Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 20(4): e1012075, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568937

ABSTRACT

Oropharyngeal microbiomes play a significant role in the susceptibility and severity of COVID-19, yet the role of these microbiomes play for the development of COVID-19 Omicron variant have not been reported. A total of 791 pharyngeal swab samples were prospectively included in this study, including 297 confirmed cases of Omicron variant (CCO), 222 confirmed case of Omicron who recovered (CCOR), 73 confirmed cases of original strain (CCOS) and 199 healthy controls (HC). All samples completed MiSeq sequencing. The results showed that compared with HC, conditional pathogens increased in CCO, while acid-producing bacteria decreased. Based on six optimal oropharyngeal operational taxonomy units (OTUs), we constructed a marker microbial classifier to distinguish between patients with Omicron variant and healthy people, and achieved high diagnostic efficiency in both the discovery queue and the verification queue. At same time, we introduced a group of cross-age infection verification cohort and Omicron variant subtype XBB.1.5 branch, which can be accurately distinguished by this diagnostic model. We also analyzed the characteristics of oropharyngeal microbiomes in two subgroups of Omicron disease group-severity of infection and vaccination times, and found that the change of oropharyngeal microbiomes may affect the severity of the disease and the efficacy of the vaccine. In addition, we found that some genera with significant differences gradually increased or decreased with the recovery of Omicron variant infection. The results of Spearman analysis showed that 27 oropharyngeal OTUs were closely related to 6 clinical indexes in CCO and HC. Finally, we found that the Omicron variant had different characterization of oropharyngeal microbiomes from the original strain. Our research characterizes oropharyngeal microbiomes of Omicron variant cases and rehabilitation cases, successfully constructed and verified the non-invasive diagnostic model of Omicron variant, described the correlation between microbial OTUs and clinical indexes. It was found that the infection of Omicron variant and the infection of original strain have different characteristics of oropharyngeal microbiomes.


Subject(s)
COVID-19 , Cross Infection , Microbiota , Humans , SARS-CoV-2/genetics , Bacteria , Microbiota/genetics
2.
Cancer Cell Int ; 24(1): 30, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218909

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) stands as a prevalent malignancy globally, characterized by significant morbidity and mortality. Despite continuous advancements in the treatment of HCC, the prognosis of patients with this cancer remains unsatisfactory. This study aims at constructing a disulfidoptosis­related long noncoding RNA (lncRNA) signature to probe the prognosis and personalized treatment of patients with HCC. METHODS: The data of patients with HCC were extracted from The Cancer Genome Atlas (TCGA) databases. Univariate, multivariate, and least absolute selection operator Cox regression analyses were performed to build a disulfidptosis-related lncRNAs (DRLs) signature. Kaplan-Meier plots were used to evaluate the prognosis of the patients with HCC. Functional enrichment analysis was used to identify key DRLs-associated signaling pathways. Spearman's rank correlation was used to elucidate the association between the DRLs signature and immune microenvironment. The function of TMCC1-AS1 in HCC was validated in two HCC cell lines (HEP3B and HEPG2). RESULTS: We identified 11 prognostic DRLs from the TCGA dataset, three of which were selected to construct the prognostic signature of DRLs. We found that the survival time of low-risk patients was considerably longer than that of high-risk patients. We further observed that the composition and the function of immune cell subpopulations were significantly different between high- and low-risk groups. Additionally, we identified that sorafenib, 5-Fluorouracil, and doxorubicin displayed better responses in the low-score group than those in the high-score group, based on IC50 values. Finally, we confirmed that inhibition of TMCC1-AS1 impeded the proliferation, migration, and invasion of hepatocellular carcinoma cells. CONCLUSIONS: The DRL signatures have been shown to be a reliable prognostic and treatment response indicator in HCC patients. TMCC1-AS1 showed potential as a novel prognostic biomarker and therapeutic target for HCC.

