Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 56(11): 2635-2649.e6, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37924813

ABSTRACT

The 2003 severe acute respiratory syndrome coronavirus (SARS-CoV-1) causes more severe disease than SARS-CoV-2, which is responsible for COVID-19. However, our understanding of antibody response to SARS-CoV-1 infection remains incomplete. Herein, we studied the antibody responses in 25 SARS-CoV-1 convalescent patients. Plasma neutralization was higher and lasted longer in SARS-CoV-1 patients than in severe SARS-CoV-2 patients. Among 77 monoclonal antibodies (mAbs) isolated, 60 targeted the receptor-binding domain (RBD) and formed 7 groups (RBD-1 to RBD-7) based on their distinct binding and structural profiles. Notably, RBD-7 antibodies bound to a unique RBD region interfaced with the N-terminal domain of the neighboring protomer (NTD proximal) and were more prevalent in SARS-CoV-1 patients. Broadly neutralizing antibodies for SARS-CoV-1, SARS-CoV-2, and bat and pangolin coronaviruses were also identified. These results provide further insights into the antibody response to SARS-CoV-1 and inform the design of more effective strategies against diverse human and animal coronaviruses.


Subject(s)
COVID-19 , Animals , Humans , Antibodies, Viral , Antibody Formation , SARS-CoV-2 , Antibodies, Neutralizing
2.
Nature ; 622(7981): 74-79, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37591304

ABSTRACT

The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field1-3. This phenomenon occurs in systems with topologically non-trivial bands and spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the presence of strong electron correlations, that is, the fractional QAH effect4-7, would open a new chapter in condensed matter physics. Here we report the direct observation of both integer and fractional QAH effects in electrical measurements on twisted bilayer MoTe2. At zero magnetic field, near filling factor ν = -1 (one hole per moiré unit cell), we see an integer QAH plateau in the Hall resistance Rxy quantized to h/e2 ± 0.1%, whereas the longitudinal resistance Rxx vanishes. Remarkably, at ν = -2/3 and -3/5, we see plateau features in Rxy at [Formula: see text] and [Formula: see text], respectively, whereas Rxx remains small. All features shift linearly versus applied magnetic field with slopes matching the corresponding Chern numbers -1, -2/3 and -3/5, precisely as expected for integer and fractional QAH states. Additionally, at zero magnetic field, Rxy is approximately 2h/e2 near half-filling (ν = -1/2) and varies linearly as ν is tuned. This behaviour resembles that of the composite Fermi liquid in the half-filled lowest Landau level of a two-dimensional electron gas at high magnetic field8-14. Direct observation of the fractional QAH and associated effects enables research in charge fractionalization and anyonic statistics at zero magnetic field.

3.
Nature ; 604(7906): 468-473, 2022 04.
Article in English | MEDLINE | ID: mdl-35444320

ABSTRACT

Many-body interactions between carriers lie at the heart of correlated physics. The ability to tune such interactions would allow the possibility to access and control complex electronic phase diagrams. Recently, two-dimensional moiré superlattices have emerged as a promising platform for quantum engineering such phenomena1-3. The power of the moiré system lies in the high tunability of its physical parameters by adjusting the layer twist angle1-3, electrical field4-6, moiré carrier filling7-11 and interlayer coupling12. Here we report that optical excitation can highly tune the spin-spin interactions between moiré-trapped carriers, resulting in ferromagnetic order in WS2 /WSe2 moiré superlattices. Near the filling factor of -1/3 (that is, one hole per three moiré unit cells), as the excitation power at the exciton resonance increases, a well-developed hysteresis loop emerges in the reflective magnetic circular dichroism signal as a function of magnetic field, a hallmark of ferromagnetism. The hysteresis loop persists down to charge neutrality, and its shape evolves as the moiré superlattice is gradually filled, indicating changes of magnetic ground state properties. The observed phenomenon points to a mechanism in which itinerant photoexcited excitons mediate exchange coupling between moiré-trapped holes. This exciton-mediated interaction can be of longer range than direct coupling between moiré-trapped holes9, and thus magnetic order arises even in the dilute hole regime. This discovery adds a dynamic tuning knob to the rich many-body Hamiltonian of moiré quantum matter13-19.

