Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.354
Filter
Add more filters

Publication year range
1.
Cell ; 185(24): 4526-4540.e18, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36347253

ABSTRACT

Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.


Subject(s)
Ergothioneine , Humans , Ergothioneine/metabolism , Antioxidants/metabolism , Oxidation-Reduction , Sulfhydryl Compounds , Molecular Weight
2.
Nat Immunol ; 24(9): 1458-1472, 2023 09.
Article in English | MEDLINE | ID: mdl-37563311

ABSTRACT

Runx factors are essential for lineage specification of various hematopoietic cells, including T lymphocytes. However, they regulate context-specific genes and occupy distinct genomic regions in different cell types. Here, we show that dynamic Runx binding shifts in mouse early T cell development are mostly not restricted by local chromatin state but regulated by Runx dosage and functional partners. Runx cofactors compete to recruit a limited pool of Runx factors in early T progenitor cells, and a modest increase in Runx protein availability at pre-commitment stages causes premature Runx occupancy at post-commitment binding sites. This increased Runx factor availability results in striking T cell lineage developmental acceleration by selectively activating T cell-identity and innate lymphoid cell programs. These programs are collectively regulated by Runx together with other, Runx-induced transcription factors that co-occupy Runx-target genes and propagate gene network changes.


Subject(s)
Gene Regulatory Networks , T-Lymphocytes , Mice , Animals , T-Lymphocytes/metabolism , Immunity, Innate/genetics , Lymphocytes/metabolism , Core Binding Factor alpha Subunits/genetics , Core Binding Factor alpha Subunits/metabolism , Cell Differentiation/genetics
3.
Cell ; 176(6): 1432-1446.e11, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30827685

ABSTRACT

The presence of DNA in the cytosol of mammalian cells is an unusual event that is often associated with genotoxic stress or viral infection. The enzyme cGAS is a sensor of cytosolic DNA that induces interferon and inflammatory responses that can be protective or pathologic, depending on the context. Along with other cytosolic innate immune receptors, cGAS is thought to diffuse throughout the cytosol in search of its DNA ligand. Herein, we report that cGAS is not a cytosolic protein but rather localizes to the plasma membrane via the actions of an N-terminal phosphoinositide-binding domain. This domain interacts selectively with PI(4,5)P2, and cGAS mutants defective for lipid binding are mislocalized to the cytosolic and nuclear compartments. Mislocalized cGAS induces potent interferon responses to genotoxic stress, but weaker responses to viral infection. These data establish the subcellular positioning of a cytosolic innate immune receptor as a mechanism that governs self-nonself discrimination.


Subject(s)
Cell Membrane/physiology , Nucleotidyltransferases/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Cytosol/physiology , DNA, Viral/genetics , Female , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions , Humans , Immunity, Innate/physiology , Interferons/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Nucleotidyltransferases/physiology , Phosphatidylinositol 4,5-Diphosphate/physiology , Phosphatidylinositols , Protein Binding , Signal Transduction/immunology
4.
Cell ; 174(2): 300-311.e11, 2018 07 12.
Article in English | MEDLINE | ID: mdl-30007416

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for immune responses to pathogen replication, cellular stress, and cancer. Existing structures of the mouse cGAS-DNA complex provide a model for enzyme activation but do not explain why human cGAS exhibits severely reduced levels of cyclic GMP-AMP (cGAMP) synthesis compared to other mammals. Here, we discover that enhanced DNA-length specificity restrains human cGAS activation. Using reconstitution of cGAMP signaling in bacteria, we mapped the determinant of human cGAS regulation to two amino acid substitutions in the DNA-binding surface. Human-specific substitutions are necessary and sufficient to direct preferential detection of long DNA. Crystal structures reveal why removal of human substitutions relaxes DNA-length specificity and explain how human-specific DNA interactions favor cGAS oligomerization. These results define how DNA-sensing in humans adapted for enhanced specificity and provide a model of the active human cGAS-DNA complex to enable structure-guided design of cGAS therapeutics.


