Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Gastroenterology ; 167(2): 281-297, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38492894

ABSTRACT

BACKGROUND & AIMS: Because pancreatic cancer responds poorly to chemotherapy and immunotherapy, it is necessary to identify novel targets and compounds to overcome resistance to treatment. METHODS: This study analyzed genomic single nucleotide polymorphism sequencing, single-cell RNA sequencing, and spatial transcriptomics. Ehf-knockout mice, KPC (LSL-KrasG12D/+, LSL-Trp53R172H/+ and Pdx1-Cre) mice, CD45.1+ BALB/C nude mice, and CD34+ humanized mice were also used as subjects. Multiplexed immunohistochemistry and flow cytometry were performed to investigate the proportion of tumor-infiltrated C-X-C motif chemokine receptor 2 (CXCR2)+ neutrophils. In addition, multiplexed cytokines assays and chromatin immunoprecipitation assays were used to examine the mechanism. RESULTS: The TP53 mutation-mediated loss of tumoral EHF increased the recruitment of CXCR2+ neutrophils, modulated their spatial distribution, and further induced chemo- and immunotherapy resistance in clinical cohorts and preclinical syngeneic mice models. Mechanistically, EHF deficiency induced C-X-C motif chemokine ligand 1 (CXCL1) transcription to enhance in vitro and in vivo CXCR2+ neutrophils migration. Moreover, CXCL1 or CXCR2 blockade completely abolished the effect, indicating that EHF regulated CXCR2+ neutrophils migration in a CXCL1-CXCR2-dependent manner. The depletion of CXCR2+ neutrophils also blocked the in vivo effects of EHF deficiency on chemotherapy and immunotherapy resistance. The single-cell RNA-sequencing results of PDAC treated with Nifurtimox highlighted the therapeutic significance of Nifurtimox by elevating the expression of tumoral EHF and decreasing the weightage of CXCL1-CXCR2 pathway within the microenvironment. Importantly, by simultaneously inhibiting the JAK1/STAT1 pathway, it could significantly suppress the recruitment and function of CXCR2+ neutrophils, further sensitizing PDAC to chemotherapy and immunotherapies. CONCLUSIONS: The study demonstrated the role of EHF in the recruitment of CXCR2+ neutrophils and the promising role of Nifurtimox in sensitizing pancreatic cancer to chemotherapy and immunotherapy.


Subject(s)
Chemokine CXCL1 , Drug Resistance, Neoplasm , Neutrophil Infiltration , Neutrophils , Pancreatic Neoplasms , Receptors, Interleukin-8B , Animals , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/antagonists & inhibitors , Humans , Neutrophil Infiltration/drug effects , Drug Resistance, Neoplasm/genetics , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/drug effects , Mice , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Cell Line, Tumor , Mice, Knockout , Tumor Microenvironment , Immunotherapy/methods , Mice, Nude , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Signal Transduction , Mutation , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology
2.
J Am Chem Soc ; 146(32): 22736-22746, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39078265

ABSTRACT

G-quadruplex (G4), an unconventional nucleic acid structure, shows polymorphism in its topological morphology. The parallel G4 topology is the most prevalent form in organisms and plays a regulatory role in many biological processes. Designing fluorescent probes with high specificity for parallel G4s is important but challenging. Herein, a supramolecular assembly of the anionic cyanine dye SCY-5 is reported, which selectively identifies parallel G4 topology. SCY-5 can clearly distinguish parallel G4s from other G4s and non-G4s, even including hybrid-type G4s with parallel characteristics. The high specificity mechanism of SCY-5 involves a delicate balance between electrostatic repulsion and π-π interaction between SCY-5 and G4s. Using SCY-5, cellular RNA extracted from peripheral venous blood was quantitatively detected, and a remarkable increase in RNA G4 content in cancer patients compared to healthy volunteers was confirmed for the first time. This study provides new insights for designing specific probes for parallel G4 topology and opens a new path for clinical cancer diagnosis using RNA G4 as a biomarker.


Subject(s)
Carbocyanines , Fluorescent Dyes , G-Quadruplexes , Neoplasms , Humans , Carbocyanines/chemistry , Fluorescent Dyes/chemistry , Neoplasms/diagnosis , RNA/chemistry , RNA/analysis
3.
Cancer ; 130(S8): 1499-1512, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38422056

