Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38836702

ABSTRACT

Non-invasive prenatal testing (NIPT) is a quite popular approach for detecting fetal genomic aneuploidies. However, due to the limitations on sequencing read length and coverage, NIPT suffers a bottleneck on further improving performance and conducting earlier detection. The errors mainly come from reference biases and population polymorphism. To break this bottleneck, we proposed NIPT-PG, which enables the NIPT algorithm to learn from population data. A pan-genome model is introduced to incorporate variant and polymorphic loci information from tested population. Subsequently, we proposed a sequence-to-graph alignment method, which considers the read mis-match rates during the mapping process, and an indexing method using hash indexing and adjacency lists to accelerate the read alignment process. Finally, by integrating multi-source aligned read and polymorphic sites across the pan-genome, NIPT-PG obtains a more accurate z-score, thereby improving the accuracy of chromosomal aneuploidy detection. We tested NIPT-PG on two simulated datasets and 745 real-world cell-free DNA sequencing data sets from pregnant women. Results demonstrate that NIPT-PG outperforms the standard z-score test. Furthermore, combining experimental and theoretical analyses, we demonstrate the probably approximately correct learnability of NIPT-PG. In summary, NIPT-PG provides a new perspective for fetal chromosomal aneuploidies detection. NIPT-PG may have broad applications in clinical testing, and its detection results can serve as a reference for false positive samples approaching the critical threshold.


Subject(s)
Aneuploidy , Noninvasive Prenatal Testing , Humans , Female , Pregnancy , Noninvasive Prenatal Testing/methods , Algorithms , Genomics/methods , Prenatal Diagnosis/methods , Sequence Analysis, DNA/methods
2.
Anal Chem ; 96(11): 4544-4552, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38362708

ABSTRACT

Emerging contaminants have recently evolved into a severe worldwide environmental issue. Organophosphate flame retardants (OPFRs) with neurotoxicity, genotoxicity, and reproductive and developmental toxicity are a class of notorious emerging contaminants that cause great concern. The development of high-efficiency and portable sensors for rapid online monitoring of OPFRs has become the primary demand for the exploration of the environmental migration and transformation of OPFRs. In this work, interestingly, the cataluminescence (CTL) phenomenon of OPFRs is first observed, and an ingenious multidimensional ratiometric CTL sensing strategy is developed for the recognition of multiple OPFRs. Three characteristic ratios are extracted from the multipeak CTL spectral curves based on energy transfer of single Tb/Eu-modified MgO sensing material, and thus a novel three-dimensional (3D) code recognition could be mapped out. This obtained 3D coordinate is found to be a unique characteristic for a given OPFR, just like an exclusive person's ID number, which can successfully discriminate and detect 10 kinds of OPFR vapors, including homologous series and isomers. More importantly, CTL mechanism investigations for OPFRs demonstrate that OPFRs undergo a series of chemical reaction processes, e.g., oxidative pyrolysis and hydroxylation, and different high-energy excited intermediates are generated, which trigger discrepant energy-transfer efficiency toward rare earth ions, leading to multipeak spectral profiles. Briefly, this proposed CTL analytical platform for OPFRs recognition initiates a new sensing principle for the efficient identification of emerging contaminants and shows significant prospects on rapid on-site detection.

3.
J Vis Exp ; (204)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38372356

ABSTRACT

Acute kidney injury (AKI) is defined as a rapid decline in renal function, in which persistent kidney dysfunction gradually progresses to chronic kidney disease (CKD) due to the irreversible loss of nephrons and their maladaptive repair. In recent years, the incidence of AKI has been increasing concerning diverse etiologies, including volume depletion, sepsis, nephrotoxicity, muscle injury, and major trauma, in which ischemia-reperfusion injury (IRI) accounts for most episodes. Development of the IRI model in mice is induced by surgical clamping of the renal pedicles, which provides powerful and controllable tools for preclinical models of AKI. Importantly, the IRI model is deployed at different stages of the AKI development, especially in the processes of AKI to CKD. Despite the IRI model being widely practiced in many laboratories, a series of variables still influence the results of this model. Here, we describe the procedure of IRI model development to provide a repeatable and reliable method for researchers to explore the underlying pathogenesis in the development of AKI and the progression of AKI to CKD.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Mice , Animals , Kidney/pathology , Acute Kidney Injury/complications , Renal Insufficiency, Chronic/etiology , Reperfusion Injury/pathology , Ischemia , Reperfusion , Mice, Inbred C57BL
4.
Sci Total Environ ; 918: 170488, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38296064

