Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Chemphyschem ; 24(19): e202300234, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37428636

ABSTRACT

Phase change materials (PCMs) textiles have been developed for personal thermal management (PTM) while limited loading amount of PCMs in textiles reduced thermal buffering effect. In this work, we proposed a sandwich fibrous encapsulation to store polyethylene glycol (PEG) with PEG loading amount of 45 wt %, which consisted of polyester (PET) fabrics with hydrophobic coating as protection layers, polyurethane (PU) nanofibrous membranes as barrier layers and PEG-loaded viscose fabric as a PCM-loaded layer. The leakage was totally avoided by controlling weak interfacial adhesion between protection layer and melting PEG. The sandwich fibrous PEG encapsulations had an overall melting enthalpy value ranging from 50 J/g to 78 J/g and melting points ranging from 20 °C to 63 °C by using different PEGs. Besides, introduction of Fe microparticles in PCM-loaded layer enhanced thermal energy storage efficiency. We believe that the sandwich fibrous PEG encapsulation has a great potential in various fields.

2.
J Fluoresc ; 30(6): 1383-1396, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32997315

ABSTRACT

Fluorescence excitation-emission matrix spectroscopy (EEMs) has become a very popular technique in characterization of aquatic dissolved organic matter (DOM) coupled with a parallel factor (PARAFAC) model, denoted as (EEMs-PARAFAC). This research addresses the poorly researched relationship correlation between dissolved ions and fluorescence in a natural water environment. The relationship between the EEMs-PARAFAC components and ionic composition was studied in freshwater lakes, rivers, and seawater from locations in China. The natural water environment is different from a simulated environment having a fixed ionic composition. We used electrical conductivity (EC) to reflect the ionic strength as an indicator to evaluate the relationship in a series of water bodies. Results show that the EC generally had a positive correlation with DOM in natural water environment, but no correlation was found with water from the highly saline Yellow Sea. The Chaohu Lake samples contained one component having a significant negative correlation with EC, i.e., r > 0.6, p < 0.05, while other surface waters contained components having both positive and negative correlations (r > 0.5, p < 0.05). The negative correlation with EC also highlighted that humic acid-like components and protein-like materials (c1-c3) were positively correlated with DOM, while the protein-like component (c4) was negatively correlated with DOM. The EC equation proposed provided a good fit with the EC values of surface waters. The use of EC would be a useful and rapid method for analyzing the variation in the fluorescence component and its effect on water quality. This study highlights the need to account for variation in EC when assessing EEMs-PARAFAC of natural waters.

3.
J Fluoresc ; 30(5): 1271-1279, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32767189

ABSTRACT

Chemical oxidation is a key technique used in dye wastewater treatment via the formation of hydroxyl radicals. To obtain optimal treatment effects, it is critical to understand the interaction of the molecular structure of the dye with the hydroxyl radical. We evaluated fluorescence excitation-emission matrix spectroscopy to study the decay of an azo-dye (Procion Red MX-5B) by a hydroxyl radical generated from catalytic Fe (III) on H2O2. Results showed that fluorescence signal reliably indicated the variations of the chemical groups and components during degradation, and the degradation could be divided into three stages: initial degradation (decolorisation), rapid intermediate degradation, and final degradation. Under control of uncorrected matrix correlation, the fluorescence fractions could be fitted successfully by parallel factor model (PARAFAC) model: two fluorescence components in initial degradation including mono substituted benzene and mono substituted naphthalene, three components as multi substituted benzene in rapid degradation, and no components could be resolved in the final degradation. The results from the study demonstrate the utility fluorescence characterization of dye degradation mechanisms and enhance the understanding of the degradation mechanisms.


Subject(s)
Coloring Agents/chemistry , Catalysis , Ferric Compounds/chemistry , Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemical synthesis , Hydroxyl Radical/chemistry , Molecular Structure , Oxidation-Reduction , Spectrometry, Fluorescence , Wastewater/chemistry
4.
J Fluoresc ; 27(4): 1233-1243, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28035517

ABSTRACT

Natural organic matter is an important component of the aquatic environments, which has attracted wide attention to its influence of interaction with other pollutants. The present work aimed to investigate its fluorescence quenching (FQ) by coated metallic silver particles (AgNPs). In this work, using fluorescence spectroscopy in conjunction with UV-Vis spectroscopy and dynamic light scattering, the effect of coated AgNPs on fluorescence quenching intensity (FQI) of humic acid (HA) was assessed. In addition, the influence of electrolytes (NaCl, NaNO3 and CaNO3) in the FQI was observed. Results showed that with AgNPs dosage increased (>1.17X10-3 mM), fluorescence quantum yield of HA gradually decreased, which implies that the FQ occurred. Furher observation showed that the FQ process followed both first-order and second-order Stern-Volmer functions. The FQ process was affected by the electrolytes: NaCl had an effect on reduction of FQI, possibly resulting from dissolution of AgNPs; Both of NaNO3 and Ca(NO3)2 had an effect on the FQ of HA but Ca(NO3)2 presented greater degree. As a result, the FQ degree of HA by alone electrolyte was listed in descent order as Ca(NO3)2 > NaNO3 > NaCl, which also implies the subsequent experimental results, indicating the FQ degree of HA by mutual electrolytes as Ca(NO3)2 + NaNO3 > Ca(NO3)2 + NaCl > NaNO3 + NaCl.

5.
J Fluoresc ; 27(6): 2069-2094, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28828542

ABSTRACT

Natural organic matter (NOM) found in water sources is broadly defined as a mixture of polyfunctional organic molecules, characterized by its complex structure and paramount influence on water quality. Because the inevitable release of pollutants into aquatic environments due to an ineffective control of industrial and agricultural pollution, the evaluation of the interaction of NOM with heavy metals, nanoparticles, organic pollutants and other pollutants in the aquatic environment, has greatly increased. Three-dimensional (3-D) fluorescence has the potential to reveal the interaction mechanisms between NOM and pollutants as well as the source of NOM pollution. In water purification engineering system, the 3-D fluorescence can indicate the variations of NOM composition and gives an effective prediction of water quality as well as the underline water purification mechanisms. Inadequately treated NOM is a cause of precursors of disinfection byproducts (DBPs), posing a potential threat to human health. Effective control and measurement/evaluation of NOM have long been an important factors in the prevention of water pollution. Overall, 3-D fluorescence allows for a rapid identification of organic components thus indicating possible sources of water pollution, mechanisms of pollutant interactions, and possible DBPs formed during conventional treatment of this water. This article reviews the 3-D fluorescence characteristics of NOM in natural water and typical water purification systems. The 3-D fluorescence was effective for indicating the variabilities in NOM composition and chemistry thus providing a better understanding of NOM in natural water system and water engineering system.


Subject(s)
Fluorescence , Organic Chemicals/analysis , Organic Chemicals/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Humans
6.
Water Environ Res ; 89(10): 974-1028, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28954651

ABSTRACT

This review is on the research literature published in 2016 related to the physico-chemical processes for water and wastewater treatment. The review is divided into granular and membrane filtration, sedimentation, coagulation/flocculation, flotation, oxidation, and adsorption.


Subject(s)
Waste Disposal, Fluid , Water Purification , Adsorption , Flocculation , Oxidation-Reduction , Wastewater , Water Pollutants, Chemical
7.
Water Environ Res ; 88(10): 966-1000, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27620081

ABSTRACT

This review is on the research literature published in 2015 related to the physico-chemical processes for water and wastewater treatment. The review is divided into six sections, including filtration, sedimentation, coagulation/flocculation, flotation, oxidation, and adsorption.


Subject(s)
Waste Disposal, Fluid/methods , Water Purification/methods , Adsorption , Filtration , Flocculation , Wastewater , Water Pollutants, Chemical
8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(8): 2455-61, 2016 Aug.
Article in Zh | MEDLINE | ID: mdl-30074346

