Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 594(7863): 424-429, 2021 06.
Article in English | MEDLINE | ID: mdl-34040255

ABSTRACT

Liquid-liquid phase separation (LLPS) has emerged as a central paradigm for understanding how membraneless organelles compartmentalize diverse cellular activities in eukaryotes1-3. Here we identify a superfamily of plant guanylate-binding protein (GBP)-like GTPases (GBPLs) that assemble LLPS-driven condensates within the nucleus to protect against infection and autoimmunity. In Arabidopsis thaliana, two members of this family-GBPL1 and GBPL3-undergo phase-transition behaviour to control transcriptional responses as part of an allosteric switch that is triggered by exposure to biotic stress. GBPL1, a pseudo-GTPase, sequesters catalytically active GBPL3 under basal conditions but is displaced by GBPL3 LLPS when it enters the nucleus following immune cues to drive the formation of unique membraneless organelles termed GBPL defence-activated condensates (GDACs) that we visualized by in situ cryo-electron tomography. Within these mesoscale GDAC structures, native GBPL3 directly bound defence-gene promoters and recruited specific transcriptional coactivators of the Mediator complex and RNA polymerase II machinery to massively reprogram host gene expression for disease resistance. Together, our study identifies a GBPL circuit that reinforces the biological importance of phase-separated condensates, in this case, as indispensable players in plant defence.


Subject(s)
Arabidopsis/immunology , Cell Nucleus/chemistry , Cell Nucleus/metabolism , GTP-Binding Proteins/metabolism , Intrinsically Disordered Proteins/metabolism , Phase Transition , Plant Immunity , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Cell Nucleus/genetics , Cell Nucleus/ultrastructure , Chromatin/genetics , Cryoelectron Microscopy , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/ultrastructure , Gene Expression Regulation, Plant/genetics , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/ultrastructure , Mediator Complex , Multigene Family/genetics , Organelles/chemistry , Organelles/immunology , Organelles/metabolism , Organelles/ultrastructure , Plant Cells/chemistry , Plant Cells/immunology , Plant Cells/metabolism , Plant Cells/ultrastructure , Plant Diseases/immunology , Plant Immunity/genetics , Promoter Regions, Genetic/genetics , RNA Polymerase II/metabolism , Transcription, Genetic
2.
BMC Genomics ; 25(1): 403, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658847

ABSTRACT

Recent studies have found a link between deep vein thrombosis and inflammatory reactions. N6-methyladenosine (m6A), a crucial element in immunological regulation, is believed to contribute to the pathophysiology of venous thromboembolism (VTE). However, how the m6A-modified immune microenvironment is involved in VTE remains unclear. In the present study, we identified a relationship between VTE and the expression of several m6A regulatory elements by analyzing peripheral blood samples from 177 patients with VTE and 88 healthy controls from public GEO databases GSE19151 and GSE48000. We used machine learning to identify essential genes and constructed a diagnostic model for VTE using multivariate logistic regression. Unsupervised cluster analysis revealed a marked difference between m6A modification patterns in terms of immune cell infiltration, inflammatory reactivity, and autophagy. We identified two m6A-related autophagy genes (i.e., CHMP2B and SIRT1) and the crucial m6A regulator YTHDF3 using bioinformatics. We also examined two potential mechanisms through which YTHDF3 may affect VTE. m6A modification, immunity, and autophagy are closely linked in VTE, offering novel mechanistic and therapeutic insights.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , Autophagy , Venous Thromboembolism , Humans , Adenosine/metabolism , Autophagy/genetics , Venous Thromboembolism/genetics , Methylation , Female , Male , RNA/genetics , RNA/metabolism , RNA Methylation
3.
Brief Bioinform ; 23(3)2022 05 13.
Article in English | MEDLINE | ID: mdl-35229870

ABSTRACT

Interaction between tumor cells and immune cells determined highly heterogeneous microenvironments across patients, leading to substantial variation in clinical benefits from immunotherapy. Somatic gene mutations were found not only to elicit adaptive immunity but also to influence the composition of tumor immune microenvironment and various processes of antitumor immunity. However, due to an incomplete view of associations between gene mutations and immunophenotypes, how tumor cells shape the immune microenvironment and further determine the clinical benefit of immunotherapy is still unclear. To address this, we proposed a computational approach, inference of mutation effect on immunophenotype by integrated gene set enrichment analysis (MEIGSEA), for tracing back the genomic factor responsible for differences in immunophenotypes. MEIGSEA was demonstrated to accurately identify the previous confirmed immune-associated gene mutations, and systematic evaluation in simulation data further supported its performance. We used MEIGSEA to investigate the influence of driver gene mutations on the infiltration of 22 immune cell types across 19 cancers from The Cancer Genome Atlas. The top associated gene mutations with infiltration of CD8 T cells, such as CASP8, KRAS and EGFR, also showed extensive impact on other immune components; meanwhile, immune effector cells shared critical gene mutations that collaboratively contribute to shaping distinct tumor immune microenvironment. Furthermore, we highlighted the predictive capacity of gene mutations that are positively associated with CD8 T cells for the clinical benefit of immunotherapy. Taken together, we present a computational framework to help illustrate the potential of somatic gene mutations in shaping the tumor immune microenvironment.