ABSTRACT

BACKGROUND: Cadmium (Cd) is a toxic heavy metal that widely detected in environment and accumulated in kidney, posing a great threat to human health. However, there is a lack of systematic investigation of exposure profile and association of Cd exposure with renal function in the Chinese population. METHODS: Related articles were searched from PubMed, Web of Science, China National Knowledge Internet, and Wanfang to construct an aggregate exposure pathway (AEP) framework for Cd and to explore the correlation between Cd and renal function using random effects models. RESULTS: A total of 220 articles were included in this study, among which 215 investigated human exposure and 12 investigated the association of Cd with renal outcomes. The AEP framework showed that 96.5 % and 62.5 % of total Cd intake were attributed to dietary intake in nonsmokers and smokers, respectively. And 35.2 % originated from cigarette smoke inhalation in smokers. In human body, Cd was detected in blood, urine, placenta, etc. Although the concentrations of Cd in blood and urine from subjects living in polluted areas showed a sharp downward trend since the early 21st century, higher concentration of Cd in the environment and human body in polluted areas was found. Kidney was the target organ. The level of blood Cd was positively associated with urinary ß2-microglobulin [ß2-MG, r (95 % CI) = 0.12 (0.05, 0.19)], albumin [0.13 (0.06, 0.20)], and retinol-binding protein [RBP, 0.14 (0.03, 0.24)]. Elevated urinary Cd was correlated with increases in ß2-MG [0.22 (0.15, 0.29)], albumin [0.23 (0.16, 0.29)], N-acetyl-ß-d-glucosaminidase [NAG, 0.33 (0.22, 0.44)], and RBP [0.22 (0.14, 0.30)]. CONCLUSIONS: Foods and cigarette smoke were two major ways for Cd intake, and Cd induced renal injury in the Chinese population. This study enhanced the understanding of human exposure and nephrotoxicity of Cd, and emphasized the need for controlling Cd level in polluted areas.


Subject(s)
Cadmium , Environmental Exposure , Humans , Cadmium/toxicity , Environmental Exposure/analysis , Kidney , Heavy Metal Poisoning , Albumins/pharmacology , Acetylglucosaminidase , Biomarkers
5.
Chin Med J (Engl) ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238152

ABSTRACT

BACKGROUND: Substantial progress in air pollution control has brought considerable health benefits in China, but little is known about the spatio-temporal trends of economic burden from air pollution. This study aimed to explore their spatio-temporal features of disease burden from air pollution in China to provide policy recommendations for efficiently reducing the air pollution and related disease burden in an era of a growing economy. METHODS: Using the Global Burden of Disease method and willingness to pay method, we estimated fine particulate matter (PM2.5) and/or ozone (O3) related premature mortality and its economic burden across China, and explored their spatio-temporal trends between 2005 and 2017. RESULTS: In 2017, we estimated that the premature mortality and economic burden related to the two pollutants were RMB 0.94 million (68.49 per 100,000) and 1170.31 billion yuan (1.41% of the national gross domestic product [GDP]), respectively. From 2005 to 2017, the total premature mortality was decreasing with the air quality improvement, but the economic burden was increasing along with the economic growth. And the economic growth has contributed more to the growth of economic costs than the economic burden decrease brought by the air quality improvement. The premature mortality and economic burden from O3 in the total loss from the two pollutants was substantially lower than that of PM2.5, but it was rapidly growing. The O3-contribution was highest in the Yangtze River Delta region, the Fen-Wei Plain region, and some western regions. The proportion of economic burden from PM2.5 and O3 to GDP significantly declined from 2005 to 2017 and showed a decreasing trend pattern from northeast to southwest. CONCLUSION: The disease burden from O3 is lower than that of PM2.5, the O3-contribution has a significantly increasing trend with the growth of economy and O3 concentration.