ABSTRACT

As one of the most important water treatment agents, polysilicate coagulant, has been playing an important role in coagulation- flocculation, but it is prone to lose stability due to self-polymerization and the forming of silica gel. Therefore, research on the preparation of stable polysilicate coagulant has attract great attention. A new method to prepare a stable polysilicate coagulant (PSPF), was proposed in this paper. Its structure and morphology were characterized by using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) respectively. Fe species in PSPF was analyzed via Fe-Ferron complexation timed spectrophotometric method. The performance of PSPF was assessed by measuring micro-polluted water treatment efficiency. Primary chemicals, such as ferrous sulfate, sodium silicate, potassium dihydrogen phosphate, sodium carbonate, were used. The influence of those parameters affecting the preparation of PSPF, such as nSi/nFe, nP/nFe and nOH/nFe molar ratios were examined. The results showed that nSi/nFe of 1∶4, nP/nFe of 1∶6 and nOH/nFe of 1∶10 under 60 ℃ water bath for 30 min was the optimum condition for preparation. The FTIR spectrum indicated that PSPF was a kind of high molecular polymer, containing new groups (e.g., Si­O­Si and Fe­O­Si), which could increase the molecular weight,molecular chain and coagulation-flocculation efficiency. PSPF presented a cluster appearance similar to a network structure, which was conductive to adsorption-bridging capacity and precipitation sweeping. The increase of Fe(b) and Fe(c) as a result of Si increasing in PSPF improved the polymerization and solidification. The coagulation behaviors of PSPF that were largely affected by the coagulant dosage and pH, indicated that for pH and dosage at 6 and 8 mg·L-1, respectively, the residual turbidity and UV254 removal efficiency could achieve 0.33 NTU and 58.6%, respectively.

9.
Water Environ Res ; 96(9): e11122, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39238287

ABSTRACT

Attapulgite (ATP) is a biocompatible clay mineral that efficiently absorbs water. It is widely used in water treatment due to its environmental friendliness and cost-effectiveness. This study aimed to develop a volume-expansion structure-based attapulgite flocculant (VES-ATP) using aluminum salt and attapulgite (ATP) under alkaline conditions, specifically for the treatment of water containing low levels of phosphorus. The VES-ATP was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The removal of phosphorus by the VES-ATP was conducted by varying the mass ratio of Al to attapulgite (denoted as RmAl/mATP), ATP dosage, and pH. The results showed that the VES-ATP had a good expansion and dispersibility in the presence of alkalized aluminum species. The basicity as the molar ratio of OH to Al (0.8 or 1.6) determined the expansion feasibility, and the coverage degree of Al onto ATP, as indicated by the mass ratio of Al to attapulgite (denoted as RmAl/mATP), determined Al flocculation efficiency. Higher values such as RmAl/mATP = 4:1 and 2:1 may result in a better flocculation. Low phosphorus treatment was successfully achieved through Al flocculation and ATP adsorption, including complexation, hydrogen bonding, and electrostatic attraction. As expected, the VES-ATP generated larger size flocs with a bigger fractal dimension than that with the sole Al flocculation. As a result, the total phosphorus could be reduced to the level below 5 µg/L. It is more efficient in the pH range of 5-9. Overall, the coupling of aluminum and attapulgite has significantly enhanced both purification capabilities of phosphorus. PRACTITIONER POINTS: Polymeric aluminum-modified attapulgite was efficient for removal of low phosphorus concentration. Phosphorus concentrations can be reduced to below 5 µg/L. Polymeric aluminum and attapulgite are both safe, and this technology is suitable for water treatment.


Subject(s)
Aluminum , Magnesium Compounds , Phosphorus , Silicon Compounds , Water Pollutants, Chemical , Water Purification , Phosphorus/chemistry , Phosphorus/isolation & purification , Magnesium Compounds/chemistry , Aluminum/chemistry , Silicon Compounds/chemistry , Water Purification/methods , Water Pollutants, Chemical/chemistry , Polymers/chemistry
10.
Nanomaterials (Basel) ; 14(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39330636

ABSTRACT

Structural dyeing has attracted much attention due to its advantages such as environmental friendliness, vivid color, and resistance to fading. Herein, we propose an alternative strategy for fabric coloring based on Cu2O microspheres. The strong Mie scattering effect of Cu2O microspheres enables the creation of vibrant structural colors on fabric surfaces. These colors are visually striking and can potentially be adjusted by tuning the diameter of the microspheres. Importantly, the Cu2O spheres were firmly bonded to the fabrics by using the industrial adhesive PDMS, and the Cu2O structural color fabrics exhibited excellent color fastness to washing, rubbing, and bending. Cu2O structural color fabrics also demonstrated excellent antimicrobial properties against bacteria such as Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The bactericidal rates of Cu2O structural color textiles after washing for E. coli and S. aureus reached 92.40% and 94.53%, respectively. This innovative approach not only addresses environmental concerns associated with traditional dyeing processes but also enhances fabric properties by introducing vibrant structural colors and antimicrobial functionality.

11.
Materials (Basel) ; 17(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39274761

ABSTRACT

In addition to sportswear and outdoor equipment, moisture-absorbent quick-drying fabrics are also widely used in everyday clothing and home textiles. In this study, three types of weft-knitted fabrics were designed using Coolmax fiber and polypropylene fiber. The Coolmax/PP fabric exhibits good stretchability with a strain of 180.5% and achieves a high cumulative individual transfer capability of 691.6%, with a water absorption rate of 50.2%/s. The moisture conductivity gradient presented good moisture and heat conductivity in a simulated human body temperature environment using an infrared camera. Furthermore, mathematical modeling was constructed and visual simulation analysis was conducted to explore moisture-thermal transfer behavior. The simulation results closely align with experimental data, providing insights into designing flexible and wearable quick-drying fabrics for thermal management.

12.
Chemosphere ; 349: 140914, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092173

ABSTRACT

Magnetically modified carbon-based adsorbent (BC@γ-Fe2O3) was prepared through facile route using activated sludge biomass and evaluated for the simultaneous removal of Sb(III) and Pb(II). BC@γ-Fe2O3 exhibited outstanding Sb(III) and Pb(II) adsorption capacity when 200 mg of adsorbent was employed at pH 5.0 for 240 min, with the removal efficiency higher than 90%. The experiments demonstrated the excellent reusability and the potent anti-interference properties of the prepared absorbent. Freundlich and pseudo-second-order kinetic were prior to describe the adsorption process. The adsorption of Sb(III) and Pb(II) onto BC@γ-Fe2O3 was spontaneous and endothermic. BC@γ-Fe2O3 with high specific surface area revealed the exceptional competence to absorb Sb(III) and Pb(II) through pore filling, electrostatic adsorption and complexation. The adsorption mechanisms of Sb(III) and Pb(II) showed similarities with slight disparities. The removal of Sb(III) involved the Fe-O-Sb bond and π-π bond, while the adsorption of Pb(II) was closely related to ion exchange. Moreover, Sb(III) was oxidized to Sb(V) in a minor part during adsorption. The Fe-O-Cl active sites on BC allowed for the binding of γ-Fe2O3, guaranteeing the abundant adsorption sites and stability. BC@γ-Fe2O3 provides an efficient and green insight into the simultaneous removal of complex heavy metals with promising application in wastewater treatment.


Subject(s)
Wastewater , Water Pollutants, Chemical , Sewage , Adsorption , Lead , Water Pollutants, Chemical/analysis , Charcoal/chemistry , Kinetics , Magnetic Phenomena
13.
Heliyon ; 10(5): e27467, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495140

ABSTRACT

This research provides an in-depth assessment of two paper yarn variants, examining their structural, functional, and performance characteristics. These yarns demonstrated favorable properties, including suitable linear density, twist, typical cellulosic functional groups as confirmed by Infrared spectroscopy, minimal hairiness, moisture transfer, and creditable mechanical strength. These yarns have flat layered cross-sections and grooved longitudinal surfaces. In addition, a low hairiness index (1.3-1.33) further acknowledged their smooth surface. Their remarkable evenness (15.86% and 7.08%) supported their effective wicking properties. Despite average breaking strength (0.77 cN/dTex and 1.05 cN/dTex) and moderate elongation, these yarns exhibited exceptional water-washing resistance and retained over 89% breaking strength after 15 washes. This study ranks these paper yarns as highly suitable for durable clothing fabrics, providing promising sustainable alternatives in the textile industry.

14.
J Hazard Mater ; 468: 133742, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38367436

ABSTRACT

Harmful algal blooms (HABs) significantly impact on water quality and ecological balance. Ultrasound irradiation has proven to be an effective method for algal control. Nevertheless, the molecular mechanisms underlying the inactivation of M. aeruginosa by ultrasound are still unknown. In this study, the physiological activity and molecular mechanism of algal cells exposed to different frequencies of ultrasound were studied. The results indicated a pronounced inhibition of algal cell growth by high-frequency, high-dose ultrasound. Moreover, with increasing ultrasound dosage, there was a higher percentage of algal cell membrane ruptures. SEM and TEM observed obvious disruptions in membrane structure and internal matrix. Hydroxyl radicals generated by high-frequency ultrasound inflicted substantial cell membrane damage, while increased antioxidant enzyme activities fortified cells against oxidative stress. Following 2 min of ultrasound irradiation at 740 kHz, significant differential gene expression occurred in various aspects, including energy metabolism, carbohydrate metabolism, and environmental information processing pathways. Moreover, ultrasound irradiation influenced DNA repair and cellular apoptosis, suggesting that the algal cells underwent biological stress to counteract the damage caused by ultrasound. These findings reveal that ultrasound irradiation inactivates algae by destroying their cell structures and metabolic pathways, thereby achieving the purpose of algal suppression.


Subject(s)
Microcystis , Microcystis/metabolism , Ultrasonic Waves , Antioxidants/metabolism , Harmful Algal Bloom , Oxidative Stress
15.
Materials (Basel) ; 17(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38998321

ABSTRACT

Structural-colored fabrics have been attracting much attention due to their eco-friendliness, dyelessness, and anti-fading properties. Monodisperse microspheres of metal, metal oxide, and semiconductors are promising materials for creating photonic crystals and structural colors owing to their high refractive indices. Herein, Cu2O microspheres were prepared by a two-step reduction method at room temperature; the size of Cu2O microspheres was controlled by changing the molar ratio of citrate to Cu2+; and the size of Cu2O microspheres was tuned from 275 nm to 190 nm. The Cu2O microsphere dispersions were prepared with the monodispersity of Cu2O microspheres. Furthermore, the effect of the concentration of Cu2O microsphere and poly(butyl acrylate) on the structural color was also evaluated. Finally, the stability of the structural color against friction and bending was also tested. The results demonstrated that the different structural colors of fabrics were achieved by adjusting the size of the Cu2O microsphere, and the color fastness of the structural color was improved by using poly(butyl acrylate) as the adhesive.

16.
Int J Biol Macromol ; 274(Pt 1): 132770, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38834121

ABSTRACT

Degumming is the most critical step for the silk textile industry and the process of silk-based advanced materials. However, current common degumming techniques are largely limited because of insufficient efficiency, obvious hydrolysis damage and difficulty in long-term storage. Here, deep eutectic solvent (DES) constituted of choline chloride (ChCl) and urea was explored to Bombyx mori silk fibers degumming without combining any further treatment. Compared to traditional alkali methods, DES could quickly remove about 26.5 % of sericin in just 40 min, and its degumming efficiency hardly decrease after seven cycles. Owing to the "tear off" degumming mechanism of DES molecules with "large volume", the resulted sericin has a large molecular weight of 250 kDa. In addition, because of antibacterial activity and stabilizing effect, no aggregation occurred and strong bacterial growth inhibition was triggered in the obtained sericin/DES solution. Furthermore, thanks to the good retention of crystalline region and slight swelling of amorphous area, the sericin-free fibroin showed significant increases in moisture absorption and dye uptake, while maintaining good mechanical properties. Featured with high efficiency, reduction in water pollution, easy storage of sericin as well as high quality fibers, this approach is of great potential for silk wet processing.


Subject(s)
Bombyx , Deep Eutectic Solvents , Sericins , Silk , Animals , Sericins/chemistry , Deep Eutectic Solvents/chemistry , Bombyx/chemistry , Silk/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Choline/chemistry , Molecular Weight , Urea/chemistry
17.
Environ Technol ; 34(1-4): 91-9, 2013.
Article in English | MEDLINE | ID: mdl-23530319

ABSTRACT

Poly(acrylamide-co-diallyldimethylammonium chloride) (PDA), which is usually prepared by free radical polymerization of acrylamide monomer (AM) onto the cationic monomer dimethyl diallyl ammonium chloride (DMDAAC), has been widely applied to wastewater treatment; however, the free-radical polymerization is always incomplete with residual AM remaining in the PDA. The residual AM affects the PDA's performance while also posing as a potential threat to human health; therefore, during preparation of the PDA, the rapid detection of the residual AM plays an important role in controlling the residual AM while improving the PDA's performance. The objective of this study was to explore the possibilities for applying near-infrared (NIR) spectroscopy as a potential tool for detecting the residual AM in combination with a statistical tool. In this study, the radial basis function (RBF) network model as the statistical tool was combined with NIR spectroscopy for detection of the residual AM. The experimental results showed that five wavelengths in the NIR spectroscopy were the most important characteristic adsorption peaks, particular at 971.95 and 1077 nm. The simulation of the RBF model presented higher performance with R2-value greater than 0.98, RMSEC and RMSEP less than 7.22 x 10(-5) and coefficient of variation (CV) of the predicted residual AM less than 10%, which demonstrated the feasibility of the NIR spectroscopy being a rapid detection tool for prediction of the residual AM using the RBF model. Wavelet de-nosing was used for removing the interference/noise in the NIR spectroscopy and improved the generalization ability of the RBF model.


Subject(s)
Acrylamide/analysis , Acrylic Resins/chemistry , Allyl Compounds/chemistry , Quaternary Ammonium Compounds/chemistry , Feasibility Studies , Neural Networks, Computer , Spectroscopy, Near-Infrared
18.
J Mater Chem B ; 11(40): 9757-9764, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37807767

ABSTRACT

Stimuli-responsive/smart drug delivery systems (DDSs), particularly those that use temperature as a stimuli-response factor to activate drug release, are the subject of recent research. A phase change material (PCM) is a popular thermally responsive material that can be used as a drug carrier and only when the system temperature is above the phase change point is the drug released following the phase change material changing from solid to liquid. In this study, a novel NIR light-triggered temperature-sensitive drug delivery system is developed for controllable release of acyclovir (ACV). For this purpose, a mixture of a phase change material (T38) and an ACV compound is first emulsified with copper oxide nanoparticles (CuO NPs) as a Pickering stabilizer and a photothermal conversion material, and then encapsulated with SiO2 to form a photothermal stimuli-responsive delivery system. This system shows a uniform spherical shape with a well-distinct core-shell structure, and is further experimentally proven to be able to controllably release drugs with solid-liquid transition of the phase change carrier upon temperature change. These results indicate that cumulative release of ACV can reach 51.2% at 40 °C within 20 hours, which is much higher than 27.3% release achieved below the melting point of T38. In addition, CuO NPs with excellent photothermal conversion ability endow the system with precisely controllable drug delivery via NIR light stimulation, where the cumulative drug release can reach 83.6% after 7 cycles of light stimulation, allowing controlled release at a specific time or location.


Subject(s)
Doxorubicin , Silicon Dioxide , Temperature , Capsules , Doxorubicin/chemistry , Drug Delivery Systems/methods
19.
Environ Technol ; 44(28): 4409-4423, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35731237

ABSTRACT

Filtration is one of the important technologies for separating suspended particles. Under the condition of gravity compression, the filtration density can be increased and the separation effect of suspended particles can be improved. Considering the complex composition and the difficulty in degrading dye in industrial wastewater, a gravity compression aeration system with a modified polyester fibre ball (denoted as MPFB) was evaluated for the separation of dye from water. Congo red azo dye solution (0-40 mg/L) was selected as the model treatment compound. The MPFB was prepared by adjusting the concentrations of alkali (Quality score 0-25%), ß-cyclodextrin (0∼80 g/L), reaction temperature (40-90°C), and silane coupler concentration (Concentration fractions 0-0.8%). We used Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) to characterise the MPFB. The separation was affected significantly by adsorption conditions such as MPFB dose and pH. The lower the MPFB dose, the higher the expected adsorption capacity. For the treatment of a dye solution at 500 mg/L, 100% removal was achieved with 48 g/L MPFB, at pH 8 during adsorption under non-circulation aeration. For 24 h of reaction, the system could reach the maximum adsorption capacity of 11.2 mg/g, which followed the pseudo-first order kinetics model and the intraparticle diffusion model. We discovered that circulation aeration provided the best adsorption and electrostatic and hydrogen bonding were the dominant components of adsorption. Overall, the system is a promising technology and has the potential to treat large volumes of dye wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Congo Red , Temperature , Adsorption , Kinetics , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Coloring Agents/chemistry
20.
Chempluschem ; 88(4): e202300081, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36951444

ABSTRACT

Expanded graphite (EG) has been used to store phase change materials (PCM) to enhance thermal conductivity and avoid leakage. However, systematic investigation on physical structure of various embedded PCMs in EG is not reported. Besides, the effect of environment on thermal behavior of PCM/EG composites has not been investigated yet. In this work, three common PCMs (including myristic acid (MA), polyethylene glycol (PEG) and paraffin wax (PW)) were embedded in EG and three PCM/EG composites were obtained. As a result, capillary force between EG and PCMs supported encapsulation of PCMs in EG. PCM/EG composites had narrower phase change range while supercooling degree values were different when various PCMs were used. Besides, the hot and humid environment had a side effect on thermal energy storage of PCMs and PCM/EG composites. The inherent hydrophilicity of PCMs was essential for resistance against side effect of moisture on thermal energy storage.

SELECTION OF CITATIONS
SEARCH DETAIL