Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.588
Filter
Add more filters

Publication year range
1.
Cell ; 170(6): 1164-1174.e6, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886384

ABSTRACT

Although most cervical human papillomavirus type 16 (HPV16) infections become undetectable within 1-2 years, persistent HPV16 causes half of all cervical cancers. We used a novel HPV whole-genome sequencing technique to evaluate an exceptionally large collection of 5,570 HPV16-infected case-control samples to determine whether viral genetic variation influences risk of cervical precancer and cancer. We observed thousands of unique HPV16 genomes; very few women shared the identical HPV16 sequence, which should stimulate a careful re-evaluation of the clinical implications of HPV mutation rates, transmission, clearance, and persistence. In case-control analyses, HPV16 in the controls had significantly more amino acid changing variants throughout the genome. Strikingly, E7 was devoid of variants in precancers/cancers compared to higher levels in the controls; we confirmed this in cancers from around the world. Strict conservation of the 98 amino acids of E7, which disrupts Rb function, is critical for HPV16 carcinogenesis, presenting a highly specific target for etiologic and therapeutic research.


Subject(s)
Alphapapillomavirus/genetics , Alphapapillomavirus/isolation & purification , Carcinoma/virology , Papillomavirus Infections/virology , Uterine Cervical Neoplasms/virology , Adult , Alphapapillomavirus/classification , Case-Control Studies , Female , Genome, Viral , Humans , Middle Aged , Papillomavirus E7 Proteins/genetics , Polymorphism, Single Nucleotide , Young Adult
2.
Nature ; 629(8011): 467-473, 2024 May.
Article in English | MEDLINE | ID: mdl-38471529

ABSTRACT

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Subject(s)
Bacillus cereus , Bacterial Proteins , Bacteriophages , Cryoelectron Microscopy , Immunity, Innate , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/ultrastructure , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Apoproteins/chemistry , Apoproteins/immunology , Apoproteins/metabolism , Apoproteins/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Bacteriophages/immunology , DNA/metabolism , DNA/chemistry , DNA Cleavage , Magnesium/chemistry , Magnesium/metabolism , Models, Molecular , Protein Binding , Protein Domains , Microbial Viability , Bacillus cereus/chemistry , Bacillus cereus/immunology , Bacillus cereus/metabolism , Bacillus cereus/ultrastructure , Protein Structure, Quaternary , DNA Primase/chemistry , DNA Primase/metabolism , DNA Primase/ultrastructure , DNA Topoisomerases/chemistry , DNA Topoisomerases/metabolism , DNA Topoisomerases/ultrastructure
3.
J Immunol ; 212(4): 551-562, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38197664

ABSTRACT

Rhabdoviruses with rich species lead a variety of high lethality and rapid transmission diseases to plants and animals around the globe. Vaccination is one of the most effective approaches to prevent and control virus disease. However, the key antigenic epitopes of glycoprotein being used for vaccine development are unclear. In this study, fish-derived Abs are employed for a Micropterus salmoides rhabdovirus (MSRV) vaccine design by phage display and bioinformatics analysis. We constructed an anti-MSRV phage Ab library to screen Abs for glycoprotein segment 2 (G2) (G129-266). Four M13-phage-displayed Abs (Ab-5, Ab-7, Ab-8 and Ab-30) exhibited strong specificity to target Ag, and Ab-7 had the highest affinity with MSRV. Ab-7 (300 µg/ml) significantly increased grass carp ovary cell viability to 83.40% and significantly decreased the titer of MSRV. Molecular docking results showed that the key region of Ag-Ab interaction was located in 10ESQEFTTLTSH20 of G2. G2Ser11 and G2Gln12 were replaced with alanine, respectively, and molecular docking results showed that the Ag-Ab was nonbinding (ΔG > 0). Then, the peptide vaccine KLH-G210-20 was immunized to M. salmoides via i.p. injection. ELISA result showed that the serum Ab potency level increased significantly (p < 0.01). More importantly, the challenge test demonstrated that the peptide vaccine elicited robust protection against MSRV invasion, and the relative percentage survival reached 62.07%. Overall, this study proposed an approach for screening key epitope by combining phage display technology and bioinformatics tools to provide a reliable theoretical reference for the prevention and control of viral diseases.