Subject(s)
DNA/metabolism , Immunologic Surveillance/physiology , Nucleotidyltransferases/metabolism , Animals , Benzofurans/chemistry , Benzofurans/metabolism , Binding Sites , Catalytic Domain , Chemotaxis/drug effects , DNA/chemistry , Humans , Mice , Molecular Docking Simulation , Mutagenesis, Site-Directed , Nucleotides, Cyclic/metabolism , Nucleotides, Cyclic/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/genetics , Protein Multimerization , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Species Specificity , Vibrio cholerae/metabolism , Vibrio cholerae/physiology
5.
Cell ; 174(2): 363-376.e16, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29887381

ABSTRACT

Visualization of the transcriptome and the nuclear organization in situ has been challenging for single-cell analysis. Here, we demonstrate a multiplexed single-molecule in situ method, intron seqFISH, that allows imaging of 10,421 genes at their nascent transcription active sites in single cells, followed by mRNA and lncRNA seqFISH and immunofluorescence. This nascent transcriptome-profiling method can identify different cell types and states with mouse embryonic stem cells and fibroblasts. The nascent sites of RNA synthesis tend to be localized on the surfaces of chromosome territories, and their organization in individual cells is highly variable. Surprisingly, the global nascent transcription oscillated asynchronously in individual cells with a period of 2 hr in mouse embryonic stem cells, as well as in fibroblasts. Together, spatial genomics of the nascent transcriptome by intron seqFISH reveals nuclear organizational principles and fast dynamics in single cells that are otherwise obscured.


Subject(s)
In Situ Hybridization, Fluorescence/methods , Transcriptome , Animals , Catalytic Domain , Cell Line , Chromosomes/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Introns , Mice , Microscopy, Fluorescence , Microscopy, Video , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Single-Cell Analysis
6.
Mol Cell ; 84(13): 2410-2422, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38936362

ABSTRACT

Innate immunity is essential for the host against pathogens, cancer, and autoimmunity. The innate immune system encodes many sensor, adaptor, and effector proteins and relies on the assembly of higher-order signaling complexes to activate immune defense. Recent evidence demonstrates that many of the core complexes involved in innate immunity are organized as liquid-like condensates through a mechanism known as phase separation. Here, we discuss phase-separated condensates and their diverse functions. We compare the biochemical, structural, and mechanistic details of solid and liquid-like assemblies to explore the role of phase separation in innate immunity. We summarize the emerging evidence for the hypothesis that phase separation is a conserved mechanism that controls immune responses across the tree of life. The discovery of phase separation in innate immunity provides a new foundation to explain the rules that govern immune system activation and will enable the development of therapeutics to treat immune-related diseases properly.


Subject(s)
Immunity, Innate , Signal Transduction , Humans , Animals , Phase Separation
8.
Cell ; 158(2): 464-464.e1, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25036639

ABSTRACT

Regulated necrosis, termed necroptosis, is mediated by the kinase activity of RIPK1 and RIPK3. It has distinct cellular features that are different than apoptosis. Necroptosis can be triggered by extracellular stimuli known to activate inflammation and cell death and its intracellular signaling pathway involves necrosome formation and MLKL activation. Inhibition of necroptosis has been shown to mitigate pathology in numerous mouse models, providing potential strategies to treat human diseases.


Subject(s)
Cell Death , Animals , Humans , Inflammation/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
9.
Mol Cell ; 81(4): 739-755.e7, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33606975

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for the immune response to cancer and pathogen infection. Here, we discover that cGAS-DNA phase separation is required to resist negative regulation and allow efficient sensing of immunostimulatory DNA. We map the molecular determinants of cGAS condensate formation and demonstrate that phase separation functions to limit activity of the cytosolic exonuclease TREX1. Mechanistically, phase separation forms a selective environment that suppresses TREX1 catalytic function and restricts DNA degradation to an outer shell at the droplet periphery. We identify a TREX1 mutation associated with the severe autoimmune disease Aicardi-Goutières syndrome that increases penetration of TREX1 into the repressive droplet interior and specifically impairs degradation of phase-separated DNA. Our results define a critical function of cGAS-DNA phase separation and reveal a molecular mechanism that balances cytosolic DNA degradation and innate immune activation.


Subject(s)
Autoimmune Diseases of the Nervous System/enzymology , Cytosol/metabolism , DNA/metabolism , Exodeoxyribonucleases/metabolism , Mutation , Nervous System Malformations/enzymology , Nucleotidyltransferases/metabolism , Phosphoproteins/metabolism , Autoimmune Diseases of the Nervous System/genetics , Catalysis , Cell Line, Tumor , DNA/genetics , Exodeoxyribonucleases/genetics , HEK293 Cells , Humans , Nervous System Malformations/genetics , Nucleotidyltransferases/genetics , Phosphoproteins/genetics
10.
Immunity ; 51(5): 788-790, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31747579

ABSTRACT

In this issue of Immunity, Zeng et al. use single-cell RNA sequencing analyses of rare samples to shed light on the emergence of thymic stromal cell types, the first developing T lymphocytes, and their possible pre-thymic precursors in the early human fetus.


Subject(s)
RNA , T-Lymphocytes , Fetus , Humans , Organogenesis , Sequence Analysis, RNA
11.
Nature ; 597(7874): 109-113, 2021 09.
Article in English | MEDLINE | ID: mdl-34261127

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that produces the second messenger cG[2'-5']pA[3'-5']p (2'3'-cGAMP) and controls activation of innate immunity in mammalian cells1-5. Animal genomes typically encode multiple proteins with predicted homology to cGAS6-10, but the function of these uncharacterized enzymes is unknown. Here we show that cGAS-like receptors (cGLRs) are innate immune sensors that are capable of recognizing divergent molecular patterns and catalysing synthesis of distinct nucleotide second messenger signals. Crystal structures of human and insect cGLRs reveal a nucleotidyltransferase signalling core shared with cGAS and a diversified primary ligand-binding surface modified with notable insertions and deletions. We demonstrate that surface remodelling of cGLRs enables altered ligand specificity and used a forward biochemical screen to identify cGLR1 as a double-stranded RNA sensor in the model organism Drosophila melanogaster. We show that RNA recognition activates Drosophila cGLR1 to synthesize the novel product cG[3'-5']pA[2'-5']p (3'2'-cGAMP). A crystal structure of Drosophila stimulator of interferon genes (dSTING) in complex with 3'2'-cGAMP explains selective isomer recognition, and 3'2'-cGAMP induces an enhanced antiviral state in vivo that protects from viral infection. Similar to radiation of Toll-like receptors in pathogen immunity, our results establish cGLRs as a diverse family of metazoan pattern recognition receptors.


Subject(s)
Drosophila melanogaster/metabolism , Nucleotides, Cyclic/metabolism , Nucleotidyltransferases/metabolism , RNA, Double-Stranded/metabolism , Receptors, Pattern Recognition/metabolism , Second Messenger Systems , Amino Acid Sequence , Animals , Crystallography, X-Ray , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/immunology , Drosophila melanogaster/virology , Female , Humans , Immunity, Innate , Male , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Molecular , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/immunology , RNA, Double-Stranded/analysis , RNA, Double-Stranded/immunology , Receptors, Pattern Recognition/chemistry , Receptors, Pattern Recognition/immunology , Viruses/immunology
12.
Hum Mol Genet ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796715

ABSTRACT

The cGAS-STING pathway detects cytosolic DNA and activates a signaling cascade that results in a type I interferon (IFN) response. The endoplasmic reticulum (ER)-associated exonuclease TREX1 suppresses cGAS-STING by eliminating DNA from the cytosol. Mutations that compromise TREX1 function are linked to autoinflammatory disorders, including systemic lupus erythematosus (SLE) and Aicardi-Goutières syndrome (AGS). Despite key roles in regulating cGAS-STING and suppressing excessive inflammation, the impact of many disease-associated TREX1 mutations-particularly those outside of the core catalytic domains-remains poorly understood. Here, we characterize a recessive AGS-linked TREX1 P61Q mutation occurring within the poorly characterized polyproline helix (PPII) motif. In keeping with its position outside of the catalytic core or ER targeting motifs, neither the P61Q mutation, nor aggregate proline-to-alanine PPII mutation, disrupts TREX1 exonuclease activity, subcellular localization, or cGAS-STING regulation in overexpression systems. Introducing targeted mutations into the endogenous TREX1 locus revealed that PPII mutations destabilize the protein, resulting in impaired exonuclease activity and unrestrained cGAS-STING activation. Overall, these results demonstrate that TREX1 PPII mutations, including P61Q, impair proper immune regulation and lead to autoimmune disease through TREX1 destabilization.

13.
EMBO J ; 41(14): e109217, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35670106

ABSTRACT

Varicella-Zoster virus (VZV) causes chickenpox and shingles. Although the infection is associated with severe morbidity in some individuals, molecular mechanisms that determine innate immune responses remain poorly defined. We found that the cGAS/STING DNA sensing pathway was required for type I interferon (IFN) induction during VZV infection and that recognition of VZV by cGAS restricted its replication. Screening of a VZV ORF expression library identified the essential VZV tegument protein ORF9 as a cGAS antagonist. Ectopically or virally expressed ORF9 bound to endogenous cGAS leading to reduced type I IFN responses to transfected DNA. Confocal microscopy revealed co-localisation of cGAS and ORF9. ORF9 and cGAS also interacted directly in a cell-free system and phase-separated together with DNA. Furthermore, ORF9 inhibited cGAMP production by cGAS. Taken together, these results reveal the importance of the cGAS/STING DNA sensing pathway for VZV recognition and identify a VZV immune antagonist that partially but directly interferes with DNA sensing via cGAS.


Subject(s)
Herpesvirus 3, Human , Interferon Type I , Nucleotidyltransferases , Viral Proteins , DNA/metabolism , Herpesvirus 3, Human/genetics , Herpesvirus 3, Human/immunology , Humans , Immunity, Innate , Interferon Type I/immunology , Membrane Proteins/immunology , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/immunology , Viral Proteins/immunology
14.
Plant Physiol ; 194(4): 2400-2421, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38180123

ABSTRACT

Light-induced de-etiolation is an important aspect of seedling photomorphogenesis. GOLDEN2 LIKE (GLK) transcriptional regulators are involved in chloroplast development, but to what extent they participate in photomorphogenesis is not clear. Here, we show that ELONGATED HYPOCOTYL5 (HY5) binds to GLK promoters to activate their expression, and also interacts with GLK proteins in Arabidopsis (Arabidopsis thaliana). The chlorophyll content in the de-etiolating Arabidopsis seedlings of the hy5 glk2 double mutants was lower than that in the hy5 single mutant. GLKs inhibited hypocotyl elongation, and the phenotype could superimpose on the hy5 phenotype. Correspondingly, GLK2 regulated the expression of photosynthesis and cell elongation genes partially independent of HY5. Before exposure to light, DE-ETIOLATED 1 (DET1) affected accumulation of GLK proteins. The enhanced etioplast development and photosystem gene expression observed in the det1 mutant were attenuated in the det1 glk2 double mutant. Our study reveals that GLKs act downstream of HY5, or additive to HY5, and are likely quantitatively adjusted by DET1, to orchestrate multiple developmental traits during the light-induced skotomorphogenesis-to-photomorphogenesis transition in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Hypocotyl , Light , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Seedlings/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
15.
J Biol Chem ; 299(10): 105220, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660921

ABSTRACT

Pharmacological inhibition of mitochondrial fatty acid oxidation (FAO) has been clinically used to alleviate certain metabolic diseases by remodeling cellular metabolism. However, mitochondrial FAO inhibition also leads to mechanistic target of rapamycin complex 1 (mTORC1) activation-related protein synthesis and tissue hypertrophy, but the mechanism remains unclear. Here, by using a mitochondrial FAO inhibitor (mildronate or etomoxir) or knocking out carnitine palmitoyltransferase-1, we revealed that mitochondrial FAO inhibition activated the mTORC1 pathway through general control nondepressible 5-dependent Raptor acetylation. Mitochondrial FAO inhibition significantly promoted glucose catabolism and increased intracellular acetyl-CoA levels. In response to the increased intracellular acetyl-CoA, acetyltransferase general control nondepressible 5 activated mTORC1 by catalyzing Raptor acetylation through direct interaction. Further investigation also screened Raptor deacetylase histone deacetylase class II and identified histone deacetylase 7 as a potential regulator of Raptor. These results provide a possible mechanistic explanation for the mTORC1 activation after mitochondrial FAO inhibition and also bring light to reveal the roles of nutrient metabolic remodeling in regulating protein acetylation by affecting acetyl-CoA production.

16.
J Biol Chem ; 299(11): 105354, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37858678

ABSTRACT

O-linked N-acetylglucosamine (O-GlcNAc) glycosylation, a prevalent protein post-translational modification (PTM) that occurs intracellularly, has been shown to crosstalk with phosphorylation and ubiquitination. However, it is unclear whether it interplays with other PTMs. Here we studied its relationship with ADP-ribosylation, which involves decorating target proteins with the ADP-ribose moiety. We discovered that the poly(ADP-ribosyl)ation "eraser", ADP-ribose glycohydrolase (PARG), is O-GlcNAcylated at Ser26, which is in close proximity to its nuclear localization signal. O-GlcNAcylation of PARG promotes nuclear localization and chromatin association. Upon DNA damage, O-GlcNAcylation augments the recruitment of PARG to DNA damage sites and interacting with proliferating cell nuclear antigen (PCNA). In hepatocellular carcinoma (HCC) cells, PARG O-GlcNAcylation enhances the poly(ADP-ribosyl)ation of DNA damage-binding protein 1 (DDB1) and attenuates its auto-ubiquitination, thereby stabilizing DDB1 and allowing it to degrade its downstream targets, such as c-Myc. We further demonstrated that PARG-S26A, the O-GlcNAc-deficient mutant, promoted HCC in mouse xenograft models. Our findings thus reveal that PARG O-GlcNAcylation inhibits HCC, and we propose that O-GlcNAc glycosylation may crosstalk with many other PTMs.


Subject(s)
Carcinoma, Hepatocellular , Glycoside Hydrolases , Liver Neoplasms , Animals , Humans , Mice , Acetylglucosamine , ADP-Ribosylation , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Glycosylation , Protein Processing, Post-Translational
17.
BMC Genomics ; 25(1): 681, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982349

ABSTRACT

Analyzing the genetic diversity and selection characteristics of sheep (Ovis aries) holds significant value in understanding their environmental adaptability, enhancing breeding efficiency, and achieving effective conservation and rational utilization of genetic resources. In this study, we utilized Illumina Ovine SNP 50 K BeadChip data from four indigenous sheep breeds from the southern margin of the Taklamakan Desert (Duolang sheep: n = 36, Hetian sheep: n = 74, Kunlun sheep: n = 27, Qira black sheep: n = 178) and three foreign meat sheep breeds (Poll Dorset sheep: n = 105, Suffolk sheep: n = 153, Texel sheep: n = 150) to investigate the population structure, genetic diversity, and genomic signals of positive selection within the indigenous sheep. According to the Principal component analysis (PCA), the Neighbor-Joining tree (NJ tree), and Admixture, we revealed distinct clustering patterns of these seven sheep breeds based on their geographical distribution. Then used Cross Population Extended Haplotype Homozygosity (XP-EHH), Fixation Index (FST), and Integrated Haplotype Score (iHS), we identified a collective set of 32 overlapping genes under positive selection across four indigenous sheep breeds. These genes are associated with wool follicle development and wool traits, desert environmental adaptability, disease resistance, reproduction, and high-altitude adaptability. This study reveals the population structure and genomic selection characteristics in the extreme desert environments of native sheep breeds from the southern edge of the Taklimakan Desert, providing new insights into the conservation and sustainable use of indigenous sheep genetic resources in extreme environments. Additionally, these findings offer valuable genetic resources for sheep and other mammals to adapt to global climate change.


Subject(s)
Desert Climate , Polymorphism, Single Nucleotide , Selection, Genetic , Animals , Sheep/genetics , Genetics, Population , Haplotypes , Genetic Variation , Breeding
18.
Small ; : e2402141, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953313

ABSTRACT

Abdominal aortic aneurysm (AAA) represents a critical cardiovascular condition characterized by localized dilation of the abdominal aorta, carrying a significant risk of rupture and mortality. Current treatment options are limited, necessitating novel therapeutic approaches. This study investigates the potential of a pioneering nanodrug delivery system, RAP@PFB, in mitigating AAA progression. RAP@PFB integrates pentagalloyl glucose (PGG) and rapamycin (RAP) within a metal-organic-framework (MOF) structure through a facile assembly process, ensuring remarkable drug loading capacity and colloidal stability. The synergistic effects of PGG, a polyphenolic antioxidant, and RAP, an mTOR inhibitor, collectively regulate key players in AAA pathogenesis, such as macrophages and smooth muscle cells (SMCs). In macrophages, RAP@PFB efficiently scavenges various free radicals, suppresses inflammation, and promotes M1-to-M2 phenotype repolarization. In SMCs, it inhibits apoptosis and calcification, thereby stabilizing the extracellular matrix and reducing the risk of AAA rupture. Administered intravenously, RAP@PFB exhibits effective accumulation at the AAA site, demonstrating robust efficacy in reducing AAA progression through multiple mechanisms. Moreover, RAP@PFB demonstrates favorable biosafety profiles, supporting its potential translation into clinical applications for AAA therapy.

19.
J Transl Med ; 22(1): 46, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212795

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is a malignant neoplasm that displays increased vascularization. Angiopoietin-like 4 (ANGPTL4) is a secreted glycoprotein that functions as a regulator of cell metabolism and angiogenesis and plays a critical role in tumorigenesis. However, the precise role of ANGPTL4 in the OC microenvironment, particularly its involvement in angiogenesis, has not been fully elucidated. METHODS: The expression of ANGPTL4 was confirmed by bioinformatics and IHC in OC. The potential molecular mechanism of ANGPTL4 was measured by RNA-sequence. We used a series of molecular biological experiments to measure the ANGPTL4-JAK2-STAT3 and ANGPTL4-ESM1 axis in OC progression, including MTT, EdU, wound healing, transwell, xenograft model, oil red O staining, chick chorioallantoic membrane assay and zebrafish model. Moreover, the molecular mechanisms were confirmed by Western blot, Co-IP and molecular docking. RESULTS: Our study demonstrates a significant upregulation of ANGPTL4 in OC specimens and its strong association with unfavorable prognosis. RNA-seq analysis affirms that ANGPTL4 facilitates OC development by driving JAK2-STAT3 signaling pathway activation. The interaction between ANGPTL4 and ESM1 promotes ANGPTL4 binding to lipoprotein lipase (LPL), thereby resulting in reprogrammed lipid metabolism and the promotion of OC cell proliferation, migration, and invasion. In the OC microenvironment, ESM1 may interfere with the binding of ANGPTL4 to integrin and vascular-endothelial cadherin (VE-Cad), which leads to stabilization of vascular integrity and ultimately promotes angiogenesis. CONCLUSION: Our findings underscore that ANGPTL4 promotes OC development via JAK signaling and induces angiogenesis in the tumor microenvironment through its interaction with ESM1.


Subject(s)
Cystadenocarcinoma, Serous , Janus Kinase 2 , Ovarian Neoplasms , STAT3 Transcription Factor , Animals , Female , Humans , Tumor Microenvironment , Molecular Docking Simulation , Angiogenesis , Zebrafish/metabolism , Carcinogenesis , Cell Proliferation , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms/genetics , Cell Line, Tumor , Angiopoietin-Like Protein 4/genetics , Neoplasm Proteins , Proteoglycans
20.
Ophthalmology ; 131(1): 48-57, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37634757

ABSTRACT

PURPOSE: To compare the efficacy and safety of low-level red light (LRL) in controlling myopia progression at 3 different powers: 0.37 mW, 0.60 mW, and 1.20 mW. DESIGN: Single-center, single-masked, randomized controlled trial. PARTICIPANTS: Two hundred children aged 6-15 with myopia of -0.50 diopter (D) or more and astigmatism of -2.50 D or less were enrolled from April to May 2022. Follow-up ended in December 2022. METHODS: Participants were assigned randomly to 3 intervention groups and 1 control group (1:1:1:1). All participants wore single-vision spectacles. Moreover, the intervention group randomly received LRL at 3 different powers twice daily for 3 minutes per session, with a minimum 4-hour interval. MAIN OUTCOME MEASURES: Changes in spherical equivalent (SE), axial length (AL), and subfoveal choroidal thickness (SFCT) were measured. RESULTS: After 6 months, SE progression was significantly lower in the 0.37-mW group (0.01 D; 95% confidence interval [CI], -0.12 to 0.15), 0.60-mW group (-0.05 D; 95% CI, -0.18 to 0.07), and 1.20-mW group (0.16 D; 95% CI, 0.03 to 0.30) compared to the control group (-0.22 D; 95% CI, -0.50 to 0.30; adjusted P < 0.001 for all). AL changes in the 0.37-mW group (0.04 mm; 95% CI, -0.01 to 0.08), 0.60-mW group (0.00 mm; 95% CI, -0.05 to 0.05), and 1.20-mW group (-0.04 mm; 95% CI, -0.08 to 0.01) were significantly smaller than the control group (0.27 mm; 95% CI, 0.22 to 0.33; adjusted P < 0.001 for all). Similarly, increases in SFCT were significantly greater in the 0.37-mW group (22.63 µm; 95% CI, 12.13 to 33.34 µm), 0.60-mW group (36.17 µm; 95% CI, 24.37 to 48.25 µm), and 1.20-mW group (42.59 µm; 95% CI, 23.43 to 66.24 µm) than the control group (-5.07 µm; 95% CI, -10.32 to -0.13 µm; adjusted P < 0.001 for all). No adverse events were observed. CONCLUSIONS: LRL effectively controlled myopia progression at 0.37 mW, 0.60 mW, and 1.20 mW. Further research is required. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.


Subject(s)
Astigmatism , Myopia , Child , Humans , Red Light , Myopia/prevention & control , Refraction, Ocular , Choroid , Disease Progression
SELECTION OF CITATIONS
SEARCH DETAIL