3.
Article in English | MEDLINE | ID: mdl-38923573

ABSTRACT

BACKGROUND AND AIM: Lipid metabolism disorder is the primary feature of numerous refractory chronic diseases. Fatty acid oxidation, an essential aerobic biological process, is closely related to the progression of NAFLD. The forkhead transcription factor FOXO1 has been reported to play an important role in lipid metabolism. However, the molecular mechanism through which FOXO1 regulates fatty acid oxidation remains unclear. METHODS: Transcriptomic analysis was performed to examine the cellular expression profile to determine the functional role of FOXO1 in HepG2 cells with palmitic acid (PA)-induced lipid accumulation. FOXO1-binding motifs at the promoter region of aldehyde dehydrogenase 1 family member L2 (ALDH1L2) were predicted via bioinformatic analysis and confirmed via luciferase reporter assay. Overexpression of ALDH1L2 was induced to recover the impaired fatty acid oxidation in FOXO1-knockout cells. RESULTS: Knockout of FOXO1 aggravated lipid deposition in hepatic cells. Transcriptomic profiling revealed that knockout of FOXO1 increased the expression of genes associated with fatty acid synthesis but decreased the expression of carnitine palmitoyltransferase1a (CPT1α) and adipose triglyceride lipase (ATGL), which contribute to fatty acid oxidation. Mechanistically, FOXO1 was identified as a transcription factor of ALDH1L2. Knockout of FOXO1 significantly decreased the protein expression of ALDH1L2 and CPT1α in vitro and in vivo. Furthermore, overexpression of ALDH1L2 restored fatty acid oxidation in FOXO1-knockout cells. CONCLUSION: The findings of this study indicate that FOXO1 modulates fatty acid oxidation by targeting ALDH1L2.

4.
J Gastroenterol Hepatol ; 39(4): 658-666, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38251791

ABSTRACT

BACKGROUND AND AIM: Fexuprazan is a novel potassium-competitive acid blocker (P-CAB). This study aimed to explore the noninferior efficacy and safety of fexuprazan to esomeprazole in treating erosive esophagitis (EE). METHODS: This was a phase III, randomized, double-blind multicenter study. Patients with endoscopically confirmed EE were randomized to receive fexuprazan 40 mg or esomeprazole 40 mg once a daily for 4-8 weeks. The healing rates of EE, symptom response, GERD-health-related quality life (GERD-HRQL), and treatment-emergent adverse events (TEAEs) were compared between fexuprazan group and esomeprazole group. RESULTS: A total of 332 subjects were included in full analysis set (FAS) and 311 in per-protocol set (PPS). The healing rates of fexuprazan and esomeprazole groups at 8 weeks were 88.5% (146/165) and 89.0% (145/163), respectively, in FAS and 97.3% (145/149) and 97.9% (143/146), respectively, in PPS. Noninferiority of fexuprazan compared with esomeprazole according to EE healing rates at 8 weeks was demonstrated in both FAS and PPS analysis. No significant difference was found between groups in EE healing rates at 4 weeks, symptom responses, and changes of GERD-HRQL. The incidence of drug-related AEs was 19.4% (32/165) in fexuprazan arm and 19.6% (32/163) in esomeprazole arm. CONCLUSION: This study demonstrated noninferior efficacy of fexuprazan to esomeprazole in treating EE. The incidence of TEAEs was similar between fexuprazan and esomeprazole. Trial registration number NCT05813561.


Subject(s)
Amines , Esophagitis, Peptic , Gastroesophageal Reflux , Peptic Ulcer , Pyrroles , Humans , Double-Blind Method , Esomeprazole/adverse effects , Esophagitis, Peptic/drug therapy , Esophagitis, Peptic/etiology , Gastroesophageal Reflux/drug therapy , Gastroesophageal Reflux/complications , Peptic Ulcer/complications , Proton Pump Inhibitors/adverse effects , Treatment Outcome
5.
Nano Lett ; 23(18): 8690-8696, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37695701

ABSTRACT

Conduction electron spins interacting with magnetic impurity spins can mediate an interlayer exchange interaction, namely, the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. This discovery opened the way to significant technological developments in the field of magnetic storage and spintronics. So far, the RKKY-type interlayer interaction has been found to construct symmetric coupling of magnetism; however, the asymmetric counterpart remains unexplored. Here we report unprecedented RKKY-type interlayer Dzyaloshinskii-Moriya interaction (DMI) in synthetic magnets, exhibiting a damped oscillatory feature. This asymmetric interlayer interaction is found to be dramatically dependent on the intermediate coupling layer. By introducing the Fert-Lévy model to the trilayer system, we reveal that the in-plane inversion symmetry breaking plays a pivotal role for generating interlayer DMI and the RKKY oscillation is an intrinsic behavior in metallic multilayers. Our finding fills up the empty block for RKKY-type asymmetric interlayer exchange coupling in comparison to the well-known (symmetric) RKKY-type interlayer exchange coupling.