Subject(s)
Neoplasms , Tumor Microenvironment , Biomarkers, Tumor/genetics , CD8-Positive T-Lymphocytes , Humans , Immunotherapy , Mutation , Neoplasms/genetics , Tumor Microenvironment/genetics
4.
Int J Med Sci ; 21(2): 219-233, 2024.
Article in English | MEDLINE | ID: mdl-38169719

ABSTRACT

Increasing studies have shown that N6-methyladenosine (m6A) modification plays an important role in cardiovascular diseases. In this study, we systematically investigated the regulatory mode of m6A genes in myocardial infarction (MI) by combining bioinformatics analysis of clinical samples with animal experiments. We utilized gene expression data of clinical samples from public databases to examine the expression of m6A genes in heart tissues and found a large difference between the healthy control group and MI group. Subsequently, we established an MI diagnosis model based on the differentially expressed m6A genes using the random forest method. Next, unsupervised clustering method was used to classify all MI samples into two clusters, and the differences in immune infiltration and gene expression between different clusters were compared. We found LRPPRC to be the predominant gene in m6A clustering, and it was negatively correlated with immunoreaction. Through GO enrichment analysis, we found that most differentially expressed genes between the two clusters were profibrotic. By means of WGCNA, we inferred that GJA4 might be a core molecule in the m6A regulatory network of MI. This study demonstrates that m6A regulators probably affects the immune-inflammatory response and fibrosis to regulate the process of MI, which provides a potential therapeutic target.


Subject(s)
Myocardial Infarction , Animals , Myocardial Infarction/genetics , Cluster Analysis , Fibrosis , RNA
5.
Proc Natl Acad Sci U S A ; 117(25): 14444-14452, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513721

ABSTRACT

Chemical-induced spores of the Gram-negative bacterium Myxococcus xanthus are peptidoglycan (PG)-deficient. It is unclear how these spherical spores germinate into rod-shaped, walled cells without preexisting PG templates. We found that germinating spores first synthesize PG randomly on spherical surfaces. MglB, a GTPase-activating protein, forms a cluster that responds to the status of PG growth and stabilizes at one future cell pole. Following MglB, the Ras family GTPase MglA localizes to the second pole. MglA directs molecular motors to transport the bacterial actin homolog MreB and the Rod PG synthesis complexes away from poles. The Rod system establishes rod shape de novo by elongating PG at nonpolar regions. Thus, similar to eukaryotic cells, the interactions between GTPase, cytoskeletons, and molecular motors initiate spontaneous polarization in bacteria.


Subject(s)
Bacterial Proteins/metabolism , GTPase-Activating Proteins/metabolism , Myxococcus xanthus/cytology , Peptidoglycan/metabolism , Spores, Bacterial/growth & development , Cell Polarity , Cell Wall/metabolism , Cell Wall/ultrastructure , Microscopy, Electron , Morphogenesis , Myxococcus xanthus/growth & development , Myxococcus xanthus/metabolism , Myxococcus xanthus/ultrastructure , Peptidoglycan/genetics , Spores, Bacterial/metabolism , Spores, Bacterial/ultrastructure
6.
J Clin Periodontol ; 49(10): 1067-1078, 2022 10.
Article in English | MEDLINE | ID: mdl-35713233

ABSTRACT

AIM: Periodontitis (PD) is the sixth most prevalent disease around the world and is involved in the development and progression of multiple systemic diseases. Previous studies have reported that PD may aggravate liver injuries. The objective of this study was to investigate whether and how PD affects liver fibrosis. MATERIALS AND METHODS: Ligature-induced PD (LIP) was induced in male C57/B6J mice, and sub-gingival plaques (PL) from patients with PD were applied to mouse teeth. Liver fibrosis was induced by carbon tetrachloride (CCl4 ) injection. The mice were randomly divided into six groups: Oil, Oil+LIP, Oil+LIP+PL, CCl4 , CCl4 +LIP, and CCl4 +LIP+PL. Alveolar bone resorption was evaluated by methylene blue staining. Hepatic function was analysed by serum alanine aminotransferase and hepatic hydroxyproline. Picrosirius red and α-smooth muscle actin (SMA) staining were used to evaluate the fibrotic area. RNA sequencing and quantitative RT-PCR were used to measure gene expression. Western blotting was used to measure protein levels. Flow cytometry was used to analyse the accumulation of immune cells. Mouse microbiota were analysed using 16S rRNA gene sequencing. RESULTS: Mice in the CCl4 +LIP+PL group displayed higher serum alanine aminotransferase and hepatic hydroxyproline as well as more Picrosirius red-positive and α-SMA-positive areas in liver samples than those of the CCl4 group, suggesting that PD (LIP+PL) aggravated CCl4 -induced hepatic dysfunction and liver fibrosis. Consistently, the expression of fibro-genic genes and the protein levels of transforming growth factor ß were much higher in the CCl4 +LIP+PL group than in the CCl4 group. Flow cytometry revealed that PD increased the accumulation of immune cells, including Kupffer cells, B cells, and Th17 cells, in the liver of mice with CCl4 treatment. PD also increased the expression of inflammatory genes and activated pro-inflammatory nuclear factor-kappa B pathway in the livers of CCl4 -injected mice. Moreover, PD altered both oral and liver microbiota in CCl4 -injected mice. CONCLUSIONS: PD aggravates CCl4 -induced hepatic dysfunction and fibrosis in mice, likely through the increase of inflammation and alteration of microbiota in the liver.


Subject(s)
Liver Cirrhosis , Microbiota , Periodontitis , Actins , Alanine Transaminase , Animals , Azo Compounds , Carbon Tetrachloride/adverse effects , Hydroxyproline/metabolism , Liver Cirrhosis/chemically induced , Male , Methylene Blue , Mice , Periodontitis/complications , RNA, Ribosomal, 16S , Transforming Growth Factor beta/metabolism
7.
Proc Natl Acad Sci U S A ; 116(36): 18041-18049, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31427528

ABSTRACT

Assembly of pili on the gram-positive bacterial cell wall involves 2 conserved transpeptidase enzymes named sortases: One for polymerization of pilin subunits and another for anchoring pili to peptidoglycan. How this machine controls pilus length and whether pilus length is critical for cell-to-cell interactions remain unknown. We report here in Actinomyces oris, a key colonizer in the development of oral biofilms, that genetic disruption of its housekeeping sortase SrtA generates exceedingly long pili, catalyzed by its pilus-specific sortase SrtC2 that possesses both pilus polymerization and cell wall anchoring functions. Remarkably, the srtA-deficient mutant fails to mediate interspecies interactions, or coaggregation, even though the coaggregation factor CafA is present at the pilus tip. Increasing ectopic expression of srtA in the mutant progressively shortens pilus length and restores coaggregation accordingly, while elevated levels of shaft pilins and SrtC2 produce long pili and block coaggregation by SrtA+ bacteria. With structural studies, we uncovered 2 key structural elements in SrtA that partake in recognition of pilin substrates and regulate pilus length by inducing the capture and transfer of pilus polymers to the cell wall. Evidently, coaggregation requires proper positioning of the tip adhesin CafA via modulation of pilus length by the housekeeping sortase SrtA.


Subject(s)
Actinomyces , Adhesins, Bacterial , Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Fimbriae, Bacterial , Actinomyces/chemistry , Actinomyces/genetics , Actinomyces/metabolism , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Aminoacyltransferases/chemistry , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Fimbriae, Bacterial/chemistry , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism
8.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232924

ABSTRACT

Helicobacter pylori uses a cluster of polar, sheathed flagella for swimming motility. A search for homologs of H. pylori proteins that were conserved in Helicobacter species that possess flagellar sheaths but were underrepresented in Helicobacter species with unsheathed flagella identified several candidate proteins. Four of the identified proteins are predicted to form part of a tripartite efflux system that includes two transmembrane domains of an ABC transporter (HP1487 and HP1486), a periplasmic membrane fusion protein (HP1488), and a TolC-like outer membrane efflux protein (HP1489). Deleting hp1486/hp1487 and hp1489 homologs in H. pylori B128 resulted in reductions in motility and the number of flagella per cell. Cryo-electron tomography studies of intact motors of the Δhp1489 and Δhp1486/hp1487 mutants revealed many of the cells contained a potential flagellum disassembly product consisting of decorated L and P rings, which has been reported in other bacteria. Aberrant motors lacking specific components, including a cage-like structure that surrounds the motor, were also observed in the Δhp1489 mutant. These findings suggest a role for the H. pylori HP1486-HP1489 tripartite efflux system in flagellum stability. Three independent variants of the Δhp1486/hp1487 mutant with enhanced motility were isolated. All three motile variants had the same frameshift mutation in fliL, suggesting a role for FliL in flagellum disassembly.


Subject(s)
Helicobacter pylori , ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Flagella/genetics , Flagella/metabolism , Helicobacter pylori/metabolism , Membrane Fusion Proteins/analysis , Membrane Fusion Proteins/metabolism , Membrane Proteins/metabolism
9.
Neuropathol Appl Neurobiol ; 47(3): 394-405, 2021 04.
Article in English | MEDLINE | ID: mdl-33098109

ABSTRACT

AIMS: Diffuse gliomas (DGs) are classified into three major molecular subgroups following the revised World Health Organisation (WHO) classification criteria based on their IDH mutation and 1p/19q codeletion status. However, substantial biological heterogeneity and differences in the clinical course are apparent within each subgroup, which remain to be resolved. We sought to assess the clonal status of somatic mutations and explore whether additional molecular subgroups exist within DG. METHODS: A computational framework that integrates the variant allele frequency, local copy number and tumour purity was used to infer the clonality of somatic mutations in 876 DGs from The Cancer Genome Atlas (TCGA). We performed an unsupervised cluster analysis to identify molecular subgroups and characterised their clinical and biological significance. RESULTS: DGs showed widespread genetic intratumoural heterogeneity (ITH), with nearly all driver genes harbouring subclonal mutations, even for known glioma initiating event IDH1 (17.1%). Gliomas with subclonal IDH mutation and without 1p/19q codeletion showed shorter overall and disease-specific survival, higher ITH and exhibited differences in genomic patterns, transcript levels and proliferative potential, when compared with IDH clonal mutation and no 1p/19q codeletion gliomas. We defined a refined stratification system based on the current WHO glioma molecular classification, which showed close correlations with patients' clinical outcomes. CONCLUSIONS: For the first time, we integrated the clonal status of somatic mutations into cancer genomic classification and highlighted the necessity of considering IDH clonal architectures in glioma precision stratification.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioma/genetics , Glioma/pathology , Isocitrate Dehydrogenase/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Brain Neoplasms/classification , Cluster Analysis , Female , Glioma/classification , Humans , Male , Middle Aged , Mutation , Prognosis , Young Adult
10.
Pharmacol Res ; 165: 105439, 2021 03.
Article in English | MEDLINE | ID: mdl-33493658

ABSTRACT

The gut microbiota is recognized as a promising therapeutic target for anxiety. Berberine (BBR) has shown efficacy in the treatment of diseases such as postmenopausal osteoporosis, obesity, and type 2 diabetes through regulating the gut microbiota. However, the effects of BBR on postmenopausal anxiety are still unclear. The purpose of the study is to test whether BBR ameliorates anxiety by modulating intestinal microbiota under estrogen-deficient conditions. Experimental anxiety was established in specific pathogen-free (SPF) ovariectomized (OVX) rats, which were then treated with BBR for 4 weeks before undergoing behavioral tests. Open field and elevated plus maze tests demonstrated that BBR treatment significantly ameliorated anxiety-like behaviors of OVX rats compared with vehicle-treated counterparts. Moreover, as demonstrated by 16S rRNA sequencing and liquid chromatography/mass spectrometry (LC/MS) analysis, BBR-treated OVX rats harbored a higher abundance of beneficial gut microbes, such as Bacteroides, Bifidobacterium, Lactobacillus, and Akkermansia, and exhibited increased equol generation. Notably, gavage feeding of BBR had no significant anti-anxiety effects on germ-free (GF) rats that underwent ovariectomy, whereas GF rats transplanted with fecal microbiota from SPF rats substantially phenocopied the donor rats in terms of anxiety-like symptoms and isoflavone levels. This study indicates that the gut microbiota is critical in the treatment of ovariectomy-aggravated anxiety, and that BBR modulation of the gut microbiota is a promising therapeutic strategy for treating postmenopausal symptoms of anxiety.


Subject(s)
Anxiety/drug therapy , Anxiety/metabolism , Berberine/therapeutic use , Equol/metabolism , Gastrointestinal Microbiome/drug effects , Ovariectomy/adverse effects , Animals , Anxiety/etiology , Berberine/pharmacology , Fecal Microbiota Transplantation/methods , Female , Gastrointestinal Microbiome/physiology , Rats , Rats, Sprague-Dawley
11.
Acta Pharmacol Sin ; 42(11): 1821-1833, 2021 11.
Article in English | MEDLINE | ID: mdl-33558654

ABSTRACT

Accumulating evidence shows that agents targeting gut dysbiosis are effective for improving symptoms of irritable bowel syndrome (IBS). However, the potential mechanisms remain unclear. In this study we investigated the effects of berberine on the microbiota-gut-brain axis in two rat models of visceral hypersensitivity, i.e., specific pathogen-free SD rats subjected to chronic water avoidance stress (WAS) and treated with berberine (200 mg· kg-1 ·d-1, ig, for 10 days) as well as germ-free (GF) rats subjected to fecal microbiota transplantation (FMT) from a patient with IBS (designated IBS-FMT) and treated with berberine (200 mg· kg-1 ·d-1, ig, for 2 weeks). Before the rats were sacrificed, visceral sensation and depressive behaviors were evaluated. Then colonic tryptase was measured and microglial activation in the dorsal lumbar spinal cord was assessed. The fecal microbiota was profiled using 16S rRNA sequencing, and short chain fatty acids (SCFAs) were measured. We showed that berberine treatment significantly alleviated chronic WAS-induced visceral hypersensitivity and activation of colonic mast cells and microglia in the dorsal lumbar spinal cord. Transfer of fecal samples from berberine-treated stressed donors to GF rats protected against acute WAS. FMT from a patient with IBS induced visceral hypersensitivity and pro-inflammatory phenotype in microglia, while berberine treatment reversed the microglial activation and altered microbial composition and function and SCFA profiles in stools of IBS-FMT rats. We demonstrated that berberine did not directly influence LPS-induced microglial activation in vitro. In both models, several SCFA-producing genera were enriched by berberine treatment, and positively correlated to the morphological parameters of microglia. In conclusion, activation of microglia in the dorsal lumbar spinal cord was involved in the pathogenesis of IBS caused by dysregulation of the microbiota-gut-brain axis, and the berberine-altered gut microbiome mediated the modulatory effects of the agent on microglial activation and visceral hypersensitivity, providing a potential option for the treatment of IBS.


Subject(s)
Berberine/therapeutic use , Brain-Gut Axis/drug effects , Gastrointestinal Microbiome/drug effects , Microglia/drug effects , Spinal Cord/drug effects , Visceral Pain/drug therapy , Animals , Berberine/pharmacology , Brain-Gut Axis/physiology , Cell Line , Fecal Microbiota Transplantation/methods , Gastrointestinal Microbiome/physiology , Humans , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/metabolism , Male , Mice , Microglia/metabolism , Rats , Rats, Sprague-Dawley , Spinal Cord/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Visceral Pain/metabolism
12.
J Bacteriol ; 202(4)2020 01 29.
Article in English | MEDLINE | ID: mdl-31767780

ABSTRACT

The bacterial flagellum is a biological nanomachine that rotates to allow bacteria to swim. For flagellar rotation, torque is generated by interactions between a rotor and a stator. The stator, which is composed of MotA and MotB subunit proteins in the membrane, is thought to bind to the peptidoglycan (PG) layer, which anchors the stator around the rotor. Detailed information on the stator and its interactions with the rotor remains unclear. Here, we deployed cryo-electron tomography and genetic analysis to characterize in situ structure of the bacterial flagellar motor in Vibrio alginolyticus, which is best known for its polar sheathed flagellum and high-speed rotation. We determined in situ structure of the motor at unprecedented resolution and revealed the unique protein-protein interactions among Vibrio-specific features, namely the H ring and T ring. Specifically, the H ring is composed of 26 copies of FlgT and FlgO, and the T ring consists of 26 copies of a MotX-MotY heterodimer. We revealed for the first time a specific interaction between the T ring and the stator PomB subunit, providing direct evidence that the stator unit undergoes a large conformational change from a compact form to an extended form. The T ring facilitates the recruitment of the extended stator units for the high-speed motility in Vibrio species.IMPORTANCE The torque of flagellar rotation is generated by interactions between a rotor and a stator; however, detailed structural information is lacking. Here, we utilized cryo-electron tomography and advanced imaging analysis to obtain a high-resolution in situ flagellar basal body structure in Vibrio alginolyticus, which is a Gram-negative marine bacterium. Our high-resolution motor structure not only revealed detailed protein-protein interactions among unique Vibrio-specific features, the T ring and H ring, but also provided the first structural evidence that the T ring interacts directly with the periplasmic domain of the stator. Docking atomic structures of key components into the in situ motor map allowed us to visualize the pseudoatomic architecture of the polar sheathed flagellum in Vibrio spp. and provides novel insight into its assembly and function.


Subject(s)
Bacterial Proteins/chemistry , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Flagella/chemistry , Vibrio alginolyticus/ultrastructure , Bacterial Outer Membrane Proteins/chemistry , Flagella/ultrastructure , Molecular Motor Proteins/chemistry , Protein Conformation , Vibrio alginolyticus/chemistry
13.
J Biol Chem ; 294(43): 15613-15622, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31484726

ABSTRACT

Over the past decade, thousands of long noncoding RNAs (lncRNAs) have been identified, many of which play crucial roles in normal physiology and human disease. LncRNAs can interact with chromatin and then recruit protein complexes to remodel chromatin states, thus regulating gene expression. However, how lncRNA-chromatin interactions contribute to their biological functions is largely unknown. Here, we collected and constructed an atlas of 188,647 lncRNA-chromatin interactions in human and mouse. All lncRNAs showed diverse epigenetic modification patterns at their binding sites, especially the marks of enhancer activity. Functional analysis of lncRNA target genes further revealed that lncRNAs could exert their functions by binding to both promoter and distal regulatory elements, especially the distal regulatory elements. Intriguingly, many important pathways were observed to be widely regulated by lncRNAs through distal binding. For example, NEAT1, a cancer lncRNA, controls 13.3% of genes in the PI3K-AKT signaling pathway by interacting with distal regulatory elements. In addition, "two-gene" signatures composed of a lncRNA and its distal target genes, such as HOTAIR-CRIM1, provided significant clinical benefits relative to the lncRNA alone. In summary, our findings underscored that lncRNA-distal interactions were essential for lncRNA functions, which would provide new clues to understand the molecular mechanisms of lncRNAs in complex disease.


Subject(s)
Chromatin/metabolism , RNA, Long Noncoding/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Binding Sites , Epigenesis, Genetic , Genome, Human , Humans , Neoplasms/genetics , Promoter Regions, Genetic
14.
Int J Cancer ; 147(11): 3139-3151, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32875565

ABSTRACT

The evolutionary dynamics of human cancers has been investigated popularly and several bifurcated paths in cancer evolutionary trajectories are revealed to be with differential outcomes and phenotypes. However, whether such bifurcated paths exist in glioblastoma (GBM) remains unclear. In 385 GBM samples, through determining the clonal status of cancer driver events and inferring their temporal order, we constructed a temporal map of evolutionary trajectories at the patient population level. By investigating the differential impact on clinical outcome, we identified four key bifurcated paths, namely, "chromosome 10 copy number loss (ie, 10 loss) → chromosome 19 copy number gain (ie, 19 gain): 10 loss → 13q loss"; "10 loss → 19 gain: 10 loss → 15q loss"; "10 loss → 19 gain: 10 loss → 6q loss" and "10 loss → 19 gain: 10 loss → 16q loss". They formed a core multibranches path, with 10 loss being regarded as the common earliest event followed by 19 gain and four other departure events (13q loss, 15q loss, 6q loss and 16q loss), which may account for their difference in genome instability and patient survival time. Compared to "10 loss → 19 gain", the patients with "10 loss → 13q loss" had higher telomerase activity. Notably, there were obvious discrepancies in immune activity and immune cell infiltration level between patients with "10 loss → 13q/16q loss" and "10 loss → 19 gain", highlighting the bifurcated paths' effect on tumor immune microenvironment. In summary, our study identifies four key bifurcated paths in GBM for the first time, suggesting the feasibility of patient stratification and prognosis prediction based on key bifurcated paths.


Subject(s)
Brain Neoplasms/genetics , Chromosomes, Human/genetics , Gene Regulatory Networks , Glioblastoma/genetics , Clonal Evolution , Gene Dosage , Humans , Male , Mutation , Prognosis , Survival Analysis , Tumor Microenvironment
15.
Opt Express ; 28(9): 13141-13154, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403795

ABSTRACT

In high-speed free-space optical communication systems, the received laser beam must be coupled into a single-mode fiber at the input of the receiver module. However, propagation through atmospheric turbulence degrades the spatial coherence of a laser beam and poses challenges for fiber coupling. In this paper, we propose a novel method, called as adaptive stochastic parallel gradient descent (ASPGD), to achieve efficient fiber coupling. To be specific, we formulate the fiber coupling problem as a model-free optimization problem and solve it using ASPGD in parallel. To avoid converging to the extremum points and accelerate its convergence speed, we integrate the momentum and the adaptive gain coefficient estimation to the original stochastic parallel gradient descent (SPGD) method. Simulation and experimental results demonstrate that the proposed method reduces 50% of iterations, while keeping the stability by comparing it with the original SPGD method.

16.
Gynecol Oncol ; 158(1): 66-76, 2020 07.
Article in English | MEDLINE | ID: mdl-32402633

ABSTRACT

OBJECTIVE: Platinum-based chemotherapy remains the first-line treatment for ovarian carcinoma by inducing DNA damage. The therapeutic impact of clonal and subclonal somatic mutations in DNA damage repair (DDR) pathways remains unexplored. METHODS: We performed an integrated analysis to infer the clonality of somatic deleterious mutations in 385 ovarian carcinomas treated with platinum-based chemotherapy. The Kaplan-Meier method was performed for visualization and the differences between survival curves were calculated by log-rank test. Proportional hazards models were used to estimate relative hazards for platinum-free interval (PFI), progression-free survival (PFS) and overall survival (OS). RESULTS: We found that somatic deleterious mutations in DDR pathways exhibited widespread clonal heterogeneity, and that patients with DDR clonal mutations exhibited a "hypermutator phenotype". Clonal somatic mutations in homologous recombination repair (HRR) pathway were significantly associated with better OS (HR = 0.19 (95% CI, 0.06-0.59), P = 0.0044) and PFS (HR = 0.20 (95% CI, 0.08-0.49), P = 0.0005) than HRR wild-type, while HRR subclonal mutations were not associated with prognosis. Moreover, HRR clonal mutations were associated with significantly higher chemotherapy sensitive rate (P = 0.0027) and longer PFI (HR = 0.20 (95% CI, 0.08-0.49), P = 0.0005) than HRR wild-type, while HRR subclonal mutations were not. We validated our findings using an independent cohort of 93 ovarian cancer patients that received platinum-based chemotherapy. CONCLUSIONS: HRR clonal mutations, but not subclonal mutations, were associated with improved survival, chemotherapy response, and genome instability compared with HRR wild-type.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Mutation , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , DNA Repair , Female , Genomic Instability , Homologous Recombination , Humans , Kaplan-Meier Estimate , Organoplatinum Compounds/administration & dosage , Ovarian Neoplasms/surgery , Predictive Value of Tests , Progression-Free Survival , Proportional Hazards Models , Survival Rate , Treatment Outcome
17.
Clin Lab ; 66(5)2020 May 01.
Article in English | MEDLINE | ID: mdl-32390397

ABSTRACT

BACKGROUND: Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid malignancies. The incidence of MDS is gradually increasing, but the pathogenesis is still not very clear. Studies have shown that long non-coding RNAs (lncRNAs) play a critical role in both oncogenic and tumor-suppressive pathways. However, the function of lncRNAs in MDS is still unknown. The purpose of this study was to investigate the expression profiles and biological function of the aberrantly expressed lncRNAs and mRNAs in MDS. METHODS: We downloaded two data sets (GSE4619 and GSE19429) from the Gene Expression Omnibus database and obtained differentially expressed (DE) lncRNAs and DE-mRNAs between MDS cases and healthy controls. Then we performed systematic bioinformatics analysis to know the biological function of DE-lncRNAs and DE-mRNAs in MDS. RESULTS: We identified 40 DE-lncRNAs and 643 DE-mRNAs between MDS cases and healthy controls. Gene Ontology (GO) and pathway analysis revealed that DE-lncRNAs and DE-mRNAs were mainly involved in necroptosis, apoptosis, immunodeficiency, p53 and FoxO signaling pathways. LncRNA-mRNA co-expression and lncRNA functional similarity network showed that twelve down-regulated lncRNAs co-regulated the same target gene and they were similar in function. CONCLUSIONS: The comprehensive analysis of lncRNA and mRNA is helpful in understanding the pathogenesis of MDS, and the synergistically down-regulated lncRNAs may contribute to the development of new diagnostic and therapeutic strategies.


Subject(s)
Computational Biology/methods , Myelodysplastic Syndromes , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Transcriptome/genetics , Databases, Genetic , Gene Expression Profiling/methods , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/physiopathology , Protein Interaction Maps/genetics , RNA, Long Noncoding/analysis , RNA, Long Noncoding/metabolism , RNA, Messenger/analysis , RNA, Messenger/metabolism , Signal Transduction/genetics
18.
Nucleic Acids Res ; 46(D1): D78-D84, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29059320

ABSTRACT

Large-scale sequencing studies discovered substantial genetic variants occurring in enhancers which regulate genes via long range chromatin interactions. Importantly, such variants could affect enhancer regulation by changing transcription factor bindings or enhancer hijacking, and in turn, make an essential contribution to disease progression. To facilitate better usage of published data and exploring enhancer deregulation in various human diseases, we created DiseaseEnhancer (http://biocc.hrbmu.edu.cn/DiseaseEnhancer/), a manually curated database for disease-associated enhancers. As of July 2017, DiseaseEnhancer includes 847 disease-associated enhancers in 143 human diseases. Database features include basic enhancer information (i.e. genomic location and target genes); disease types; associated variants on the enhancer and their mediated phenotypes (i.e. gain/loss of enhancer and the alterations of transcription factor bindings). We also include a feature on our website to export any query results into a file and download the full database. DiseaseEnhancer provides a promising avenue for researchers to facilitate the understanding of enhancer deregulation in disease pathogenesis, and identify new biomarkers for disease diagnosis and therapy.


Subject(s)
Databases, Nucleic Acid , Disease/genetics , Enhancer Elements, Genetic , Gene Regulatory Networks , Genetic Variation , Genome, Human , Humans , Internet , User-Computer Interface
19.
Proc Natl Acad Sci U S A ; 114(41): 10966-10971, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28973904

ABSTRACT

Vibrio species are Gram-negative rod-shaped bacteria that are ubiquitous and often highly motile in aqueous environments. Vibrio swimming motility is driven by a polar flagellum covered with a membranous sheath, but this sheathed flagellum is not well understood at the molecular level because of limited structural information. Here, we use Vibrio alginolyticus as a model system to study the sheathed flagellum in intact cells by combining cryoelectron tomography (cryo-ET) and subtomogram analysis with a genetic approach. We reveal striking differences between sheathed and unsheathed flagella in V. alginolyticus cells, including a novel ring-like structure at the bottom of the hook that is associated with major remodeling of the outer membrane and sheath formation. Using mutants defective in flagellar motor components, we defined a Vibrio-specific feature (also known as the T ring) as a distinctive periplasmic structure with 13-fold symmetry. The unique architecture of the T ring provides a static platform to recruit the PomA/B complexes, which are required to generate higher torques for rotation of the sheathed flagellum and fast motility of Vibrio cells. Furthermore, the Vibrio flagellar motor exhibits an intrinsic length variation between the inner and the outer membrane bound complexes, suggesting the outer membrane bound complex can shift slightly along the axial rod during flagellar rotation. Together, our detailed analyses of the polar flagella in intact cells provide insights into unique aspects of the sheathed flagellum and the distinct motility of Vibrio species.


Subject(s)
Electron Microscope Tomography/methods , Flagella/metabolism , Flagella/ultrastructure , Sodium/metabolism , Vibrio alginolyticus/ultrastructure , Bacterial Proteins/metabolism , Vibrio alginolyticus/cytology , Vibrio alginolyticus/genetics , Vibrio alginolyticus/metabolism
20.
J Bacteriol ; 201(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-31010901

ABSTRACT

The bacterial flagellum is a sophisticated self-assembling nanomachine responsible for motility in many bacterial pathogens, including Pseudomonas aeruginosa, Vibrio spp., and Salmonella enterica The bacterial flagellum has been studied extensively in the model systems Escherichia coli and Salmonella enterica serovar Typhimurium, yet the range of variation in flagellar structure and assembly remains incompletely understood. Here, we used cryo-electron tomography and subtomogram averaging to determine in situ structures of polar flagella in P. aeruginosa and peritrichous flagella in S Typhimurium, revealing notable differences between these two flagellar systems. Furthermore, we observed flagellar outer membrane complexes as well as many incomplete flagellar subassemblies, which provide additional insight into mechanisms underlying flagellar assembly and loss in both P. aeruginosa and S Typhimurium.IMPORTANCE The bacterial flagellum has evolved as one of the most sophisticated self-assembled molecular machines, which confers locomotion and is often associated with virulence of bacterial pathogens. Variation in species-specific features of the flagellum, as well as in flagellar number and placement, results in structurally distinct flagella that appear to be adapted to the specific environments that bacteria encounter. Here, we used cutting-edge imaging techniques to determine high-resolution in situ structures of polar flagella in Pseudomonas aeruginosa and peritrichous flagella in Salmonella enterica serovar Typhimurium, demonstrating substantial variation between flagella in these organisms. Importantly, we observed novel flagellar subassemblies and provided additional insight into the structural basis of flagellar assembly and loss in both P. aeruginosa and S Typhimurium.


Subject(s)
Cryoelectron Microscopy , Electron Microscope Tomography , Flagella/ultrastructure , Pseudomonas aeruginosa/cytology , Salmonella typhimurium/cytology , Bacterial Proteins/metabolism , Flagella/genetics , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa/genetics , Salmonella typhimurium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL