference between cases and controls (p < 3.4 × 10-4). Three clusters were formed by 108 highly correlated proteins that replicated in both cohorts, making it difficult to determine which proteins have a true causal effect on severe COVID-19. Six proteins showed sex differences in levels over time, of which 3 were also associated with severe COVID-19: CCL26, IL1RL2, and IL3RA, providing insights to better understand the marked differences in outcomes by sex. CONCLUSIONS: Severe COVID-19 is associated with large changes in 69 immune-related proteins. Further, five proteins were associated with sex differences in outcomes. These results provide direct insights into immune-related proteins that are strongly influenced by severe COVID-19 infection.

7.
Proc Natl Acad Sci U S A ; 116(32): 16012-16017, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31332017

ABSTRACT

The Canadian Inuit have a distinct population background that may entail particular implications for the health of its individuals. However, the number of genetic studies examining this Inuit population is limited, and much remains to be discovered in regard to its genetic characteristics. In this study, we generated whole-exome sequences and genomewide genotypes for 170 Nunavik Inuit, a small and isolated founder population of Canadian Arctic indigenous people. Our study revealed the genetic background of Nunavik Inuit to be distinct from any known present-day population. The majority of Nunavik Inuit show little evidence of gene flow from European or present-day Native American peoples, and Inuit living around Hudson Bay are genetically distinct from those around Ungava Bay. We also inferred that Nunavik Inuit have a small effective population size of 3,000 and likely split from Greenlandic Inuit ∼10.5 kya. Nunavik Inuit went through a bottleneck at approximately the same time and might have admixed with a population related to the Paleo-Eskimos. Our study highlights population-specific genomic signatures in coding regions that show adaptations unique to Nunavik Inuit, particularly in pathways involving fatty acid metabolism and cellular adhesion (CPNE7, ICAM5, STAT2, and RAF1). Subsequent analyses in selection footprints and the risk of intracranial aneurysms (IAs) in Nunavik Inuit revealed an exonic variant under weak negative selection to be significantly associated with IA (rs77470587; P = 4.6 × 10-8).


Subject(s)
Adaptation, Physiological/genetics , Inuit/genetics , Arctic Regions , Humans , Intracranial Aneurysm/genetics , Principal Component Analysis , Selection, Genetic
8.
PLoS Med ; 18(6): e1003605, 2021 06.
Article in English | MEDLINE | ID: mdl-34061844

ABSTRACT

BACKGROUND: Increased vitamin D levels, as reflected by 25-hydroxy vitamin D (25OHD) measurements, have been proposed to protect against COVID-19 based on in vitro, observational, and ecological studies. However, vitamin D levels are associated with many confounding variables, and thus associations described to date may not be causal. Vitamin D Mendelian randomization (MR) studies have provided results that are concordant with large-scale vitamin D randomized trials. Here, we used 2-sample MR to assess evidence supporting a causal effect of circulating 25OHD levels on COVID-19 susceptibility and severity. METHODS AND FINDINGS: Genetic variants strongly associated with 25OHD levels in a genome-wide association study (GWAS) of 443,734 participants of European ancestry (including 401,460 from the UK Biobank) were used as instrumental variables. GWASs of COVID-19 susceptibility, hospitalization, and severe disease from the COVID-19 Host Genetics Initiative were used as outcome GWASs. These included up to 14,134 individuals with COVID-19, and up to 1,284,876 without COVID-19, from up to 11 countries. SARS-CoV-2 positivity was determined by laboratory testing or medical chart review. Population controls without COVID-19 were also included in the control groups for all outcomes, including hospitalization and severe disease. Analyses were restricted to individuals of European descent when possible. Using inverse-weighted MR, genetically increased 25OHD levels by 1 standard deviation on the logarithmic scale had no significant association with COVID-19 susceptibility (odds ratio [OR] = 0.95; 95% CI 0.84, 1.08; p = 0.44), hospitalization (OR = 1.09; 95% CI: 0.89, 1.33; p = 0.41), and severe disease (OR = 0.97; 95% CI: 0.77, 1.22; p = 0.77). We used an additional 6 meta-analytic methods, as well as conducting sensitivity analyses after removal of variants at risk of horizontal pleiotropy, and obtained similar results. These results may be limited by weak instrument bias in some analyses. Further, our results do not apply to individuals with vitamin D deficiency. CONCLUSIONS: In this 2-sample MR study, we did not observe evidence to support an association between 25OHD levels and COVID-19 susceptibility, severity, or hospitalization. Hence, vitamin D supplementation as a means of protecting against worsened COVID-19 outcomes is not supported by genetic evidence. Other therapeutic or preventative avenues should be given higher priority for COVID-19 randomized controlled trials.


Subject(s)
COVID-19/blood , Polymorphism, Single Nucleotide , Severity of Illness Index , Vitamin D Deficiency/blood , Vitamin D/analogs & derivatives , Adult , Aged , COVID-19/etiology , Case-Control Studies , Causality , Dietary Supplements , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Hospitalization , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Odds Ratio , Risk Factors , SARS-CoV-2 , Vitamin D/blood , Vitamin D Deficiency/complications , Vitamin D Deficiency/genetics , White People/genetics
9.
Genet Med ; 23(3): 508-515, 2021 03.
Article in English | MEDLINE | ID: mdl-33110269

ABSTRACT

PURPOSE: Identifying rare genetic causes of common diseases can improve diagnostic and treatment strategies, but incurs high costs. We tested whether individuals with common disease and low polygenic risk score (PRS) for that disease generated from less expensive genome-wide genotyping data are more likely to carry rare pathogenic variants. METHODS: We identified patients with one of five common complex diseases among 44,550 individuals who underwent exome sequencing in the UK Biobank. We derived PRS for these five diseases, and identified pathogenic rare variant heterozygotes. We tested whether individuals with disease and low PRS were more likely to carry rare pathogenic variants. RESULTS: While rare pathogenic variants conferred, at most, 5.18-fold (95% confidence interval [CI]: 2.32-10.13) increased odds of disease, a standard deviation increase in PRS, at most, increased the odds of disease by 5.25-fold (95% CI: 5.06-5.45). Among diseased patients, a standard deviation decrease in the PRS was associated with, at most, 2.82-fold (95% CI: 1.14-7.46) increased odds of identifying rare variant heterozygotes. CONCLUSION: Rare pathogenic variants were more prevalent among affected patients with a low PRS. Therefore, prioritizing individuals for sequencing who have disease but low PRS may increase the yield of sequencing studies to identify rare variant heterozygotes.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Genetic Predisposition to Disease , Humans , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide , Risk Factors
10.
Cell Biol Int ; 45(11): 2316-2330, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34314072

ABSTRACT

Protein l-isoaspartyl methyltransferase (PIMT/PCMT1), an enzyme repairing isoaspartate residues in peptides and proteins that result from the spontaneous decomposition of normal l-aspartyl and l-asparaginyl residues during aging, has been revealed to be involved in neurodegenerative diseases (NDDs) and diabetes. However, the molecular mechanisms for a putative association of PIMT dysfunction with these diseases have not been clarified. Our study aimed to identify differentially expressed microRNAs (miRNAs) in the brain and kidneys of PIMT-deficient mice and uncover the epigenetic mechanism of PIMT-involved NDDs and diabetic nephropathy (DN). Differentially expressed miRNAs by sequencing underwent target prediction and enrichment analysis in the brain and kidney of PIMT knockout (KO) mice and age-matched wild-type (WT) littermates. Sequence analysis revealed 40 differentially expressed miRNAs in the PIMT KO mouse brain including 25 upregulated miRNAs and 15 downregulated miRNAs. In the PIMT KO mouse kidney, there were 80 differentially expressed miRNAs including 40 upregulated miRNAs and 40 downregulated miRNAs. Enrichment analysis and a systematic literature review of differentially expressed miRNAs indicated the involvement of PIMT deficiency in the pathogenesis in NDDs and DN. Some overlapped differentially expressed miRNAs between the brain and kidney were quantitatively assessed in the brain, kidney, and serum-derived exosomes, respectively. Despite being preliminary, these results may aid in investigating the pathological hallmarks and identify the potential therapeutic targets and biomarkers for PIMT dysfunction-related NDDs and DN.


Subject(s)
Diabetic Nephropathies/genetics , MicroRNAs/genetics , Neurodegenerative Diseases/genetics , Animals , China , Gene Expression/genetics , Gene Expression Profiling/methods , Male , Mice , Mice, Knockout , MicroRNAs/analysis , Protein D-Aspartate-L-Isoaspartate Methyltransferase/deficiency , Protein D-Aspartate-L-Isoaspartate Methyltransferase/genetics , Protein D-Aspartate-L-Isoaspartate Methyltransferase/metabolism , Transcriptome/genetics
11.
Am J Hum Genet ; 99(5): 1072-1085, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27745834

ABSTRACT

Intracranial aneurysms (IAs) are the result of focal weakness in the artery wall and have a complex genetic makeup. To date, genome-wide association and sequencing studies have had limited success in identifying IA risk factors. Distinct populations, such as the French-Canadian (FC) population, have increased IA prevalence. In our study, we used exome sequencing to prioritize risk variants in a discovery cohort of six FC families affected by IA, and the analysis revealed an increased variation burden for ring finger protein 213 (RNF213). We resequenced RNF213 in a larger FC validation cohort, and association tests on further identified variants supported our findings (SKAT-O, p = 0.006). RNF213 belongs to the AAA+ protein family, and two variants (p.Arg2438Cys and p.Ala2826Thr) unique to affected FC individuals were found to have increased ATPase activity, which could lead to increased risk of IA by elevating angiogenic activities. Common SNPs in RNF213 were also extracted from the NeuroX SNP-chip genotype data, comprising 257 FC IA-affected and 1,988 control individuals. We discovered that the non-ancestral allele of rs6565666 was significantly associated with the affected individuals (p = 0.03), and it appeared as though the frequency of the risk allele had changed through genetic drift. Although RNF213 is a risk factor for moyamoya disease in East Asians, we demonstrated that it might also be a risk factor for IA in the FC population. It therefore appears that the function of RNF213 can be differently altered to predispose distinct populations to dissimilar neurovascular conditions, highlighting the importance of a population's background in genetic studies of heterogeneous disease.


Subject(s)
Adenosine Triphosphatases/genetics , Intracranial Aneurysm/genetics , Ubiquitin-Protein Ligases/genetics , White People/genetics , Adult , Aged , Alleles , Canada , Case-Control Studies , Cohort Studies , Female , Genome-Wide Association Study , Genotype , Genotyping Techniques , Humans , Intracranial Aneurysm/diagnosis , Male , Middle Aged , Pedigree , Polymorphism, Single Nucleotide , Reproducibility of Results , Sequence Analysis, DNA
12.
Asia Pac J Clin Nutr ; 28(4): 819-825, 2019.
Article in English | MEDLINE | ID: mdl-31826380

ABSTRACT

BACKGROUND AND OBJECTIVES: Iron homeostasis abnormalities are associated with insulin resistance (IR), but studies on such associations in children and adolescents are limited and have contrasting results. The purpose of this study was to determine the associations between indicators of iron status and IR, and assesse if there are sex disparities in these associations. METHODS AND STUDY DESIGN: We selected data of 689 children and adolescents (367 boys and 322 girls) aged 6-18 years in the analysis. Serum ferritin, transferrin, and soluble transferrin receptor (sTfR) levels were determined. The level of glycated hemoglobin (HbA1c) was assessed using highperformance liquid chromatography. Homeostasis model assessment of insulin resistance (HOMA-IR) was used to indicate the status of insulin resistance. Stepwise and multivariate logistic regression analyses were computed to evaluate associations between iron status and glucose parameters. RESULTS: The prevalence of IR (HOMAIR >3.16) and high HbA1c (HbA1c ≥5.7%) were 29.8% and 16.4%, respectively. Serum transferrin and sTfR were significant associated with HbA1c (p<0.001), while serum transferrin was associated with HOMA-IR (p<0.001). Furthermore, the highest transferrin concentrations were associated with higher risks of both HOMAIR and high HbA1c, while decreased sTfR concentrations were associated with a risk of higher HbA1c in both children and adolescents. CONCLUSIONS: Serum transferrin and sTfR were statistically significantly associated with glucose parameters, which may suggest that transferrin and sTfR levels should be taken into consideration when studying IR in both boys and girls.


Subject(s)
Insulin Resistance , Iron Deficiencies , Adolescent , Adolescent Health , Asian People , Child , Child Health , China , Cross-Sectional Studies , Female , Humans , Logistic Models , Male , Multivariate Analysis , Nutrition Surveys
13.
Am J Med Genet B Neuropsychiatr Genet ; 180(6): 335-340, 2019 09.
Article in English | MEDLINE | ID: mdl-30378261

ABSTRACT

Childhood-onset schizophrenia (COS) is a rare and severe form of schizophrenia, defined as having an onset before the age of 13. The male COS cases have a slightly younger age of onset than female cases. They also present with a higher rate of comorbid developmental disorders. These sex differences are not explained by the frequency of chromosomal abnormalities, and the contribution of other forms of genetic variations remains unestablished. Using a whole-exome sequencing approach, we examined 12 COS trios where the unaffected parents had an affected male child. The sequencing data enabled us to test if the hemizygous variants, transmitted from the unaffected carrying mother, could mediate the phenotype (X-linked recessive inheritance model). Our results revealed that affected children have a significantly greater number of X-linked rare variants than their unaffected fathers. The variants identified in the male probands were mostly found in genes previously linked to other neuropsychiatric diseases like autism, intellectual disability, and epilepsy, including LUZP4, PCDH19, RPS6KA3, and OPHN1. The level of expression of the genes was assessed at different developmental periods in normal brain using the BrainSpan database. This approach revealed that some of them were expressed earlier in males than in females, consistent with the younger age of onset in male COS. In conclusion, this article suggests that X-linked genes might play a role in the pathophysiology of COS. Candidate genes detailed here could explain the higher level of comorbidities and the earlier age of onset observed in a subset of the male COS cases.


Subject(s)
Schizophrenia, Childhood/genetics , Schizophrenia, Childhood/physiopathology , Adolescent , Adult , Autistic Disorder/genetics , Brain/metabolism , Brain/physiopathology , Child , Comorbidity , Epilepsy/genetics , Exome/genetics , Family/psychology , Female , Genes, X-Linked/genetics , Humans , Intellectual Disability/genetics , Male , Phenotype , Schizophrenia/genetics , Sex Factors , Exome Sequencing/methods
14.
Mov Disord ; 33(6): 1016-1020, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29756641

ABSTRACT

BACKGROUND: MAPT haplotypes are associated with PD, but their association with rapid eye movement sleep behavior disorder is unclear. OBJECTIVE: To study the role of MAPT variants in rapid eye movement sleep behavior disorder. METHODS: Two cohorts were included: (A) PD (n = 600), rapid eye movement sleep behavior disorder (n = 613) patients, and controls (n = 981); (B) dementia with Lewy bodies patients with rapid eye movement sleep behavior disorder (n = 271) and controls (n = 950). MAPT-associated variants and the entire coding sequence of MAPT were analyzed. Age-, sex-, and ethnicity-adjusted analyses were performed to examine the association between MAPT, PD, and rapid eye movement sleep behavior disorder. RESULTS: MAPT-H2 variants were associated with PD (odds ratios: 0.62-0.65; P = 0.010-0.019), but not with rapid eye movement sleep behavior disorder. In PD, the H1 haplotype odds ratio was 1.60 (95% confidence interval: 1.12-2.28; P = 0.009), and the H2 odds ratio was 0.68 (95% confidence interval: 0.48-0.96; P = 0.03). The H2/H1 haplotypes were not associated with rapid eye movement sleep behavior disorder. CONCLUSIONS: Our results confirm the protective effect of the MAPT-H2 haplotype in PD, and define its components. Furthermore, our results suggest that MAPT does not play a major role in rapid eye movement sleep behavior disorder, emphasizing different genetic background than in PD in this locus. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Genetic Predisposition to Disease , Parkinson Disease/genetics , Polymorphism, Single Nucleotide/genetics , REM Sleep Behavior Disorder/genetics , tau Proteins/genetics , Aged , Cohort Studies , Female , Gene Frequency , Genotype , Humans , Lewy Body Disease/complications , Lewy Body Disease/genetics , Male , Middle Aged , Principal Component Analysis
16.
Neuropharmacology ; 246: 109834, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38181970

ABSTRACT

Protein L-isoaspartyl methyltransferase (PIMT/PCMT1) could repair l-isoaspartate (L-isoAsp) residues formed by deamidation of asparaginyl (Asn) residues or isomerization of aspartyl (Asp) residues in peptides and proteins during aging. Aside from abnormal accumulation of L-isoAsp, PIMT knockout (KO) mice mirrors some neuropathological hallmarks such as anxiety-like behaviors, impaired spatial memory and aberrant synaptic plasticity in the hippocampus of neurodegenerative diseases (NDs), including Alzheimer's disease (AD) and related dementias, and Parkinson's disease (PD). While some reports indicate the neuroprotective effect of madecassoside (MA) as a triterpenoid saponin component of Centella asiatica, its role against NDs-related anxiety and cognitive impairment remains unclear. Therefore, we investigated the effect of MA against anxiety-related behaviors in PIMT deficiency-induced mouse model of NDs. Results obtained from the elevated plus maze (EPM) test revealed that MA treatment alleviated anxiety-like behaviors in PIMT knockout mice. Furthermore, Real-time PCR, electroencephalogram (EEG) recordings, transmission electron microscopy analysis and ELISA were carried out to evaluate the expression of clock genes, sleep and synaptic function, respectively. The PIMT knockout mice were characterized by abnormal clock patterns, sleep disturbance and synaptic dysfunction, which could be improved by MA administration. Collectively, these findings suggest that MA exhibits neuroprotective effects associated with improved circadian rhythms sleep-wake cycle and synaptic plasticity in PIMT deficient mice, which could be translated to ameliorate anxiety-related symptoms and cognitive impairments in NDs.


Subject(s)
Centella , Triterpenes , Mice , Animals , Protein D-Aspartate-L-Isoaspartate Methyltransferase/chemistry , Protein D-Aspartate-L-Isoaspartate Methyltransferase/genetics , Protein D-Aspartate-L-Isoaspartate Methyltransferase/metabolism , Centella/metabolism , Isoaspartic Acid/metabolism , Triterpenes/pharmacology , Triterpenes/therapeutic use , Mice, Knockout
17.
Sci Rep ; 14(1): 9276, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653742

ABSTRACT

Tumor-associated macrophages (TAMs) are a specific subset of macrophages that reside inside the tumor microenvironment. The dynamic interplay between TAMs and tumor cells plays a crucial role in the treatment response and prognosis of lung adenocarcinoma (LUAD). The study aimed to examine the association between TAMs and LUAD to advance the development of targeted strategies and immunotherapeutic approaches for treating this type of lung cancer. The study employed single-cell mRNA sequencing data to characterize the immune cell composition of LUAD and delineate distinct subpopulations of TAMs. The "BayesPrism" and "Seurat" R packages were employed to examine the association between these subgroups and immunotherapy and clinical features to identify novel immunotherapy biomarkers. Furthermore, a predictive signature was generated to forecast patient prognosis by examining the gene expression profile of immunotherapy-associated TAMs subsets and using 104 machine-learning techniques. A comprehensive investigation has shown the existence of a hitherto unidentified subgroup of TAMs known as RGS1 + TAMs, which has been found to have a strong correlation with the efficacy of immunotherapy and the occurrence of tumor metastasis in LUAD patients. CD83 was identified CD83 as a distinct biomarker for the expression of RGS1 + TAMs, showcasing its potential utility as an indicator for immunotherapeutic interventions. Furthermore, the prognostic capacity of the RTMscore signature, encompassing three specific mRNA (NR4A2, MMP14, and NPC2), demonstrated enhanced robustness when contrasted against the comprehensive collection of 104 features outlined in the published study. CD83 has potential as an immunotherapeutic biomarker. Meanwhile, The RTMscore signature established in the present study might be beneficial for survival prognostication.


Subject(s)
Adenocarcinoma of Lung , Immunotherapy , Lung Neoplasms , Tumor-Associated Macrophages , Humans , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/genetics , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Immunotherapy/methods , Prognosis , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Tumor Microenvironment/immunology , Biomarkers, Tumor , Male , Female , Gene Expression Regulation, Neoplastic , Antigens, CD/metabolism , Antigens, CD/genetics
18.
Front Oncol ; 14: 1361879, 2024.
Article in English | MEDLINE | ID: mdl-38779090

ABSTRACT

As the second most common cancer in the world, the development of lung cancer is closely related to factors such as heredity, environmental exposure, and lung microenvironment, etc. Early screening and diagnosis of lung cancer can be helpful for the treatment of patients. Currently, CT screening and histopathologic biopsy are widely used in the clinical detection of lung cancer, but they have many disadvantages such as false positives and invasive operations. Microbes are another genome of the human body, which has recently been shown to be closely related to chronic inflammatory, metabolic processes in the host. At the same time, they are important players in cancer development, progression, treatment, and prognosis. The use of microbes for cancer therapy has been extensively studied, however, the diagnostic role of microbes is still unclear. This review aims to summarize recent research on using microbes for lung cancer detection and present the current shortcomings of microbes in collection and detection. Finally, it also looks ahead to the clinical benefits that may accrue to patients in the future about screening and early detection.

19.
Sci Rep ; 14(1): 11724, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778157

ABSTRACT

Accumulating evidence demonstrates that lncRNAs are involved in the regulation of the immune microenvironment and early tumor development. Immunogenic cell death occurs mainly through the release or increase of tumor-associated antigen and tumor-specific antigen, exposing "danger signals" to stimulate the body's immune response. Given the recent development of immunotherapy in lung adenocarcinoma, we explored the role of tumor immunogenic cell death-related lncRNAs in lung adenocarcinoma for prognosis and immunotherapy benefit, which has never been uncovered yet. Based on the lung adenocarcinoma cohorts from the TCGA database and GEO database, the study developed the immunogenic cell death index signature by several machine learning algorithms and then validated the signature for prognosis and immunotherapy benefit of lung adenocarcinoma patients, which had a more stable performance compared with published signatures in predicting the prognosis, and demonstrated predictive value for benefiting from immunotherapy in multiple cohorts of multiple cancers, and also guided the utilization of chemotherapy drugs.


Subject(s)
Adenocarcinoma of Lung , Immunotherapy , Lung Neoplasms , Machine Learning , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/pathology , Immunotherapy/methods , Prognosis , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Immunogenic Cell Death , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics
20.
Int J Ophthalmol ; 17(5): 806-814, 2024.
Article in English | MEDLINE | ID: mdl-38766346

ABSTRACT

AIM: To explore the effects of hepatocyte growth factor (HGF) on retinal pigment epithelium (RPE) cell behaviors. METHODS: The human adult retinal pigment epithelial cell line-19 (ARPE-19) were treated by HGF or mesenchymal-epithelial transition factor (MET) inhibitor SU11274 in vitro. Cell viability was detected by a Cell Counting Kit-8 assay. Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay, respectively. The expression levels of MET, phosphorylated MET, protein kinase B (AKT), and phosphorylated AKT proteins were determined by Western blot assay. The MET and phosphorylated MET proteins were also determined by immunofluorescence assay. RESULTS: HGF increased ARPE-19 cells' viability, proliferation and migration, and induced an increase of phosphorylated MET and phosphorylated AKT proteins. SU11274 significantly reduced cell viability, proliferation, and migration and decreased the expression of MET and AKT proteins. SU11274 suppressed HGF-induced increase of viability, proliferation, and migration in ARPE-19 cells. Additionally, SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins. CONCLUSION: HGF enhances cellular viability, proliferation, and migration in RPE cells through the MET/AKT signaling pathway, whereas this enhancement is suppressed by the MET inhibitor SU11274. HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.

SELECTION OF CITATIONS
SEARCH DETAIL