Subject(s)
Bass , Rhabdoviridae , Vaccines , Animals , Female , Molecular Docking Simulation , Epitopes , Glycoproteins , Vaccine Development
4.
Nucleic Acids Res ; 52(9): 5257-5272, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38634805

ABSTRACT

It has been proposed that coronavirus nsp15 mediates evasion of host cell double-stranded (ds) RNA sensors via its uracil-specific endoribonuclease activity. However, how nsp15 processes viral dsRNA, commonly considered as a genome replication intermediate, remains elusive. Previous research has mainly focused on short single-stranded RNA as substrates, and whether nsp15 prefers single-stranded or double-stranded RNA for cleavage is controversial. In the present work, we prepared numerous RNA substrates, including both long substrates mimicking the viral genome and short defined RNA, to clarify the substrate preference and cleavage pattern of SARS-CoV-2 nsp15. We demonstrated that SARS-CoV-2 nsp15 preferentially cleaved pyrimidine nucleotides located in less thermodynamically stable areas in dsRNA, such as AU-rich areas and mismatch-containing areas, in a nicking manner. Because coronavirus genomes generally have a high AU content, our work supported the mechanism that coronaviruses evade the antiviral response mediated by host cell dsRNA sensors by using nsp15 dsRNA nickase to directly cleave dsRNA intermediates formed during genome replication and transcription.


Subject(s)
RNA, Double-Stranded , RNA, Viral , SARS-CoV-2 , Viral Nonstructural Proteins , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/genetics , SARS-CoV-2/genetics , SARS-CoV-2/enzymology , RNA, Viral/metabolism , RNA, Viral/genetics , RNA, Viral/chemistry , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Humans , Endoribonucleases/metabolism , Endoribonucleases/genetics , Virus Replication/genetics , Substrate Specificity , Genome, Viral , COVID-19/virology
5.
Nucleic Acids Res ; 52(2): 844-855, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38048327

ABSTRACT

Prokaryotic Argonautes (pAgos) play a vital role in host defense by utilizing short nucleic acid guides to recognize and target complementary nucleic acids. Despite being the majority of pAgos, short pAgos have only recently received attention. Short pAgos are often associated with proteins containing an APAZ domain and a nuclease domain including DUF4365, SMEK, or HNH domain. In contrast to long pAgos that specifically cleave the target DNA, our study demonstrates that the short pAgo from Thermocrispum municipal, along with its associated DUF4365-APAZ protein, forms a heterodimeric complex. Upon RNA-guided target DNA recognition, this complex is activated to nonspecifically cleave DNA. Additionally, we found that the TmuRE-Ago complex shows a preference for 5'-OH guide RNA, specifically requires a uridine nucleotide at the 5' end of the guide RNA, and is sensitive to single-nucleotide mismatches between the guide RNA and target DNA. Based on its catalytic properties, our study has established a novel nucleic acid detection method and demonstrated its feasibility. This study not only expands our understanding of the defense mechanism employed by short pAgo systems but also suggests their potential applications in nucleic acid detection.


Subject(s)
Actinobacteria , Argonaute Proteins , DNA , RNA, Bacterial , Argonaute Proteins/metabolism , DNA/metabolism , Endonucleases/metabolism , Nucleic Acids/metabolism , Prokaryotic Cells/metabolism , Actinobacteria/physiology , RNA, Bacterial/metabolism
6.
Nucleic Acids Res ; 52(14): 8443-8453, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38979568

ABSTRACT

The remarkable success of messenger RNA (mRNA)-based vaccines has underscored their potential as a novel biotechnology platform for vaccine development and therapeutic protein delivery. However, the single-subunit RNA polymerase from bacteriophage T7 widely used for in vitro transcription is well known to generate double-stranded RNA (dsRNA) by-products that strongly stimulate the mammalian innate immune response. The dsRNA was reported to be originated from self-templated RNA extension or promoter-independent transcription. Here, we identified that the primary source of the full-length dsRNA during in vitro transcription is the DNA-terminus-initiated transcription by T7 RNA polymerase. Guanosines or cytosines at the end of DNA templates enhance the DNA-terminus-initiated transcription. Moreover, we found that aromatic residues located at position 47 in the C-helix lead to a significant reduction in the production of full-length dsRNA. As a result, the mRNA synthesized using the T7 RNA polymerase G47W mutant exhibits higher expression efficiency and lower immunogenicity compared to the mRNA produced using the wild-type T7 RNA polymerase.