6.
Int J Nephrol Renovasc Dis ; 17: 29-38, 2024.
Article in English | MEDLINE | ID: mdl-38264625

ABSTRACT

Background: Mounting evidence suggests that mitochondrial dysfunction contributes to lupus nephritis (LN) pathogenesis. Mitochondrial pyruvate carrier 1 (MPC1) and mitochondrial pyruvate carrier 2 (MPC2) mediating pyruvate transport from the cytoplasm to the mitochondrial matrix, determines the cell survival and cellular energy supply. Here, we aimed to investigate the association of mitochondrial pyruvate carrier expression with the clinical and histological features in LN. Methods: Patients with biopsy-proven proliferative LN (class III and class IV, n=18) and membranous LN (class V, n=18) were included. Expression of MPC1 and MPC2 were examined by immunohistochemistry. MPC protein levels in the two groups were evaluated by the Student's t-test. Correlation analysis between MPC levels and clinicopathological features was performed by Spearman's rank correlation. Results: Both MPC1 and MPC2 were exclusively expressed in renal tubules of enrolled LN. Significantly lower MPC1 and MPC2 were observed in patients with proliferative LN compared to membranous LN. In addition, the MPC1 and MPC2 were negatively correlated with SLEDAI-2K score, renal function, and renal pathology activity index. Conclusion: Both MPC1 and MPC2 were localized in renal tubules, and decreased MPC content was more pronounced in proliferative LN than membranous LN. MPC levels were significantly correlated with renal functions and renal pathology activity.

7.
Adv Sci (Weinh) ; : e2400305, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962954

ABSTRACT

Acute kidney injury (AKI) signifies a sudden and prolonged decline in kidney function characterized by tubular cell death and interstitial inflammation. Small nucleolar RNAs (snoRNAs) play pivotal roles in oxidative stress and inflammation, and may play an important role in the AKI process, which remains elusive. an elevated expression of Snord3a is revealed in renal tubules in response to AKI and demonstrates that Snord3a deficiency alleviates renal injury in AKI mouse models. Notably, the deficiency of Snord3a exhibits a mitigating effect on the stimulator of interferon genes (STING)-associated ferroptosis phenotypes and the progression of tubular injury. Mechanistically, Snord3a is shown to regulate the STING signaling axis via promoting STING gene transcription; administration of Snord3a antisense oligonucleotides establishes a significant therapeutic advantage in AKI mouse models. Together, the findings elucidate the transcription regulation mechanism of STING and the crucial roles of the Snord3a-STING axis in ferroptosis during AKI, underscoring Snord3a as a potential prognostic and therapeutic target for AKI.

8.
Clin Chim Acta ; 553: 117751, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38163539

ABSTRACT

BACKGROUND: Cell-free DNA (cfDNA) is a promising analyte for non-invasive liquid biopsy, carrying abundant signatures for disease diagnosis and monitoring. In infectious disease researches, blood plasma samples are routinely heat-inactivated before proceeding with downstream analyses. However, the effects of heat inactivation on cfDNA fragmentomic analysis remain largely unclear, potentially introducing biases or altering the characteristics of cfDNA. METHODS: We performed a comprehensive investigation of cfDNA concentrations and fragmentomics in 21 plasma samples from 7 healthy individuals, by comparing the sample group without the heat inactivation to those exposed to once or twice heat-inactivation at 56 °C for 30 min and following freeze-thaw. RESULTS: Plasma samples with once and twice heat inactivation displayed no significant deviations in primary characteristics, including cfDNA concentrations, size profiles, end motif features, and genome-wide distributions, compared to samples without heat treatment. CONCLUSIONS: Heat-inactivated cfDNA can be utilized for liquid biopsy in infectious disease researches, without substantial impact on cfDNA concentrations and fragmentomic properties. This study provides essential insights into the effects of heat inactivation on cfDNA properties and will contribute to the development of reliable non-invasive biomarkers for infectious disease.


Subject(s)
Cell-Free Nucleic Acids , Hot Temperature , Humans , Biomarkers , Liquid Biopsy , Biomarkers, Tumor/genetics
9.
Cell Rep Med ; : 101660, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059385

ABSTRACT

Gestational diabetes mellitus (GDM) presents varied manifestations throughout pregnancy and poses a complex clinical challenge. High-depth cell-free DNA (cfDNA) sequencing analysis holds promise in advancing our understanding of GDM pathogenesis and prediction. In 299 women with GDM and 299 matched healthy pregnant women, distinct cfDNA fragment characteristics associated with GDM are identified throughout pregnancy. Integrating cfDNA profiles with lipidomic and single-cell transcriptomic data elucidates functional changes linked to altered lipid metabolism processes in GDM. Transcription start site (TSS) scores in 50 feature genes are used as the cfDNA signature to distinguish GDM cases from controls effectively. Notably, differential coverage of the islet acinar marker gene PRSS1 emerges as a valuable biomarker for GDM. A specialized neural network model is developed, predicting GDM occurrence and validated across two independent cohorts. This research underscores the high-depth cfDNA early prediction and characterization of GDM, offering insights into its molecular underpinnings and potential clinical applications.

SELECTION OF CITATIONS
SEARCH DETAIL