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is a highly heterogeneous and clinically aggressive disease. Accumulating evidence indicates that tertiary lymphoid structures (TLSs) and tumor budding (TB) are significantly correlated with the outcomes of patients who have TNBC, but no integrated TLS-TB profile has been established to predict their survival. The objective of this study was to investigate the relationship between the TLS/TB ratio and clinical outcomes of patients with TNBC using artificial intelligence (AI)-based analysis. METHODS: The infiltration levels of TLSs and TB were evaluated using hematoxylin and eosin staining, immunohistochemistry staining, and AI-based analysis. Various cellular subtypes within TLS were determined by multiplex immunofluorescence. Subsequently, the authors established a nomogram model, conducted calibration curve analyses, and performed decision curve analyses using R software. RESULTS: In both the training and validation cohorts, the antitumor/protumor model established by the authors demonstrated a positive correlation between the TLS/TB index and the overall survival (OS) and relapse-free survival (RFS) of patients with TNBC. Notably, patients who had a high percentage of CD8-positive T cells, CD45RO-positive T cells, or CD20-positive B cells within the TLSs experienced improved OS and RFS. Furthermore, the authors developed a comprehensive TLS-TB profile nomogram based on the TLS/TB index. This novel model outperformed the classical tumor-lymph node-metastasis staging system in predicting the OS and RFS of patients with TNBC. CONCLUSIONS: A novel strategy for predicting the prognosis of patients with TNBC was established through integrated AI-based analysis and a machine-learning workflow. The TLS/TB index was identified as an independent prognostic factor for TNBC. This nomogram-based TLS-TB profile would help improve the accuracy of predicting the prognosis of patients who have TNBC.


Subject(s)
Tertiary Lymphoid Structures , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Tertiary Lymphoid Structures/pathology , Artificial Intelligence , Neoplasm Recurrence, Local , Prognosis
4.
Quant Imaging Med Surg ; 14(8): 5665-5681, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39144048

ABSTRACT

Background: Preoperative grading gliomas is essential for therapeutic clinical decision-making. Current non-invasive imaging modality for glioma grading were primarily focused on magnetic resonance imaging (MRI) or positron emission tomography (PET) of the tumor region. However, these methods overlook the peritumoral region (PTR) of tumor and cannot take full advantage of the biological information derived from hybrid-imaging. Therefore, we aimed to combine multiparameter from hybrid 18F-fluorodeoxyglucose (18F-FDG) PET/MRI of the solid component and PTR were combined for differentiating high-grade glioma (HGG) from low-grade glioma (LGG). Methods: A total of 76 patients with pathologically confirmed glioma (41 HGG and 35 LGG) who underwent simultaneous 18F-FDG PET, arterial spin labelling (ASL), and diffusion-weighted imaging (DWI) with hybrid PET/MRI were retrospectively enrolled. The relative maximum standardized uptake value (rSUVmax), relative cerebral blood flow (rCBF), and relative minimum apparent diffusion coefficient (rADCmin) for the solid component and PTR at different distances outside tumoral border were compared. Receiver operating characteristic (ROC) curves were applied to assess the grading performance. A nomogram for HGG prediction was constructed. Results: HGGs displayed higher rSUVmax and rCBF but lower rADCmin in the solid component and 5 mm-adjacent PTR, lower rADCmin in 10 mm-adjacent PTR, and higher rCBF in 15- and 20-mm-adjacent PTR. rSUVmax in solid component performed best [area under the curve (AUC) =0.865] as a single parameter for grading. Combination of rSUVmax in the solid component and adjacent 20 mm performed better (AUC =0.881). Integration of all 3 indicators in the solid component and adjacent 20 mm performed the best (AUC =0.928). The nomogram including rSUVmax, rCBF, and rADCmin in the solid component and 5-mm-adjacent PTR predicted HGG with a concordance index (C-index) of 0.906. Conclusions: Multiparametric 18F-FDG PET/MRI from the solid component and PTR performed excellently in differentiating HGGs from LGGs. It can be used as a non-invasive and effective tool for preoperative grade stratification of patients with glioma, and can be considered in clinical practice.

5.
J Agric Food Chem ; 72(5): 2789-2800, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38278623

ABSTRACT

Aspartic acid (D) and glutamic acid (E) play vital roles in the umami peptides. To understand their exact mechanism of action, umami peptides were collected and cut into 1/2/3/4 fragments. Connecting D/E to the N/C-termini of the fragments formed D/E consensus effect groups (DEEGs), and all fragments containing DEEG were summarized according to the ratio and ranking obtained in the above four situations. The interaction patterns between peptides in DEEG and T1R1/T1R3-VFD were compared by statistical analysis and molecular docking, and the most conservative contacts were found to be HdB_277_ARG and HdB_148_SER. The molecular docking score of the effector peptides significantly dropped compared to that of their original peptides (-1.076 ± 0.658 kcal/mol, p value < 0.05). Six types of consensus fingerprints were set according to the Top7 contacts. The exponential of relative umami was linearly correlated with ΔGbind (R2 = 0.961). Under the D/E consensus effect, the electrostatic effect of the umami peptide was improved, and the energy gap between the highest occupied molecular orbital-the least unoccupied molecular orbital (HOMO-LUMO) was decreased. The shortest path map showed that the peptides had similar T1R1-T1R3 recognition pathways. This study helps to reveal umami perception rules and provides support for the efficient screening of umami peptides based on the material richness in D/E sequences.


Subject(s)
Peptides , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Molecular Docking Simulation , Consensus , Peptides/chemistry , Glutamic Acid , Taste
SELECTION OF CITATIONS
SEARCH DETAIL