Subject(s)
DNA-Directed RNA Polymerases , Transcription, Genetic , Viral Proteins , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/chemistry , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/chemistry , Mutation , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Animals , DNA/metabolism , DNA/genetics , DNA/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Bacteriophage T7/genetics , Bacteriophage T7/enzymology , Mice
7.
Proc Natl Acad Sci U S A ; 120(12): e2219300120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36913569

ABSTRACT

Despite the elaborate varieties of iridescent colors in biological species, most of them are reflective. Here we show the rainbow-like structural colors found in the ghost catfish (Kryptopterus vitreolus), which exist only in transmission. The fish shows flickering iridescence throughout the transparent body. The iridescence originates from the collective diffraction of light after passing through the periodic band structures of the sarcomeres inside the tightly stacked myofibril sheets, and the muscle fibers thus work as transmission gratings. The length of the sarcomeres varies from ~1 µm from the body neutral plane near the skeleton to ~2 µm next to the skin, and the iridescence of a live fish mainly results from the longer sarcomeres. The length of the sarcomere changes by ~80 nm as it relaxes and contracts, and the fish shows a quickly blinking dynamic diffraction pattern as it swims. While similar diffraction colors are also observed in thin slices of muscles from non-transparent species such as the white crucian carps, a transparent skin is required indeed to have such iridescence in live species. The ghost catfish skin is of a plywood structure of collagen fibrils, which allows more than 90% of the incident light to pass directly into the muscles and the diffracted light to exit the body. Our findings could also potentially explain the iridescence in other transparent aquatic species, including the eel larvae (Leptocephalus) and the icefishes (Salangidae).


Subject(s)
Catfishes , Sarcomeres , Animals , Iridescence , Myofibrils , Swimming
8.
Lancet ; 404(10457): 1040-1050, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39236727

ABSTRACT

BACKGROUND: The long-term impact of drug-coated balloon (DCB) angioplasty for the treatment of patients with de novo coronary artery lesions remains uncertain. We aimed to assess the non-inferiority of DCB angioplasty with rescue stenting to intended drug-eluting stent (DES) deployment for patients with de novo, non-complex coronary artery lesions. METHODS: REC-CAGEFREE I was an open-label, randomised, non-inferiority trial conducted at 43 sites in China. After successful lesion pre-dilatation, patients aged 18 years or older with de novo, non-complex coronary artery disease (irrespective of target vessel diameter) and an indication for percutaneous coronary intervention were randomly assigned (1:1), via a web-based centralised system with block randomisation (block size of two, four, or six) and stratified by site, to paclitaxel-coated balloon angioplasty with the option of rescue stenting due to an unsatisfactory result (DCB group) or intended deployment of second-generation thin-strut sirolimus-eluting stents (DES group). The primary outcome was the device-oriented composite endpoint (DoCE; including cardiovascular death, target vessel myocardial infarction, and clinically and physiologically indicated target lesion revascularisation) assessed at 24 months in the intention-to-treat (ITT) population (ie, all participants randomly assigned to treatment). Non-inferiority was established if the upper limit of the one-sided 95% CI for the absolute risk difference was smaller than 2·68%. Safety was assessed in the ITT population. This study is registered with ClinicalTrials.gov, NCT04561739. It is closed to accrual and extended follow-up is ongoing. FINDINGS: Between Feb 5, 2021, and May 1, 2022, 2272 patients were randomly assigned to the DCB group (1133 [50%]) or the DES group (1139 [50%]). Median age at the time of randomisation was 62 years (IQR 54-69), 1574 (69·3%) of 2272 were male, 698 (30·7%) were female, and all patients were of Chinese ethnicity. 106 (9·4%) of 1133 patients in the DCB group received rescue DES after unsatisfactory DCB angioplasty. As of data cutoff (May 1, 2024), median follow-up was 734 days (IQR 731-739). At 24 months, the DoCE occurred in 72 (6·4%) of 1133 patients in the DCB group and 38 (3·4%) of 1139 in the DES group, with a risk difference of 3·04% in the cumulative event rate (upper boundary of the one-sided 95% CI 4·52; pnon-inferiority=0·65; two-sided 95% CI 1·27-4·81; p=0·0008); the criterion for non-inferiority was not met. During intervention, no acute vessel closures occurred in the DCB group and one (0·1%) of 1139 patients in the DES group had acute vessel closure. Periprocedural myocardial infarction occurred in ten (0·9%) of 1133 patients in the DCB group and nine (0·8%) in the DES group. INTERPRETATION: In patients with de novo, non-complex coronary artery disease, irrespective of vessel diameter, a strategy of DCB angioplasty with rescue stenting did not achieve non-inferiority compared with the intended DES implantation in terms of the DoCE at 2 years, which indicates that DES should remain the preferred treatment for this patient population. FUNDING: Xijing Hospital and Shenqi Medical. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Angioplasty, Balloon, Coronary , Coronary Artery Disease , Drug-Eluting Stents , Paclitaxel , Humans , Male , Female , Middle Aged , Angioplasty, Balloon, Coronary/methods , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Coronary Artery Disease/therapy , Aged , Sirolimus/therapeutic use , Sirolimus/administration & dosage , Treatment Outcome , Coated Materials, Biocompatible , China/epidemiology , Percutaneous Coronary Intervention/methods
9.
Hepatology ; 79(6): 1324-1336, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38758104