6.
Oncologist ; 28(4): e191-e197, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36779523

ABSTRACT

BACKGROUND: Anlotinib is a multi-target tyrosine kinase inhibitor that can effectively inhibit tumor cell proliferation after receptor kinase activation caused by KIT gene mutation. METHODS: We tested the inhibitory effect of anlotinib in GIST cell lines with different gene mutations and evaluated the efficacy of anlotinib for patients with metastatic GIST after imatinib failure in a multicenter, single-arm, phase II study. RESULTS: In vitro, V654A mutation encoded by KIT exon 13 was intermediately sensitive to anlotinib. Moreover, anlotinib was able to partly suppress the activation loop mutation D820A from exon 17 while another activation loop mutation N822K, also from exon 17, was resistant to anlotinib. From September 2018 to October 2020, 64 patients from 9 Chinese medical centers were enrolled in this study. Seven patients had partial response and 39 patients had stable disease. The median PFS was 8.0 months. There was no statistical significance comparing with PFS of sunitinib second-line therapy at the same period. The most common adverse events related to anlotinib treatment were hypertension, neutropenia, and fatigue. CONCLUSION: Anlotinib showed moderate antitumor activity in drug-resistant GIST cell lines in vitro, and good PFS and better tolerance in second-line therapy study.


Subject(s)
Antineoplastic Agents , Gastrointestinal Stromal Tumors , Humans , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Prospective Studies , Sunitinib/therapeutic use , Mutation , Proto-Oncogene Proteins c-kit/genetics , Drug Resistance, Neoplasm/genetics
7.
Oncologist ; 28(2): 187-e114, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36477870

ABSTRACT

BACKGROUND: Avapritinib is a type 1 kinase inhibitor designed to potently and selectively inhibit oncogenic KIT/PDGFRA mutants by targeting the kinase active conformation. This multicenter, single-arm, open-label, phase I/II bridging study of NAVIGATOR in Chinese patients evaluated the safety and the antineoplastic activity of avapritinib in Chinese patients with unresectable/metastatic gastrointestinal stromal tumors (GIST). METHODS: Phase I comprised dose escalation for safety and phase II dose determination. Phase II comprised dose expansion for safety/efficacy evaluations in patients with PDGFRA D842V mutations or patients having received at least 3 lines of therapy without PDGFRA D842V mutations. The primary endpoints were recommended phase II dose, safety, and Independent Radiology Review Committee (IRRC)-assessed objective response rate (ORR). RESULTS: No dose-limiting toxicities occurred (n = 10); the recommended phase II dose was avapritinib 300 mg once daily orally. Fifty-nine patients initially received avapritinib 300 mg. Common grade ≥3 treatment-related adverse events were anemia, decreased white blood cell count, increased blood bilirubin levels, and decreased neutrophil count. In patients with PDGFRA D842V mutations, IRRC- and investigator-assessed ORRs were 75% and 79%, respectively; clinical benefit rates were both 86%. Median duration of response/progression-free survival were not reached. IRCC- and investigator-assessed ORRs in patients in the fourth- or later-line setting were 22% and 35%, respectively. Median progression-free survivals were 5.6 months for both. Overall survival data were immature and not calculated. CONCLUSION: Avapritinib was generally well tolerated and showed marked anti-tumor activity in Chinese patients with GIST bearing PDGFRA D842V mutations and notable efficacy as fourth- or later-line monotherapy (ClinicalTrials.gov Identifier: NCT04254939).