4.
Hum Mol Genet ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776952

ABSTRACT

Pulmonary arterial hypertension (PAH) is a disorder with a large genetic component. Biallelic mutations of EIF2AK4, which encodes the kinase GCN2, are causal in two ultra-rare subtypes of PAH, pulmonary veno-occlusive disease and pulmonary capillary haemangiomatosis. EIF2AK4 variants of unknown significance have also been identified in patients with classical PAH, though their relationship to disease remains unclear. To provide patients with diagnostic information and enable family testing, the functional consequences of such rare variants must be determined, but existing computational methods are imperfect. We applied a suite of bioinformatic and experimental approaches to sixteen EIF2AK4 variants that had been identified in patients. By experimentally testing the functional integrity of the integrated stress response (ISR) downstream of GCN2, we determined that existing computational tools have insufficient sensitivity to reliably predict impaired kinase function. We determined experimentally that several EIF2AK4 variants identified in patients with classical PAH had preserved function and are therefore likely to be non-pathogenic. The dysfunctional variants of GCN2 that we identified could be subclassified into three groups: misfolded, kinase-dead, and hypomorphic. Intriguingly, members of the hypomorphic group were amenable to paradoxical activation by a type-1½ GCN2 kinase inhibitor. This experiment approach may aid in the clinical stratification of EIF2AK4 variants and potentially identify hypomorophic alleles receptive to pharmacological activation.

5.
Blood ; 143(22): 2314-2331, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38457357

ABSTRACT

ABSTRACT: For monogenic diseases caused by pathogenic loss-of-function DNA variants, attention focuses on dysregulated gene-specific pathways, usually considering molecular subtypes together within causal genes. To better understand phenotypic variability in hereditary hemorrhagic telangiectasia (HHT), we subcategorized pathogenic DNA variants in ENG/endoglin, ACVRL1/ALK1, and SMAD4 if they generated premature termination codons (PTCs) subject to nonsense-mediated decay. In 3 patient cohorts, a PTC-based classification system explained some previously puzzling hemorrhage variability. In blood outgrowth endothelial cells (BOECs) derived from patients with ACVRL1+/PTC, ENG+/PTC, and SMAD4+/PTC genotypes, PTC-containing RNA transcripts persisted at low levels (8%-23% expected, varying between replicate cultures); genes differentially expressed to Bonferroni P < .05 in HHT+/PTC BOECs clustered significantly only to generic protein terms (isopeptide-bond/ubiquitin-like conjugation) and pulse-chase experiments detected subtle protein maturation differences but no evidence for PTC-truncated protein. BOECs displaying highest PTC persistence were discriminated in unsupervised hierarchical clustering of near-invariant housekeeper genes, with patterns compatible with higher cellular stress in BOECs with >11% PTC persistence. To test directionality, we used a HeLa reporter system to detect induction of activating transcription factor 4 (ATF4), which controls expression of stress-adaptive genes, and showed that ENG Q436X but not ENG R93X directly induced ATF4. AlphaFold accurately modeled relevant ENG domains, with AlphaMissense suggesting that readthrough substitutions would be benign for ENG R93X and other less rare ENG nonsense variants but more damaging for Q436X. We conclude that PTCs should be distinguished from other loss-of-function variants, PTC transcript levels increase in stressed cells, and readthrough proteins and mechanisms provide promising research avenues.


Subject(s)
Activin Receptors, Type II , Codon, Nonsense , Endoglin , Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Endoglin/genetics , Endoglin/metabolism , Activin Receptors, Type II/genetics , Smad4 Protein/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mutation , Male , Female , Nonsense Mediated mRNA Decay
6.
J Transl Med ; 22(1): 259, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461346