ABSTRACT

BACKGROUND AND AIMS: Tea and coffee are widely consumed beverages worldwide. We evaluated their association with biliary tract cancer (BTC) incidence. APPROACH AND RESULTS: We pooled data from 15 studies in the Biliary Tract Cancers Pooling Project to evaluate associations between tea and coffee consumption and biliary tract cancer development. We categorized participants as nondrinkers (0 cup/day), moderate drinkers (>0 and <3 cups/day), and heavy drinkers (≥3 cups/day). We estimated multivariable HRs and 95% CIs using Cox models. During 29,911,744 person-years of follow-up, 851 gallbladder, 588 intrahepatic bile duct, 753 extrahepatic bile duct, and 458 ampulla of Vater cancer cases were diagnosed. Individuals who drank tea showed a statistically significantly lower incidence rate of gallbladder cancer (GBC) relative to tea nondrinkers (HR=0.77; 95% CI, 0.64-0.91), and intrahepatic bile duct cancer (IHBDC) had an inverse association (HR=0.81; 95% CI, 0.66-1.00). However, no associations were observed for extrahepatic bile duct cancer (EHBDC) or ampulla of Vater cancer (AVC). In contrast, coffee consumption was positively associated with GBC, with a higher incidence rate for individuals consuming more coffee (HR<3 cups/day =1.29; 95% CI, 1.01-1.66; HR≥3 cups/day =1.49; 95% CI, 1.11-1.99, Ptrend=0.01) relative to coffee nondrinkers. However, there was no association between coffee consumption and GBC when restricted to coffee drinkers. There was little evidence of associations between coffee consumption and other biliary tract cancers. CONCLUSIONS: Tea consumption was associated with a lower incidence of GBC and possibly IHBDC. Further research is warranted to replicate the observed positive association between coffee and GBC.


Subject(s)
Biliary Tract Neoplasms , Coffee , Tea , Humans , Male , Female , Middle Aged , Biliary Tract Neoplasms/epidemiology , Biliary Tract Neoplasms/etiology , Aged , Incidence , Gallbladder Neoplasms/epidemiology , Gallbladder Neoplasms/etiology , Gallbladder Neoplasms/prevention & control , Risk Factors , Adult , Bile Duct Neoplasms/epidemiology , Bile Duct Neoplasms/etiology
10.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34969860

ABSTRACT

Mixed matrix membranes (MMMs) are one of the most promising solutions for energy-efficient gas separation. However, conventional MMM synthesis methods inevitably lead to poor filler-polymer interfacial compatibility, filler agglomeration, and limited loading. Herein, inspired by symbiotic relationships in nature, we designed a universal bottom-up method for in situ nanosized metal organic framework (MOF) assembly within polymer matrices. Consequently, our method eliminating the traditional postsynthetic step significantly enhanced MOF dispersion, interfacial compatibility, and loading to an unprecedented 67.2 wt % in synthesized MMMs. Utilizing experimental techniques and complementary density functional theory (DFT) simulation, we validated that these enhancements synergistically ameliorated CO2 solubility, which was significantly different from other works where MOF typically promoted gas diffusion. Our approach simultaneously improves CO2 permeability and selectivity, and superior carbon capture performance is maintained even during long-term tests; the mechanical strength is retained even with ultrahigh MOF loadings. This symbiosis-inspired de novo strategy can potentially pave the way for next-generation MMMs that can fully exploit the unique characteristics of both MOFs and matrices.

SELECTION OF CITATIONS
SEARCH DETAIL