Subject(s)
Antineoplastic Agents , Gastrointestinal Stromal Tumors , Humans , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Mutation , Antineoplastic Agents/adverse effects , Pyrroles/adverse effects , Protein Kinase Inhibitors/adverse effects
9.
Phys Rev Lett ; 130(9): 096701, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36930935

ABSTRACT

We report on coherent propagation of antiferromagnetic (AFM) spin waves over a long distance (∼10 µm) at room temperature in a canted AFM α-Fe_{2}O_{3} owing to the Dzyaloshinskii-Moriya interaction (DMI). Unprecedented high group velocities (up to 22.5 km/s) are characterized by microwave transmission using all-electrical spin wave spectroscopy. We derive analytically AFM spin-wave dispersion in the presence of the DMI which accounts for our experimental results. The AFM spin waves excited by nanometric coplanar waveguides have large wave vectors in the exchange regime and follow a quasilinear dispersion relation. Fitting of experimental data with our theoretical model yields an AFM exchange stiffness length of 1.7 Å. Our results provide key insights on AFM spin dynamics and demonstrate high-speed functionality for AFM magnonics.

10.
BMC Cancer ; 23(1): 38, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36627575

ABSTRACT

BACKGROUND: Gastrointestinal stromal tumor (GIST) is currently regarded as a potentially malignant tumor, and early diagnosis is the best way to improve its prognosis. Therefore, it will be meaningful to develop a new method for auxiliary diagnosis of this disease. METHODS: Here we try out a new means to detect GIST by combining two-photon imaging with automatic image processing strategy. RESULTS: Experimental results show that two-photon microscopy has the ability to label-freely identify the structural characteristics of GIST such as tumor cells, desmoplastic reaction, which are entirely different from those from gastric adenocarcinoma. Moreover, an image processing approach is used to extract eight collagen morphological features from tumor microenvironment and normal muscularis, and statistical analysis demonstrates that there are significant differences in three features-fiber area, density and cross-link density. The three morphological characteristics may be considered as optical imaging biomarkers to differentiate between normal and abnormal tissues. CONCLUSION: With continued improvement and refinement of this technology, we believe that two-photon microscopy will be an efficient surveillance tool for GIST and lead to better management of this disease.


Subject(s)
Gastrointestinal Stromal Tumors , Stomach Neoplasms , Humans , Gastrointestinal Stromal Tumors/diagnostic imaging , Gastrointestinal Stromal Tumors/pathology , Microscopy , Stomach Neoplasms/pathology , Prognosis , Collagen , Tumor Microenvironment
11.
Eur Radiol ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37947835

ABSTRACT

OBJECTIVES: To explore the auxiliary value of combining CT features with existing response evaluation criteria in the prediction of progressive disease (PD) in gastrointestinal stromal tumors (GIST) patients treated with sunitinib. MATERIAL AND METHODS: Eighty-one patients with GISTs who received sunitinib were included in this retrospective multicenter study and divided into training and external validation cohorts. Progression at six months was determined as a reference standard. The predictive performance of the RECIST 1.1 and Choi criteria was compared. CT features at baseline and the first follow-up were analyzed. Logistic regression analyses were used to determine the most significant predictors and develop modified criteria. RESULTS: A total of 216 lesions showed a good response and 107 showed a poor response in 81 patients. The RECIST 1.1 criteria performed better than the Choi criteria in predicting progression (AUC, 0.75 vs. 0.69, p = 0.04). The expanded/intensified high-enhancement area, blurred tumor-tissue interface, and progressive enlarged vessels feeding or draining the mass (EVFDM) differed significantly between lesions with good and poor responses in the training cohort (p = 0.001, 0.003, and 0.000, respectively). Multivariate analysis revealed that the expanded/intensified high-enhancement area (p = 0.001), progressive EVFDM (p = 0.000), and RECIST PD (p = 0.000) were independent predictive factors. Modified RECIST (mRECIST) criteria were developed and showed significantly higher AUCs in the training and external validation cohorts than the RECIST 1.1 criteria (training: 0.81 vs. 0.73, p = 0.002; validation: 0.82 vs. 0.77, p = 0.04). CONCLUSION: The mRECIST criteria, combining CT features with the RECIST 1.1 criteria, demonstrated superior performance in the prediction of early progression in GIST patients receiving sunitinib. CLINICAL RELEVANCE STATEMENT: The mRECIST criteria, which combine CT features with the RECIST 1.1 criteria, may facilitate the early detection of progressive disease in GIST patients treated with sunitinib, thereby potentially guiding the timely switch to late-line medications or combination with surgical excision. KEY POINTS: • The RECIST 1.1 criteria outperformed the Choi criteria in identifying progression of GISTs in patients treated with sunitinib. • GISTs displayed different morphologic features on CT depending on how they responded to sunitinib. • Combining CT morphologic features with the RECIST 1.1 criteria allowed for the prompt and accurate identification of progressing GIST lesions.