ABSTRACT

BACKGROUND: Amino acids (AAs) are one of the primary metabolic substrates for cardiac work. The correlation between AAs and both atrial fibrillation (AF) and aging has been documented. However, the relationship between AAs and age-related AF remains unclear. METHODS: Initially, the plasma AA levels of persistent AF patients and control subjects were assessed, and the correlations between AA levels, age, and other clinical indicators were explored. Subsequently, the age-related AF mouse model was constructed and the untargeted myocardial metabolomics was conducted to detect the level of AAs and related metabolites. Additionally, the gut microbiota composition associated with age-related AF was detected by a 16S rDNA amplicon sequencing analysis on mouse fecal samples. RESULTS: Higher circulation levels of lysine (Student's t-test, P = 0.001), tyrosine (P = 0.002), glutamic acid (P = 0.008), methionine (P = 0.008), and isoleucine (P = 0.014), while a lower level of glycine (P = 0.003) were observed in persistent AF patients. The feature AAs identified by machine learning algorithms were glutamic acid and methionine. The association between AAs and age differs between AF and control subjects. Distinct patterns of AA metabolic profiles were observed in the myocardial metabolites of aged AF mice. Aged AF mice had lower levels of Betaine, L-histidine, L-alanine, L-arginine, L-Pyroglutamic acid, and L-Citrulline compared with adult AF mice. Aged AF mice also presented a different gut microbiota pattern, and its functional prediction analysis showed AA metabolism alteration. CONCLUSION: This study provided a comprehensive network of AA disturbances in age-related AF from multiple dimensions, including plasma, myocardium, and gut microbiota. Disturbances of AAs may serve as AF biomarkers, and restoring their homeostasis may have potential benefits for the management of age-related AF.


Subject(s)
Amino Acids , Atrial Fibrillation , Adult , Humans , Animals , Mice , Aged , Amino Acids/metabolism , Atrial Fibrillation/metabolism , Metabolomics/methods , Methionine , Glutamates
7.
Nat Mater ; 22(5): 599-604, 2023 May.
Article in English | MEDLINE | ID: mdl-36894775

ABSTRACT

Excitons, Coulomb-bound electron-hole pairs, play a crucial role in both optical excitation and correlated phenomena in solids. When excitons interact with other quasiparticles, few- and many-body excited states can appear. Here we report an interaction between exciton and charges enabled by unusual quantum confinement in two-dimensional moiré superlattices, which results in many-body ground states composed of moiré excitons and correlated electron lattices. In an H-stacked (60o-twisted) WS2/WSe2 heterobilayer, we found an interlayer moiré exciton whose hole is surrounded by its partner electron's wavefunction distributed among three adjacent moiré traps. This three-dimensional excitonic structure enables large in-plane electrical quadrupole moments in addition to the vertical dipole. Upon doping, the quadrupole facilitates the binding of interlayer moiré excitons to the charges in neighbouring moiré cells, forming intercell charged exciton complexes. Our work provides a framework for understanding and engineering emergent exciton many-body states in correlated moiré charge orders.

8.
Nutr Metab Cardiovasc Dis ; 34(6): 1538-1545, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644080

ABSTRACT

BACKGROUND AND AIMS: The role of fractional flow reserve (FFR) in coronary intermediate lesions is widely recommended by guidelines. The effect of uric acid (UA) on cardiovascular events is also well known. However, the relationship between UA and long-term cardiovascular outcomes in patients who received FFR with intermediate lesions remains unknown. METHODS AND RESULTS: We retrospectively included 428 patients who underwent both coronary angiography (CAG) and FFR. Participants were stratified into two groups based on the median UA. The primary endpoint was the composite of major adverse cardiovascular and cerebrovascular events (MACCEs), including repeat revascularization, nonfatal stroke, nonfatal myocardial infarction, and all-cause death. A Cox proportional hazards model was utilized to analyze the association between UA and the prevalence of MACCEs. During a median follow-up of 5.8 years, a higher MACCEs rate occurred in the high UA group compared to the low UA group (16.8% vs. 5.1%, p log-rank<0.01). Elevated UA was independently linked to a higher incidence of MACCEs, whether UA was treated as a categorical or continuous variable (hazard ratio [HR] 2.76, 95% confidence interval [CI] 1.27-6.03 or HR 1.01, 95% CI 1.01-1.02). The restricted cubic spline (RCS) analysis illustrated that the HR for MACCEs increased with increasing UA. CONCLUSION: The present study demonstrates that UA is associated with MACCEs risk and suggests that UA is a reliable predictor of long-term cardiovascular events in coronary intermediate stenosis patients.


Subject(s)
Biomarkers , Coronary Angiography , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Hyperuricemia , Uric Acid , Humans , Male , Female , Uric Acid/blood , Retrospective Studies , Aged , Middle Aged , Time Factors , Risk Factors , Coronary Stenosis/physiopathology , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/diagnosis , Coronary Stenosis/blood , Risk Assessment , Hyperuricemia/diagnosis , Hyperuricemia/blood , Hyperuricemia/epidemiology , Hyperuricemia/physiopathology , Biomarkers/blood , Up-Regulation , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/diagnosis , Coronary Artery Disease/blood , Predictive Value of Tests , Cardiac Catheterization/adverse effects
9.
Lipids Health Dis ; 23(1): 96, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566225

ABSTRACT

BACKGROUND: Guidelines on coronary intermediate lesions strongly recommend deferred revascularization after detecting a normal fractional flow reserve (FFR). Researches about triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) on cardiovascular diseases has also been well conducted. However, the association of TG/HDL-C and long-term adverse clinical outcomes remains unknown for patients deferred revascularization following FFR. METHODS: This study retrospectively included 374 coronary artery disease (CAD) patients with non-significant coronary lesions diagnosed by coronary angiography (CAG) and FFR. The main outcome measure was the combination of major adverse cardiovascular and cerebrovascular events (MACCEs). All patients were categorized into three subgroups in terms of TG/HDL-C tertiles (T1 < 0.96, 0.96 ≤ T2 < 1.58, T3 ≥ 1.58). Three different Cox regression models were utilized to reveal the association between TG/HDL-C and prevalence of MACCEs. RESULTS: 47 MACCEs were recorded throughout a median monitoring period of 6.6 years. The Kaplan-Meier survival curves showed a higher MACCEs rate occurred in the higher TG/HDL-C group (5.6% vs. 12.9% vs. 19.4%, log-rank P < 0.01). After adjustment, patients in T3 suffered a 2.6-fold risk compared to the T1 group (T3 vs. T1: HR 2.55, 95% CI 1.05-6.21, P = 0.038; T2 vs. T1: HR 1.71, 95% CI 0.65-4.49, P = 0.075; P for trend = 0.001). The restricted cubic spline (RCS) analysis demonstrated that the HR for MACCEs rose as TG/HDL-C increased. Both the receiver operating characteristic (ROC) and time-dependent ROC proved the excellent predictive ability of TG/HDL-C. CONCLUSION: The study illustrates that TG/HDL-C correlates with the risk of MACCEs in CAD patients deferred revascularization following FFR. TG/HDL-C could serve as a dependable predictor of cardiovascular events over the long term in this population.


Subject(s)
Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Humans , Retrospective Studies , Cholesterol, HDL , Triglycerides , Coronary Artery Disease/surgery , Coronary Angiography
10.
Scand J Med Sci Sports ; 34(2): e14582, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38349064

ABSTRACT

BACKGROUND: Due to inconclusive evidence from observational studies regarding the impact of physical activity (PA) and sedentary behavior on frailty and falling risk, we conducted a two-sample Mendelian randomization analysis to investigate the causal associations between PA, sedentary behavior, and frailty and falls. METHODS: We extracted summary data from genome-wide association studies conducted among individuals of European ancestry, encompassing PA (n = 90 667-608 595), sedentary behavior (n = 372 609-526 725), frailty index (n = 175 226), and falling risk (n = 451 179). Single nucleotide polymorphisms associated with accelerometer assessed fraction >425 milligravities, self-reported vigorous activity, moderate to vigorous physical acticity (MVPA), leisure screen time (LST), and sedentary behavior at work were taken as instrumental variables. The causal effects were primarily estimated using inverse variance weighted methods, complemented by several sensitivity and validation analyses. RESULTS: Genetically predicted higher levels of PA were significantly associated with a reduction in the frailty index (accelerometer assessed fraction >425 milligravities: ß = -0.25, 95% CI = -0.36 to -0.14, p = 1.27 × 10-5 ; self-reported vigorous activity: ß = -0.13, 95% CI = -0.20 to -0.05, p = 7.9 × 10-4 ; MVPA: ß = -0.28, 95% CI = -0.40 to -0.16, p = 9.9 × 10-6 ). Besides, LST was significantly associated with higher frailty index (ß = 0.18, 95% CI = 0.14-0.22, p = 5.2 × 10-20 ) and higher odds of falling (OR = 1.13, CI = 1.07-1.19, p = 6.9 × 10-6 ). These findings remained consistent throughout sensitivity and validation analyses. CONCLUSIONS: Our study offers evidence supporting a causal relationship between PA and a reduced risk of frailty. Furthermore, it underscores the association between prolonged LST and an elevated risk of frailty and falls. Therefore, promoting PA and reducing sedentary behavior may be an effective strategy in primary frailty and falls prevention.


Subject(s)
Frailty , Humans , Frailty/genetics , Frailty/prevention & control , Sedentary Behavior , Mendelian Randomization Analysis , Genome-Wide Association Study , Accidental Falls , Exercise
11.
Article in English | MEDLINE | ID: mdl-38430149

ABSTRACT

Objective: To provide a theoretical basis for intestinal intervention in the treatment of coronary heart disease. Methods: Summarizing the mechanism of trimethylamine oxide (TMAO) inducing coronary heart disease and discussing the target of clinical intervention including TMAO generation, metabolism, and other links. The authors also clarified the potential clinical value of TMAO as a predictor of cardiovascular disease.. Results: The intestinal microbiota metabolite TMAO is closely related to the occurrence and development of coronary heart disease. TMAO can induce the development of coronary heart disease by promoting endothelial cell dysfunction, promoting foam cell formation, affecting cholesterol and bile acid metabolism, and promoting platelet activation and thrombosis. Diet, physical exercise, and other ways can reshape intestinal flora, inhibit TMAO generation, and help to prevent and cure coronary heart disease. In addition, TMAO has important clinical value in predicting risk stratification and evaluating the prognosis of coronary heart disease. Conclusion: TMAO can induce and assist in the development of coronary heart disease by promoting endothelial cell dysfunction, foam cell formation, and other mechanisms. At present, diet and physical exercise can reduce the production of TMAO to a certain extent, to prevent the occurrence and development of coronary heart disease. Furthermore, TMAO is a promising predictive marker for risk stratification and evaluating the prognosis of coronary heart disease.TMAO can not only directly induce coronary heart disease by promoting endothelial cell dysfunction, foam cell formation and other mechanisms, but also promote the occurrence and development of coronary heart disease by affecting the risk factors related to coronary heart disease (such as hypertension and diabetes). It has been confirmed that diet and physical exercise can reduce the production of TMAO to a certain extent and prevent the occurrence and development of coronary heart disease. In addition, TMAO is a valuable indicator for assessing risk stratification and prognosis of coronary heart disease.

12.
Chem Biodivers ; 21(6): e202400086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38619074

ABSTRACT

The endoperoxide group of artemisinins is universally accepted an essential group for their anti-cancer effects. In this study, a series of D-ring-contracted artemisinin derivatives were constructed by combining ring-contracted artemisinin core with fragments of functional heterocyclic molecules or classical CDK4/6 inhibitors to identify more efficacious breast cancer treatment agents. Twenty-six novel hybridized molecules were synthesized and characterized by HRMS, IR, 1H-NMR and 13C NMR. In antiproliferative activities and kinase inhibitory effects assays, we found that the antiproliferative effects of B01 were close to those of the positive control Palbociclib, with GI50 values of 4.87±0.23 µM and 9.97±1.44 µM towards T47D cells and MDA-MB-436 cells respectively. In addition, the results showed that B01 was the most potent compound against CDK6/cyclin D3 kinase, with an IC50 value of 0.135±0.041 µM, and its activity was approximately 1/3 of the positive control Palbociclib.