12.
J Gastroenterol Hepatol ; 38(12): 2215-2227, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839851

ABSTRACT

BACKGROUND AND AIMS: Mitochondrial dysfunction plays a crucial role in the progression of non-alcoholic steatohepatitis (NASH). Mitochondrial division inhibitor 1 (Mdivi1) is a potential inhibitor of dynamin-related protein (Drp1) and mitochondrial fission. However, the therapeutic effect of Mdivi1 against NASH and its underlying molecular mechanisms remain unclear. METHODS: In this study, we established mouse models of NASH by inducing high-fat/high-cholesterol (HFHC) or methionine- and choline-deficient (MCD) diets and treated the animals with 5 mg/kg/day Mdivi1 or placebo. RESULTS: Treatment with Mdivi1 significantly alleviated diet-induced fatty liver phenotypes, including increased liver weight/body weight ratio, insulin resistance, hepatic lipid accumulation, steatohepatitis, and liver injury. Furthermore, Mdivi1 treatment suppressed HFHC or MCD diet-induced changes in the expression of genes related to lipid metabolism and inflammatory cytokines. Additionally, Mdivi1 reduced macrophage infiltration in the injured liver and promoted polarization of macrophages towards the M1 phenotype. At the molecular level, Mdivi1 attenuated mitochondrial fission by reducing Drp1 activation and expression, thereby decreasing mitochondrial reactive oxygen species accumulation and mitochondrial DNA damage. Moreover, Mdivi1-treated mice exhibited elevated levels of phosphorylated-c-Jun N-terminal kinase (p-JNK), mitochondrial fission factor (MFF), cleaved caspase 3 protein, and TUNEL-positive cell expression in the liver, suggesting that Mdivi1 might ameliorate mitochondrial dysfunction and reduce hepatocyte apoptosis by inhibiting the JNK/MFF pathway. CONCLUSION: Collectively, Mdivi1 protected against diet-induced NASH by restoring mitochondrial homeostasis and function, potentially through its inhibitory effect on the JNK/MFF pathway. Consequently, further investigation of Mdivi1 as a promising drug for NASH treatment is warranted.


Subject(s)
Mitochondrial Diseases , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Cytokines/metabolism , Mitochondria/metabolism , Transcription Factors/metabolism , Choline/metabolism , Dynamins , Mitochondrial Diseases/metabolism , Mice, Inbred C57BL , Methionine , Disease Models, Animal
13.
J Gastroenterol Hepatol ; 38(12): 2195-2205, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37787118

ABSTRACT

BACKGROUND AND AIMS: Fecal microbiota transplantation (FMT) can improve the symptoms of nonalcoholic fatty liver disease (NAFLD) by restoring the gut microbiota. This study was aimed to evaluate the therapeutic effects of single-donor (SD) or multi-donor (MD) FMT in a mouse model of hepatic steatosis and explore the underlying mechanisms. METHODS: Fecal samples were collected from NAFLD patients and healthy controls with similar baseline characteristics, with gut microbiota analyzed. Mice were fed either a normal-chow diet (NCD) or a high-fat diet (HFD) for 3 weeks and then administered fecal microbiota collected from healthy SDs or MDs for 12 weeks. RESULTS: Fecal samples from NAFLD patients showed significantly lower microbial diversity than those from healthy controls. MD-FMT reduced liver fat accumulation and body weight and significantly improved serum and liver biochemical indices in HFD-fed mice. Compared to untreated HFD-fed mice, MD-FMT significantly decreased the relative expression of IL-1ß, IL-6, TNF-α, IFN-γ, and IL-1ß mRNAs in the liver. The relative protein level of intestinal barrier components, including claudin-1, occludin, and E-cadherin, as well as serum lipopolysaccharide (LPS) level in mice, were found to be improved following MD-FMT intervention. Furthermore, FMT reversed HFD-induced gut dysbiosis and increased the abundance of beneficial bacteria such as Blautia and Akkermansia. CONCLUSION: NAFLD patients and healthy controls showed distinct gut microbiota. Likewise, HFD altered gut microbiota in mice compared to NCD-fed controls. MD-FMT restored gut dysbiosis in HFD-fed mice and attenuated liver steatosis, and should be considered as an effective treatment option for NAFLD.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Noncommunicable Diseases , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/metabolism , Diet, High-Fat/adverse effects , Fecal Microbiota Transplantation , Dysbiosis , Mice, Inbred C57BL , Liver/metabolism
14.
J Gastroenterol Hepatol ; 38(11): 2006-2017, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37608570

ABSTRACT

BACKGROUND AND AIM: Mucosal healing has emerged as a desirable treatment goal for patients with ulcerative colitis (UC). Healing of mucosal wounds involves epithelial cell proliferation and differentiation, and Y-box transcription factor ZONAB has recently been identified as the key modulator of intestinal epithelial restitution. METHODS: We studied the characteristics of UXT-V1 expression in UC patients using immunohistochemistry and qPCR. The functional role of UXT-V1 in the colonic epithelium was investigated using lentivirus-mediated shRNA in vitro and ex vivo. Through endogenous Co-immunoprecipitation and LC-MS/MS, we identified ZONAB as a UXT-V1-interactive protein. RESULTS: Herein, we report that UXT-V1 promotes differentiation of intestinal epithelial cells by regulating the nuclear translocation of ZONAB. UXT-V1 was upregulated in the intestinal epithelia of UC patients compared with that of healthy controls. Knocking down UXT-V1 in NCM-460 cells led to the enrichment of pathways associated with proliferation and differentiation. Furthermore, the absence of UXT-V1 in cultured intestinal epithelial cells and colonic organoids inhibited differentiation to the goblet cell phenotype. Mechanistically, the loss of UXT-V1 in the intestinal epithelial cells allowed nuclear translocation of ZONAB, wherein it regulated the transcription of differentiation-related genes, including AML1 and KLF4. CONCLUSION: Taken together, our study reveals a potential role of UXT-V1 in regulating epithelial cell differentiation, proving a molecular basis for mucosal healing in UC.


Subject(s)
Colitis, Ulcerative , Humans , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Intestinal Mucosa/metabolism , Cell Differentiation/genetics , Epithelial Cells/metabolism , Protein Isoforms/metabolism , Cell Cycle Proteins/metabolism , Molecular Chaperones/metabolism
15.
J Gastroenterol Hepatol ; 38(12): 2130-2141, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37916431

ABSTRACT

BACKGROUND AND AIM: Autophagy and gut microbiota correlates closely with the inflammatory bowel disease. Herein, we aimed to study the roles of rapamycin on the gut microbiota in inflammatory bowel disease. METHODS: Acute colitis was induced with dextran sodium sulfate (DSS) and 2,4,6-trinitrobenzenesulfonic acid solution in mice. Mice were administered with rapamycin or hydroxychloroquine. Weight loss, disease activity index scores, histopathological score, serum inflammatory cytokines, intestinal permeability, and colonic autophagy-related proteins were detected. Cecal content was also preserved in liquid nitrogen and subsequently analyzed following the 16S DNA sequencing. The antibiotic cocktail-induced microbiome depletion was performed to further investigate the relationship between autophagy activation and gut microbiota. RESULTS: Compared with the control group, the colonic autophagy-related proteins of P62, mTOR, and p-mTOR increased significantly, while the levels of LC3B and ATG16L1 decreased (all P < 0.05) in the model group. After rapamycin intervention, the colonic pathology of mice improved, while the disease activity index score decreased substantially; the colon length increased, and the expression of IL-6 and TNF-α decreased. Following hydroxychloroquine treatment, some indicators suggested aggravation of colitis. Principal coordinates analysis showed that the DSS group was located on a separate branch from the rapamycin group but was closer to the hydroxychloroquine group. Compared with the DSS group, the rapamycin group was associated with higher abundances of f_Lactobacillaceae (P = 0.0151), f_Deferribacteraceae (P = 0.0290), g_Lactobacillus (P = 0.0151), g_Mucispirillum (P = 0.0137), s_Lactobacillus_reuteri (P = 0.0028), and s_Clostridium_sp_Culture_Jar-13 (P = 0.0082) and a lower abundance of s_Bacteroides_sartorii (P = 0.0180). Linear discriminant analysis effect size showed that rapamycin increased the abundances of Lactobacillus-reuteri, Prevotellaceae, Paraprevotella, Christensenella and Streptococcus and decreased those of Peptostreptococcaceae and Romboutsia Bacteroides-sartorii. Besides, the improvement effect of autophagy activation on colitis disappears following gut microbiome depletion. CONCLUSION: The therapeutic effects of rapamycin on extenuating experimental colitis may be related to the gut microbiota.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice , Animals , Sirolimus/adverse effects , Sirolimus/metabolism , Hydroxychloroquine/adverse effects , Hydroxychloroquine/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammatory Bowel Diseases/pathology , TOR Serine-Threonine Kinases/metabolism , Autophagy-Related Proteins , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL , Colon/pathology
16.
Curr Genomics ; 24(2): 110-127, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37994323

ABSTRACT

Background: Due to the heterogeneity of Hepatocellular carcinoma (HCC), there is an urgent need for reliable diagnosis and prognosis. Mitochondria-mediated abnormal lipid metabolism affects the occurrence and progression of HCC. Objective: This study aims to investigate the potential of mitochondrial lipid metabolism (MTLM) genes as diagnostic and independent prognostic biomarkers for HCC. Methods: MTLM genes were screened from the Gene Expression Omnibus (GEO) and Gene Set Enrichment Analysis (GSEA) databases, followed by an evaluation of their diagnostic values in both The Cancer Genome Atlas Program (TCGA) and the Affiliated Cancer Hospital of Guangxi Medical University (GXMU) cohort. The TCGA dataset was utilized to construct a gene signature and investigate the prognostic significance, immune infiltration, and copy number alterations. The validity of the prognostic signature was confirmed through GEO, International Cancer Genome Consortium (ICGC), and GXMU cohorts. Results: The diagnostic receiver operating characteristic (ROC) curve revealed that eight MTLM genes have excellent diagnostic of HCC. A prognostic signature comprising 5 MTLM genes with robust predictive value was constructed using the lasso regression algorithm based on TCGA data. The results of the Stepwise regression model showed that the combination of signature and routine clinical parameters had a higher area under the curve (AUC) compared to a single risk score. Further, a nomogram was constructed to predict the survival probability of HCC, and the calibration curves demonstrated a perfect predictive ability. Finally, the risk score also unveiled the different immune and mutation statuses between the two different risk groups. Conclusion: MTLT-related genes may serve as diagnostic and prognostic biomarkers for HCC as well as novel therapeutic targets, which may be beneficial for facilitating further understanding the molecular pathogenesis and providing potential therapeutic strategies for HCC.

17.
Nano Lett ; 22(12): 4646-4653, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35583209

ABSTRACT

As the core of spintronics, the transport of spin aims at a low-dissipation data process. The pure spin current transmission carried by magnons in antiferromagnetic insulators is natively endowed with superiority such as long-distance propagation and ultrafast speed. However, the traditional control of magnon transport in an antiferromagnet via a magnetic field or temperature variation adds critical inconvenience to practical applications. Controlling magnon transport by electric methods is a promising way to overcome such embarrassment and to promote the development of energy-efficient antiferromagnetic logic. Here, the experimental realization of an electric field-induced piezoelectric strain-controlled magnon spin current transmission through the antiferromagnetic insulator in the Y3Fe5O12/Cr2O3/Pt trilayer is reported. An efficient and nonvolatile manipulation of magnon propagation/blocking is achieved by changing the relative direction between the Néel vector and spin polarization, which is tuned by ferroelastic strain from the piezoelectric substrate. The piezoelectric strain-controlled antiferromagnetic magnon transport opens an avenue for the exploitation of antiferromagnet-based spin/magnon transistors with ultrahigh energy efficiency.

18.
Nat Mater ; 20(6): 800-804, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33633354

ABSTRACT

The discovery of the spin Hall effect1 enabled the efficient generation and manipulation of the spin current. More recently, the magnetic spin Hall effect2,3 was observed in non-collinear antiferromagnets, where the spin conservation is broken due to the non-collinear spin configuration. This provides a unique opportunity to control the spin current and relevant device performance with controllable magnetization. Here, we report a magnetic spin Hall effect in a collinear antiferromagnet, Mn2Au. The spin currents are generated at two spin sublattices with broken spatial symmetry, and the antiparallel antiferromagnetic moments play an important role. Therefore, we term this effect the 'antiferromagnetic spin Hall effect'. The out-of-plane spins from the antiferromagnetic spin Hall effect are favourable for the efficient switching of perpendicular magnetized devices, which is required for high-density applications. The antiferromagnetic spin Hall effect adds another twist to the atomic-level control of spin currents via the antiferromagnetic spin structure.

19.
Nucleic Acids Res ; 48(10): e57, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32232370

ABSTRACT

Site-specific DNA double-strand breaks have been used to generate knock-in through the homology-dependent or -independent pathway. However, low efficiency and accompanying negative impacts such as undesirable indels or tumorigenic potential remain problematic. In this study, we present an enhanced reduced-risk genome editing strategy we named as NEO, which used either site-specific trans or cis double-nicking facilitated by four bacterial recombination factors (RecOFAR). In comparison to currently available approaches, NEO achieved higher knock-in (KI) germline transmission frequency (improving from zero to up to 10% efficiency with an average of 5-fold improvement for 8 loci) and 'cleaner' knock-in of long DNA fragments (up to 5.5 kb) into a variety of genome regions in zebrafish, mice and rats. Furthermore, NEO yielded up to 50% knock-in in monkey embryos and 20% relative integration efficiency in non-dividing primary human peripheral blood lymphocytes (hPBLCs). Remarkably, both on-target and off-target indels were effectively suppressed by NEO. NEO may also be used to introduce low-risk unrestricted point mutations effectively and precisely. Therefore, by balancing efficiency with safety and quality, the NEO method reported here shows substantial potential and improves the in vivo gene-editing strategies that have recently been developed.


Subject(s)
Bacterial Proteins/metabolism , Gene Editing/methods , Animals , DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , Female , Gene Knock-In Techniques , Genomics , Homologous Recombination , Humans , INDEL Mutation , Macaca fascicularis , Mice , Rats, Sprague-Dawley , Rec A Recombinases/metabolism , Zebrafish/genetics
20.
BMC Anesthesiol ; 22(1): 413, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36585610

ABSTRACT

PURPOSE: Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) concentration is increased in cerebrospinal fluid (CSF) in early symptomatic phase of Alzheimer's disease (AD). This study investigated whether CSF sTREM2 has a relationship with early cognitive dysfunction following surgery in cardiac surgery patients. METHODS: A total of 82 patients undergoing thoracoabdominal aortic replacement were recruited in this study. Neuropsychological testing battery was conducted before and after surgery. Postoperative cognitive dysfunction (POCD) was defined as a Z-score > 1.96 on at least 2 different tests or Telephone Interviews for Cognitive Status-Modified (TICS-M) score < 27. The CSF and serum sTREM2, Aß42, T-tau and P-tau were collected and measured by ELISA on day before surgery and postoperative day 3. RESULTS: Patients were classified into POCD (n = 34) and non-POCD (n = 48) groups according to Z-score. Compared to non-POCD group, the levels of CSF sTREM2 (p < 0.001) and serum sTREM2 (p = 0.001) were significantly higher in POCD group on postoperative day 3. The levels of Aß42 (p = 0.005) and Aß42/T-tau ratio (p = 0.036) were significantly lower in POCD group on postoperative day 3. Multivariate logistic regression analysis revealed that higher value of postoperative CSF sTREM2 (odds ratio: 1.06, 95% confidence interval: 1.02-1.11, p = 0.009), age (OR: 1.15, 95%CI: 1.03-1.28, p = 0.014) and POD duration (OR: 2.47, 95%CI: 1.15-5.29, p = 0.02) were the risk factors of POCD. CONCLUSION: This study indicates that anesthesia and surgery-induced elevation of CSF sTREM2 is associated with an increased risk of early cognitive dysfunction following surgery.


Subject(s)
Anesthesia , Cognitive Dysfunction , Dissection, Abdominal Aorta , Humans , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/etiology
SELECTION OF CITATIONS
SEARCH DETAIL