Subject(s)
Antineoplastic Agents , Artemisinins , Breast Neoplasms , Cell Proliferation , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Drug Screening Assays, Antitumor , Protein Kinase Inhibitors , Humans , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Artemisinins/pharmacology , Artemisinins/chemistry , Artemisinins/chemical synthesis , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Cell Proliferation/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Structure-Activity Relationship , Cell Line, Tumor , Molecular Structure , Female , Dose-Response Relationship, Drug , Molecular Docking Simulation
13.
Mol Med ; 29(1): 85, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37400792

ABSTRACT

The kidney is an important organ for maintaining normal metabolism and stabilising the internal environment, in which, the heterogeneity of cell types has hindered the progress in understanding the mechanisms underlying kidney disease. In recent years the application of single-cell RNA sequencing (scRNA-seq) in nephrology has developed rapidly. In this review, we summarized the technical platform related to scRNA-seq and the role of this technology in investigating the onset and development of kidney diseases, starting from several common kidney diseases (mainly including lupus nephritis, renal cell carcinoma, diabetic nephropathy and acute kidney injury), and provide a reference for the application of scRNA-seq in the study of kidney disease diagnosis, treatment and prognosis.


Subject(s)
Carcinoma, Renal Cell , Diabetic Nephropathies , Kidney Neoplasms , Humans , Kidney , Sequence Analysis, RNA , Gene Expression Profiling
14.
J Comput Chem ; 44(5): 677-686, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36408852

ABSTRACT

The ability to accurately and rapidly evaluate the intermolecular many-body polarization effect of the water system is very important for computer simulations of biomolecule in aqueous. In this paper, a scheme is proposed based on the polarizable dipole-dipole interaction model and used to rapidly estimate the intermolecular many-body polarization effect in water clusters. We use a bond-dipole-based polarization function to evaluate the polarization energy. We regard two OH bonds of a water molecule as two bond-dipoles and set the permanent OH bond-dipole moment of a water molecule to be 1.51 Debye. We estimate the induced OH bond-dipole moment via a simple formula in which only one correction factor is needed. This scheme is then applied to tens of water clusters to calculate the three- and four-body interaction energies. The three-body interaction energies of 93 water clusters produced by our scheme are compared with those produced by the counterpoise-corrected CCSD(T)/aug-cc-pVDZ, MP2/aug-cc-pVDZ, M06-2X/jul-cc-pVTZ methods, by the AMOEBApro13, iAMOEBA, AMOEBA+, AMOEBA+(CF) methods, and by the MB-pol method. The four-body interaction energies of 47 water clusters yielded by our scheme are compared with those yielded by the counterpoise-corrected MP2/aug-cc-pVDZ and M06-2X/ jul-cc-pVTZ methods, by the AMOEBApro13, AMOEBA+, AMOEBA+(CF) methods, and by the MB-pol method. The comparison results show that the scheme proposed in this paper can reproduce the counterpoise-corrected CCSD(T)/aug-cc-pVDZ three-body interaction energies and reproduce the counterpoise-corrected MP2/aug-cc-pVDZ four-body interaction energies both accurately and efficiently. We anticipate the scheme proposed here can be useful for computer simulations of liquid water and aqueous solutions.


Subject(s)
Water , Thermodynamics , Computer Simulation
15.
Small ; 19(19): e2206960, 2023 05.
Article in English | MEDLINE | ID: mdl-36772909

ABSTRACT

Integrating a biomimetic extracellular matrix to improve the microenvironment of 3D printing scaffolds is an emerging strategy for bone substitute design. Here, a "soft-hard" bone implant (BM-g-DPCL) consisting of a bioactive matrix chemically integrated on a polydopamine (PDA)-coated porous gradient scaffold by polyphenol groups is constructed. The PDA-coated "hard" scaffolds promoted Ca2+ chelation and mineral deposition; the "soft" bioactive matrix is beneficial to the migration, proliferation, and osteogenic differentiation of stem cells in vitro, accelerated endogenous stem cell recruitment, and initiated rapid angiogenesis in vivo. The results of the rabbit cranial defect model (Φ = 10 mm) confirmed that BM-g-DPCL promoted the integration between bone tissue and implant and induced the deposition of bone matrix. Proteomics confirmed that cytokine adhesion, biomineralization, rapid vascularization, and extracellular matrix formation are major factors that accelerate bone defect healing. This strategy of highly chemically bonded soft-hard components guided the construction of the bioactive regenerative scaffold.


Subject(s)
Osteogenesis , Tissue Scaffolds , Animals , Rabbits , Porosity , Biomimetics , Bone Remodeling
16.
Biomacromolecules ; 24(11): 4970-4988, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37729544

ABSTRACT

Critical-size skull defects caused by trauma, infection, and tumor resection raise great demands for efficient bone substitutes. Herein, a hybrid cross-linked hierarchical microporous hydrogel scaffold (PHCLS) was successfully assembled by a multistep procedure, which involved (i) the preparation of poly(lactic-co-glycolic)/nanohydroxyapatite (PLGA-HAP) porous microspheres, (ii) embedding the spheres in a solution of dopamine-modified hyaluronic acid and collagen I (Col I) and cross-linking via dopamine polyphenols binding to (i) Col I amino groups (via Michael addition) and (ii) PLGA-HAP (via calcium ion chelation). The introduction of PLGA-HAP not only improved the diversity of pore size and pore communication inside the matrix but also greatly enhanced the compressive strength (5.24-fold, 77.5 kPa) and degradation properties to construct a more stable mechanical structure. In particular, the PHCLS (200 mg, nHAP) promoted the proliferation, infiltration, and angiogenic differentiation of bone marrow mesenchymal stem cells in vitro, as well as significant ectopic angiogenesis and mineralization with a storage modulus enhancement of 2.5-fold after 30 days. Meanwhile, the appropriate matrix microenvironment initiated angiogenesis and early osteogenesis by accelerating endogenous stem cell recruitment in situ. Together, the PHCLS allowed substantial skull reconstruction in the rabbit cranial defect model, achieving 85.2% breaking load strength and 84.5% bone volume fractions in comparison to the natural cranium, 12 weeks after implantation. Overall, this study reveals that the hierarchical microporous hydrogel scaffold provides a promising strategy for skull defect treatment.


Subject(s)
Hydrogels , Tissue Scaffolds , Animals , Rabbits , Tissue Scaffolds/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Hydrogels/pharmacology , Dopamine , Skull , Osteogenesis , Bone Regeneration
17.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37083462

ABSTRACT

Edible mushrooms are the highly demanded foods of which production and consumption have been steadily increasing globally. Owing to the quality loss and short shelf-life in harvested mushrooms, it is necessary for the implementation of effective preservation and intelligent evaluation technologies to alleviate this issue. The aim of this review was to analyze the development and innovation thematic lines, topics, and trends by bibliometric analysis and review of the literature methods. The challenges faced in researching these topics were proposed and the mechanisms of quality loss in mushrooms during storage were updated. This review summarized the effects of chemical processing (antioxidants, ozone, and coatings), physical treatments (non-thermal plasma, packaging and latent thermal storage) and other emerging application on the quality of fresh mushrooms while discussing the efficiency in extending the shelf-life. It also discussed the emerging evaluation techniques based on the various chemometric methods and computer vision system in monitoring the freshness and predicting the shelf-life of mushrooms which have been developed. Preservation technology optimization and dynamic quality evaluation are vital for achieving mushroom quality control. This review can provide a comprehensive research reference for reducing mushroom quality loss and extending shelf-life, along with optimizing efficiency of storage and transportation operations.

18.
Phys Chem Chem Phys ; 25(43): 29867-29880, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37888898

ABSTRACT

Accurately characterizing molecular interactions stands as a pivotal requirement for ensuring the reliability of molecular dynamics simulations. In line with our bond-dipole-based interaction model proposed by Gao et al. [X.-C. Gao, Q. Hao and C.-S. Wang, J. Chem. Theory Comput., 2017, 13, 2730-2741.], we have implemented an efficient and concise approach to compute electrostatic potential. This methodology capitalizes on the polarizable nature of chemical bond dipoles, resulting in a model of remarkable simplicity. In this study, we have revised the polarizable bond-dipole-based force field (PBFF) through the meticulous curation of quantum chemical data sets. These data sets encompass a comprehensive collection of 40 000 conformations, including those of water, methylamine, methanol, and N-methylacetamide. Additionally, we incorporate 520 hydrogen-bonded dimers into our data sets. In pursuit of enhanced accuracy in molecular dynamics simulations and a more faithful representation of potential energy landscapes, we undertook the re-optimization of the nonbonded parameters within the PBFF framework. Concurrently, we intricately fine-tuned the bonded parameters. The results of our comprehensive evaluation denote that this newly optimized force field method adeptly and efficiently computes structural characteristics, harmonic frequencies, and interaction energies. Overall, this study provides further validation for the applicability of PBFF in molecular dynamics simulations.

19.
Environ Sci Technol ; 56(12): 7924-7934, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35587516

ABSTRACT

Oxygen vacancies play a vital role in the catalytic activity of layered double hydroxide (LDH) catalysts in wastewater treatment. However, the mechanism of oxygen vacancy-mediated LDH-activated oxygen to produce reactive oxygen species (ROS) still lacks a reasonable explanation. In this work, a tartrate-modified CuCoFe-LDH (CuCoFe/Tar-LDH) with abundant oxygen vacancies was designed, which can efficiently degrade nitrobenzene (NB) under room conditions. The technical energy consumption is 0.011 kW h L-1. According to the characterization and calculation results, it is proposed that oxygen vacancies are formed because of the oxygen deficiency which is caused by the reduction of the energy between the metal ion and oxygen, and the metal ion transitions to a lower state. Compared with CuCoFe-LDH, the oxygen vacancy formation energy of CuCoFe/Tar-LDH decreased from 1.98 to 1.13 eV. The O2 bond length adsorbed on the oxygen vacancy is 1.27 Å, close to the theoretical length of superoxide radicals (•O2-) (1.26 Å). Radical trapping experiments and electron spin-resonance spectroscopy spectrum prove that •O2- is an important precursor of •OH. This work is dedicated to the in-depth exploration of the oxygen vacancy-mediated CuCoFe/Tar-LDH catalyst activation mechanism for molecular oxygen and the conversion relationship between ROS.


Subject(s)
Oxygen , Superoxides , Hydroxides/chemistry , Nitrobenzenes , Oxygen/chemistry , Reactive Oxygen Species , Tartrates
20.
NMR Biomed ; 34(12): e4609, 2021 12.
Article in English | MEDLINE | ID: mdl-34545647

ABSTRACT

Cerebral palsy is a neurological condition that is known to affect muscle growth. Detailed investigations of muscle growth require segmentation of muscles from MRI scans, which is typically done manually. In this study, we evaluated the performance of 2D, 3D, and hybrid deep learning models for automatic segmentation of 11 lower leg muscles and two bones from MRI scans of children with and without cerebral palsy. All six models were trained and evaluated on manually segmented T1 -weighted MRI scans of the lower legs of 20 children, six of whom had cerebral palsy. The segmentation results were assessed using the median Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), and volume error (VError) of all 13 labels of every scan. The best performance was achieved by H-DenseUNet, a hybrid model (DSC 0.90, ASSD 0.5 mm, and VError 2.6 cm3 ). The performance was equivalent to the inter-rater performance of manual segmentation (DSC 0.89, ASSD 0.6 mm, and VError 3.3 cm3 ). Models trained with the Dice loss function outperformed models trained with the cross-entropy loss function. Near-optimal performance could be attained using only 11 scans for training. Segmentation performance was similar for scans of typically developing children (DSC 0.90, ASSD 0.5 mm, and VError 2.8 cm3 ) and children with cerebral palsy (DSC 0.85, ASSD 0.6 mm, and VError 2.4 cm3 ). These findings demonstrate the feasibility of fully automatic segmentation of individual muscles and bones from MRI scans of children with and without cerebral palsy.


Subject(s)
Cerebral Palsy/diagnostic imaging , Deep Learning , Leg/diagnostic imaging , Muscle, Skeletal/diagnostic imaging , Adolescent , Bone and Bones/diagnostic imaging , Child , Child, Preschool , Female , Humans , Male , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL