Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 294
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 171(3): 696-709.e23, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28965760

ABSTRACT

The transcription factor NRF2 is a master regulator of the cellular antioxidant response, and it is often genetically activated in non-small-cell lung cancers (NSCLCs) by, for instance, mutations in the negative regulator KEAP1. While direct pharmacological inhibition of NRF2 has proven challenging, its aberrant activation rewires biochemical networks in cancer cells that may create special vulnerabilities. Here, we use chemical proteomics to map druggable proteins that are selectively expressed in KEAP1-mutant NSCLC cells. Principal among these is NR0B1, an atypical orphan nuclear receptor that we show engages in a multimeric protein complex to regulate the transcriptional output of KEAP1-mutant NSCLC cells. We further identify small molecules that covalently target a conserved cysteine within the NR0B1 protein interaction domain, and we demonstrate that these compounds disrupt NR0B1 complexes and impair the anchorage-independent growth of KEAP1-mutant cancer cells. Our findings designate NR0B1 as a druggable transcriptional regulator that supports NRF2-dependent lung cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung/chemistry , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/chemistry , Lung Neoplasms/genetics , Proteome/analysis , Transcriptome , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cysteine/metabolism , DAX-1 Orphan Nuclear Receptor/metabolism , Gene Regulatory Networks , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Ligands , Lung Neoplasms/metabolism
2.
Small ; 20(11): e2307299, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37875731

ABSTRACT

Given the crucial role of immune system in the occurrence and progression of various diseases such as cancer, wound healing, bone defect, and inflammation-related diseases, immunomodulation is recognized as a potential solution for treatment of these diseases. Immunomodulation includes both immunosuppression in hyperactive immune conditions and immune activation in hypoactive conditions. For these purposes, metal-organic frameworks (MOFs) are investigated to modulate immune responses either by their own bioactivities or by delivering immunomodulatory agents due to their excellent biodegradability and high delivery capacity. This review starts with an overview of the synthesis strategies of immunomodulatory MOFs, followed by a summarization on the latest applications of immunomodulatory MOFs in cancer immunomodulatory, wound healing, inflammatory disease, and bone tissue engineering. A variety of design considerations, in order to optimize immunomodulatory properties and efficacy of MOFs, is also involved. Last, the challenges and perspectives of future research, which are expected to provide researchers with new insight into the design and application of immunomodulatory MOFs, are discussed.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Humans , Immunomodulation , Bone and Bones , Immunity
3.
Small ; : e2310622, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38377299

ABSTRACT

As the global population ages, bone diseases have become increasingly prevalent in clinical settings. These conditions often involve detrimental factors such as infection, inflammation, and oxidative stress that disrupt bone homeostasis. Addressing these disorders requires exogenous strategies to regulate the osteogenic microenvironment (OME). The exogenous regulation of OME can be divided into four processes: induction, modulation, protection, and support, each serving a specific purpose. To this end, metal-organic frameworks (MOFs) are an emerging focus in nanomedicine, which show tremendous potential due to their superior delivery capability. MOFs play numerous roles in OME regulation such as metal ion donors, drug carriers, nanozymes, and photosensitizers, which have been extensively explored in recent studies. This review presents a comprehensive introduction to the exogenous regulation of OME by MOF-based nanomaterials. By discussing various functional MOF composites, this work aims to inspire and guide the creation of sophisticated and efficient nanomaterials for bone disease management.

4.
Plant Biotechnol J ; 22(6): 1669-1680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38450899

ABSTRACT

The exploitation of heterosis to integrate parental advantages is one of the fastest and most efficient ways of rice breeding. The genomic architecture of heterosis suggests that the grain yield is strongly correlated with the accumulation of numerous rare superior alleles with positive dominance. However, the improvements in yield of hybrid rice have shown a slowdown or even plateaued due to the limited availability of complementary superior alleles. In this study, we achieved a considerable increase in grain yield of restorer lines by inducing an alternative splicing event in a heterosis gene OsMADS1 through CRISPR-Cas9, which accounted for approximately 34.1%-47.5% of yield advantage over their corresponding inbred rice cultivars. To achieve a higher yield in hybrid rice, we crossed the gene-edited restorer parents harbouring OsMADS1GW3p6 with the sterile lines to develop new rice hybrids. In two-line hybrid rice Guang-liang-you 676 (GLY676), the yield of modified hybrids carrying the homozygous heterosis gene OsMADS1GW3p6 significantly exceeded that of the original hybrids with heterozygous OsMADS1. Similarly, the gene-modified F1 hybrids with heterozygous OsMADS1GW3p6 increased grain yield by over 3.4% compared to the three-line hybrid rice Quan-you-si-miao (QYSM) with the homozygous genotype of OsMADS1. Our study highlighted the great potential in increasing the grain yield of hybrid rice by pyramiding a single heterosis gene via CRISPR-Cas9. Furthermore, these results demonstrated that the incomplete dominance of heterosis genes played a major role in yield-related heterosis and provided a promising strategy for breeding higher-yielding rice varieties above what is currently achievable.


Subject(s)
Genes, Dominant , Hybrid Vigor , Oryza , Plant Breeding , Oryza/genetics , Oryza/growth & development , Hybrid Vigor/genetics , Plant Breeding/methods , CRISPR-Cas Systems , Gene Editing/methods , Hybridization, Genetic , Plants, Genetically Modified/genetics , Genes, Plant/genetics , Edible Grain/genetics , Edible Grain/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism
5.
BMC Neurol ; 24(1): 124, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616262

ABSTRACT

BACKGROUND: Scedosporium apiospermum (S. apiospermum) is a rare fungal pathogen that causes disseminated infections. It rarely affects immunocompetent individuals and has a poor prognosis. CASE PRESENTATION: A 37-year-old woman presented with multiple lesions in the lungs, brain, and eyes, shortly after near drowning in a car accident. The primary symptoms were chest tightness, limb weakness, headache, and poor vision in the left eye. S. apiospermum infection was confirmed by metagenomic next-generation sequencing (mNGS) of intracranial abscess drainage fluid, although intracranial metastases were initially considered. After systemic treatment with voriconazole, her symptoms improved significantly; however, she lost vision in her left eye due to delayed diagnosis. CONCLUSION: While S. apiospermum infection is rare, it should be considered even in immunocompetent patients. Prompt diagnosis and treatment are essential. Voriconazole may be an effective treatment option.


Subject(s)
Invasive Fungal Infections , Near Drowning , Scedosporium , Humans , Female , Adult , Near Drowning/complications , Voriconazole/therapeutic use , Brain
6.
Acta Pharmacol Sin ; 45(5): 900-913, 2024 May.
Article in English | MEDLINE | ID: mdl-38225393

ABSTRACT

Autophagy impairment is a key factor in Alzheimer's disease (AD) pathogenesis. TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) are nuclear transcription factors that regulate autophagy and lysosomal biogenesis. We previously showed that corynoxine (Cory), a Chinese medicine compound, protects neurons from Parkinson's disease (PD) by activating autophagy. In this study, we investigated the effect of Cory on AD models in vivo and in vitro. We found that Cory improved learning and memory function, increased neuronal autophagy and lysosomal biogenesis, and reduced pathogenic APP-CTFs levels in 5xFAD mice model. Cory activated TFEB/TFE3 by inhibiting AKT/mTOR signaling and stimulating lysosomal calcium release via transient receptor potential mucolipin 1 (TRPML1). Moreover, we demonstrated that TFEB/TFE3 knockdown abolished Cory-induced APP-CTFs degradation in N2aSwedAPP cells. Our findings suggest that Cory promotes TFEB/TFE3-mediated autophagy and alleviates Aß pathology in AD models.


Subject(s)
Alzheimer Disease , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Disease Models, Animal , Transient Receptor Potential Channels , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Autophagy/drug effects , Mice , Lysosomes/metabolism , Lysosomes/drug effects , Humans , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism , Male , Proto-Oncogene Proteins c-akt/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Signal Transduction/drug effects , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics
7.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34244442

ABSTRACT

Here, we report that important regulators of cilia formation and ciliary compartment-directed protein transport function in secretion polarity. Mutations in cilia genes cep290 and bbs2, involved in human ciliopathies, affect apical secretion of Cochlin, a major otolith component and a determinant of calcium carbonate crystallization form. We show that Cochlin, defective in human auditory and vestibular disorder, DFNA9, is secreted from small specialized regions of vestibular system epithelia. Cells of these regions secrete Cochlin both apically into the ear lumen and basally into the basal lamina. Basally secreted Cochlin diffuses along the basal surface of vestibular epithelia, while apically secreted Cochlin is incorporated into the otolith. Mutations in a subset of ciliopathy genes lead to defects in Cochlin apical secretion, causing abnormal otolith crystallization and behavioral defects. This study reveals a class of ciliary proteins that are important for the polarity of secretion and delineate a secretory pathway that regulates biomineralization.


Subject(s)
Ciliopathies/genetics , Otolithic Membrane/metabolism , Zebrafish Proteins/metabolism , Zebrafish/genetics , Amino Acid Sequence , Animals , Bardet-Biedl Syndrome/genetics , Base Sequence , Cilia/metabolism , Crystallization , Epistasis, Genetic , Extracellular Matrix Proteins/genetics , Gene Expression Regulation, Developmental , Homozygote , Mutation/genetics , Phenotype , Zebrafish Proteins/genetics
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 215-220, 2024 Feb 10.
Article in Zh | MEDLINE | ID: mdl-38311562

ABSTRACT

OBJECTIVE: To explore the clinical features and genetic etiology of a patient with Adult-onset globoid cell leukodystrophy/Krabbe disease (KD). METHODS: A patient who was admitted to the Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology on February 15, 2022 due to exacerbation of right leg weakness for over 4 years was selected as the study subject. Clinical data and results of medical imaging and genetic analysis were analyzed. Candidate variants were verified by family analysis. RESULTS: The patient, a 36-year-old woman, had spasmodic gait as the primary presentation. Cranial magnetic resonance imaging (MRI) revealed symmetrical abnormalities in the bilateral corticospinal tracts, and the activity of ß-galactocerebrosidase (GALC) in her white blood cells was significantly decreased. The patient was found to harbor compound heterozygous variants of the GALC gene, namely c.461C>A (p.Pro154His) and c.1901T>C (p.Leu634Ser). Her mother, sister and nephew were heterozygous carriers of the c.461C>A (p.Pro154His) variant, whilst her father was heterozygous for the c.1901T>C (p.Leu634Ser) variant. CONCLUSION: The patient was ultimately diagnosed with adult-onset KD, for which the compound heterozygous variants of the GALC gene may be accountable.


Subject(s)
Leukodystrophy, Globoid Cell , Humans , Adult , Female , Leukodystrophy, Globoid Cell/genetics , Galactosylceramidase/genetics , Magnetic Resonance Imaging , Siblings , Mothers , Mutation
9.
Stroke ; 54(5): 1257-1267, 2023 05.
Article in English | MEDLINE | ID: mdl-36987920

ABSTRACT

BACKGROUND: Poststroke cognitive impairment (PSCI) is highly prevalent in stroke survivors and correlated with unfavorable clinical outcomes. This study aimed to identify the neural substrate of PSCI using atlas-based disconnectome analysis and assess the value of disconnection score, a baseline measure for stroke-induced structural disconnection, in PSCI prediction. METHODS: A multicenter prospective cohort of 676 first-ever patients with acute ischemic stroke was enrolled from 3 independent hospitals in China. Sociodemographic, clinical, and neuroimaging data were collected at acute stage of stroke. Cognitive assessment was performed at 3 months after stroke. Voxel-wise and tract-wise disconnectome analysis were performed to uncover the strategic structural disconnection pattern for global PSCI. Disconnection score was calculated for each participant in leave-one-dataset-out cross-validation. Multivariable logistic regression was performed for the association between disconnection score and PSCI. Prediction models with and without disconnection score were developed, cross-validated, and compared in terms of discrimination and goodness-of-fit. RESULTS: Compared with lesions of non-PSCI, those of PSCI were more likely to have fiber connections with left prefrontal cortex and left deep structures (thalamus and basal ganglia). Disconnection score could predict the risk and severity of PSCI during cross-validation, and was independently associated with PSCI after controlling for all baseline covariates (odds ratio, 1.38 [95% CI, 1.17-1.64]; P<0.001). Incorporating disconnection score into a reference model with 6 known predictors resulted in significant improvement in both discrimination and goodness-of-fit throughout cross-validation. CONCLUSIONS: A strategic structural disconnection pattern centered on left prefrontal cortex, thalamus, and basal ganglia is identified for global PSCI using indirect disconnectome analysis. The baseline disconnection score is independently predictive of PSCI and has significant incremental value to preexisting sociodemographic, clinical, and neuroimaging predictors. REGISTRATION: URL: http://www.chictr.org.cn/enIndex.aspx; Unique identifier: ChiCTR-ROC-17013993.


Subject(s)
Cognitive Dysfunction , Ischemic Stroke , Stroke , Humans , Ischemic Stroke/complications , Prospective Studies , Stroke/complications , Cognitive Dysfunction/psychology , Logistic Models
10.
Anal Chem ; 95(29): 11124-11131, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37439785

ABSTRACT

Recent discoveries of noncanonical RNA caps, such as nicotinamide adenine dinucleotide (NAD+) and 3'-dephospho-coenzyme A (dpCoA), have expanded our knowledge of RNA caps. Although dpCoA has been known to cap RNAs in various species, the identities of its capped RNAs (dpCoA-RNAs) remained unknown. To fill this gap, we developed a method called dpCoA tagSeq, which utilized a thiol-reactive maleimide group to label dpCoA cap with a tag RNA serving as the 5' barcode. The barcoded RNAs were isolated using a complementary DNA strand of the tag RNA prior to direct sequencing by nanopore technology. Our validation experiments with model RNAs showed that dpCoA-RNA was efficiently tagged and captured using this protocol. To confirm that the tagged RNAs are capped by dpCoA and no other thiol-containing molecules, we used a pyrophosphatase NudC to degrade the dpCoA cap to adenosine monophosphate (AMP) moiety before performing the tagSeq protocol. We identified 44 genes that transcribe dpCoA-RNAs in mouse liver, demonstrating the method's effectiveness in identifying and characterizing the capped RNAs. This strategy provides a viable approach to identifying dpCoA-RNAs that allows for further functional investigations of the cap.


Subject(s)
Nanopore Sequencing , Nanopores , Animals , Mice , RNA Caps/genetics , RNA Caps/metabolism , Coenzyme A , Maleimides
11.
Small ; 19(14): e2205941, 2023 04.
Article in English | MEDLINE | ID: mdl-36587967

ABSTRACT

Drug-resistant bacterial infection impairs tissue regeneration and is a challenging clinical problem. Metal-organic frameworks (MOFs)-based photodynamic therapy (PDT) opens up a new era for antibiotic-free infection treatment. However, the MOF-based PDT normally encounters limited photon absorbance under visible light and notorious recombination of photogenerated holes and electrons, which significantly impede their applications. Herein, a MOFs-based nanosystem (AgNPs@MOFs) with enhanced visible light response and charge carrier separation is developed by modifying MOFs with silver nanoparticles (AgNPs) to improve PDT efficiency. The AgNPs@MOFs with enhanced photodynamic performance under visible light irradiation mainly disrupt bacteria translation process and the metabolism of purine and pyrimidine. In addition, the introduction of AgNPs endows nanosystems with chemotherapy ability, which causes destructive effect on bacterial cell membrane, including membrane ATPase protein and fatty acids. AgNPs@MOFs show excellent synergistic drug-resistant bacterial killing efficiency through multiple mechanisms, which further restrain bacterial resistance. In addition, biocompatible AgNPs@MOFs pose potential tissue regeneration ability in both Methicillin-resistant Staphylococcus aureus (MRSA)-related soft and hard tissue infection. Overall, this study provides a promising perspective in the exploration of AgNPs@MOFs as nano antibacterial medicine against drug-resistant bacteria for infected tissue regeneration in the future.


Subject(s)
Bacterial Infections , Metal Nanoparticles , Metal-Organic Frameworks , Methicillin-Resistant Staphylococcus aureus , Humans , Metal-Organic Frameworks/pharmacology , Staphylococcus aureus , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
12.
Plant Physiol ; 190(3): 1747-1762, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35976143

ABSTRACT

Wild rice (Oryza rufipogon) has a lower panicle seed setting rate (PSSR) and gamete fertility than domesticated rice (Oryza sativa), but the genetic mechanisms of this phenomenon remain unknown. Here, we cloned a null allele of OsMLH1, an ortholog of MutL-homolog 1 to yeast and mammals, from wild rice O. rufipogon W1943 and revealed a 5.4-kb retrotransposon insertion in OsMLH1 is responsible for the low PSSR in wild rice. In contrast to the wild-type, a near isogenic line NIL-mlh1 exhibits defective crossover (CO) formation during meiosis, resulting in reduced pollen viability, partial embryo lethality, and low PSSR. Except for the mutant of mismatch repair gene postmeiotic segregation 1 (Ospms1), all other MutL mutants from O. sativa indica subspecies displayed male and female semi-sterility similar to NIL-mlh1, but less severe than those from O. sativa japonica subspecies. MLH1 and MLH3 did not contribute in an additive fashion to fertility. Two types of MutL heterodimers, MLH1-PMS1 and MLH1-MLH3, were identified in rice, but only the latter functions in promoting meiotic CO formation. Compared to japonica varieties, indica cultivars had greater numbers of CO events per meiosis. Our results suggest that low fertility in wild rice may be caused by different gene defects, and indica and japonica subspecies have substantially different CO rates responsible for the discrepancy between the fertility of mlh1 and mlh3 mutants.


Subject(s)
Oryza , Saccharomyces cerevisiae Proteins , Animals , Oryza/genetics , Retroelements/genetics , Saccharomyces cerevisiae/genetics , Seeds/genetics , Meiosis/genetics , Mammals/genetics , MutL Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics
13.
J Immunol ; 206(10): 2290-2300, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33911007

ABSTRACT

Siglec-8 is an inhibitory receptor expressed on eosinophils and mast cells. In this study, we took advantage of a novel Siglec-8 transgenic mouse model to assess the impact of modulating IgE-dependent mast cell degranulation and anaphylaxis using a liposomal platform to display an allergen with or without a synthetic glycan ligand for Siglec-8 (Sig8L). The hypothesis is that recruitment of Siglec-8 to the IgE-FcεRI receptor complex will inhibit allergen-induced mast cell degranulation. Codisplay of both allergen and Sig8L on liposomes profoundly suppresses IgE-mediated degranulation of mouse bone marrow-derived mast cells or rat basophilic leukemia cells expressing Siglec-8. In contrast, liposomes displaying only Sig8L have no significant suppression of antigenic liposome-induced degranulation, demonstrating that the inhibitory activity by Siglec-8 occurs only when Ag and Sig8L are on the same particle. In mouse models of anaphylaxis, display of Sig8L on antigenic liposomes completely suppresses IgE-mediated anaphylaxis in transgenic mice with mast cells expressing Siglec-8 but has no protection in mice that do not express Siglec-8. Furthermore, mice protected from anaphylaxis remain desensitized to subsequent allergen challenge because of loss of Ag-specific IgE from the cell surface and accelerated clearance of IgE from the blood. Thus, although expression of human Siglec-8 on murine mast cells does not by itself modulate IgE-FcεRI-mediated cell activation, the enforced recruitment of Siglec-8 to the FcεRI receptor by Sig8L-decorated antigenic liposomes results in inhibition of degranulation and desensitization to subsequent Ag exposure.


Subject(s)
Allergens/administration & dosage , Anaphylaxis/drug therapy , Anaphylaxis/genetics , Antigens, CD/metabolism , Antigens, Differentiation, B-Lymphocyte/metabolism , Desensitization, Immunologic/methods , Drug Delivery Systems/methods , Immunoglobulin E/metabolism , Lectins/metabolism , Mast Cells/immunology , Nanoparticles/chemistry , Polysaccharides/administration & dosage , Receptors, IgE/metabolism , Anaphylaxis/immunology , Animals , Antigens, CD/genetics , Antigens, Differentiation, B-Lymphocyte/genetics , Cell Degranulation/drug effects , Cell Degranulation/genetics , Cell Degranulation/immunology , Cell Line, Tumor , Disease Models, Animal , Humans , Lectins/genetics , Ligands , Liposomes , Mice , Mice, Inbred C57BL , Mice, Transgenic , Polysaccharides/metabolism , Rats , Receptors, IgE/genetics , Treatment Outcome
14.
BMC Psychiatry ; 23(1): 114, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36810070

ABSTRACT

BACKGROUND: Post-stroke depression (PSD) can be conceptualized as a complex network where PSD symptoms (PSDS) interact with each other. The neural mechanism of PSD and interactions among PSDS remain to be elucidated. This study aimed to investigate the neuroanatomical substrates of, as well as the interactions between, individual PSDS to better understand the pathogenesis of early-onset PSD. METHODS: A total of 861 first-ever stroke patients admitted within 7 days poststroke were consecutively recruited from three independent hospitals in China. Sociodemographic, clinical and neuroimaging data were collected upon admission. PSDS assessment with Hamilton Depression Rating Scale was performed at 2 weeks after stroke. Thirteen PSDS were included to develop a psychopathological network in which central symptoms (i.e. symptoms most strongly correlated with other PSDS) were identified. Voxel-based lesion-symptom mapping (VLSM) was performed to uncover the lesion locations associated with overall PSDS severity and severities of individual PSDS, in order to test the hypothesis that strategic lesion locations for central symptoms could significantly contribute to higher overall PSDS severity. RESULTS: Depressed mood, Psychiatric anxiety and Loss of interest in work and activities were identified as central PSDS at the early stage of stroke in our relatively stable PSDS network. Lesions in bilateral (especially the right) basal ganglia and capsular regions were found significantly associated with higher overall PSDS severity. Most of the above regions were also correlated with higher severities of 3 central PSDS. The other 10 PSDS could not be mapped to any certain brain region. CONCLUSIONS: There are stable interactions among early-onset PSDS with Depressed mood, Psychiatric anxiety and Loss of interest as central symptoms. The strategic lesion locations for central symptoms may indirectly induce other PSDS via the symptom network, resulting in higher overall PSDS severity. TRIAL REGISTRATION: URL: http://www.chictr.org.cn/enIndex.aspx ; Unique identifier: ChiCTR-ROC-17013993.


Subject(s)
Mental Disorders , Stroke , Humans , Depression/psychology , Stroke/complications , Brain/pathology , Anxiety , Mental Disorders/complications
15.
BMC Ophthalmol ; 23(1): 501, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066467

ABSTRACT

BACKGROUND: The incidence of refractive surgery-related dry eye disease (DED) is rising due to the increasing popularity of corneal refractive surgery. The moisture chamber goggles (MCGs) have been shown to tear evaporation by increasing local humidity and minimizing airflow. The current study aims to evaluate the efficacy of moisture chamber goggles for refractive surgery-related DED. METHODS: In this nonrandomized open-label controlled study, 78 participants (156 eyes) receiving refractive surgery were enrolled between July 2021 and April 2022, and sequentially allocated to MGC and control groups. 39 participants were allocated to the MGC groups, of which 53.8% received small-incision lenticule extraction (SMILE) and 46.2% received femtosecond laser-assisted in situ keratomileusis (FS-LASIK), and were instructed to wear MCGs for the duration of 1 month postoperatively, in addition to the standard postoperative treatment received by the control groups (56.4% SMILE, 43.6% FS-LASIK). Participants underwent full ophthalmic examinations, including visual acuity, manifest refraction, DED evaluations, and higher-order aberrations (HOAs), both preoperatively and at routine follow-ups 1 day, 1 week, and 1 month after surgery. DED parameters included non-invasive tear film break-up time (NIBUT), tear meniscus height (TMH), conjunctival congestion, lipid layer thickness (LLT), and ocular surface disease index (OSDI) questionnaires. Student's t-test was used for comparisons between control and MCG groups, and between preoperative and postoperative parameters within groups. RESULTS: Postoperative NIBUT decreased in both SMILE and FS-LASIK control groups 1 day after the surgery (SMILE, P = 0.001; FS-LASIK, P = 0.008), but not in the corresponding MCG groups (SMILE, P = 0.097; FS-LASIK, P = 0.331). TMH in the MCG group was significantly higher at 1 week (P = 0.039) and 1 month (P = 0.015) in SMILE, and 1 day (P = 0.003) in FS-LASIK groups. In FS-LASIK participants, significantly lower HOAs and coma levels in the MCG group were observed 1 day (total HOAs, P = 0.023; coma, P = 0.004) and 1 week (total HOAs, P = 0.010, coma, P = 0.004) after surgery. No consistent statistically significant intergroup difference was observed between MCG and control groups in conjunctival congestion, LLT, and OSDI. CONCLUSIONS: MCGs effectively slowed tear evaporation, increased tear film stability, and improved HOAs in patients receiving SMILE and FS-LASIK surgeries. MCG is an effective adjuvant therapy in the comprehensive management of refractive surgery-related DED.


Subject(s)
Dry Eye Syndromes , Keratomileusis, Laser In Situ , Myopia , Humans , Keratomileusis, Laser In Situ/adverse effects , Coma/complications , Coma/surgery , Eye Protective Devices/adverse effects , Myopia/surgery , Myopia/complications , Dry Eye Syndromes/etiology , Lasers, Excimer/therapeutic use , Corneal Stroma/surgery
16.
Foodborne Pathog Dis ; 20(8): 351-357, 2023 08.
Article in English | MEDLINE | ID: mdl-37471209

ABSTRACT

To conduct a study that examined the molecular epidemiology and pathogenesis of Salmonella Senftenberg isolates associated with an outbreak of foodborne disease in Guizhou Province and to provide a reference basis for the traceability of foodborne salmonellosis outbreaks and clinical diagnosis and treatment in the province. Fourteen strains of suspected Salmonella isolated from patient stool and food samples were used for pathogenic identification and serotyping by biochemical and mass spectrometry methods. Fourteen types of antibiotics were tested for drug sensitivity by the microbroth dilution method, and molecular typing was performed by pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS). After the sequencing data were spliced by SPAdes, the gene protein sequences were compared with the Comprehensive Antibiotic Research Database and Virulence Factor Database, drug resistance and virulence genes were predicted, and whole genome multilocus sequence typing (wgMLST) was performed. The results were compared with those for Salmonella strains of the same serotype from the past 5 years in China detailed on the TraNet website. All 14 strains were identified as Salmonella Senftenberg (with the antigenic formula 1,3,19:g,s,t:-), and in the PFGE cluster tree, the strains were divided into two band types, with a similarity of 88.9%. The 14 strains were sensitive to the 14 antibiotics. WGS analysis showed that the 14 strains carried the same drug resistance and virulence genes and that all strains carried 3 aminoglycoside and lipopeptide drug resistance genes, including 114 virulence genes. The wgMLST results showed that the strains were distributed on the same small branch as those obtained from previous outbreaks of infection in Tianjin and Jilin. Salmonella Senftenberg, which caused the outbreak, carries a variety of virulence genes, which suggests that the strain is highly pathogenic. These pathogenic bacteria may be associated with the Salmonella strain in Tianjin, Jilin, and other places and have caused foodborne disease outbreaks as a result of imported contamination.


Subject(s)
Foodborne Diseases , Salmonella Infections , Humans , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Salmonella Infections/microbiology , Disease Outbreaks , Salmonella/genetics , Anti-Bacterial Agents/pharmacology , Electrophoresis, Gel, Pulsed-Field
17.
Environ Geochem Health ; 45(6): 2857-2867, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36076152

ABSTRACT

The wide application of perchlorate in military and aerospace industries raises potential exposure risks for humans. Previous studies have mainly focused on perchlorate in drinking water, foodstuffs and dust, while its exposure in fine particulate matter (PM2.5) has received less attention. Thus, we investigated its concentrations and temporal variability in PM2.5 from October 2020 to September 2021 in Shenzhen, southern China. We also assessed the native population's intake and uptake of perchlorate in PM2.5 via inhalation. Measured PM2.5 concentrations in samples from Shenzhen ranged from 2.0 to 91.9 µg m-3. According to air quality guidelines proposed by the World Health Organization, 12.7% of all the samples exceeded interim target 1 (> 35 µg m-3), and only 37.3% met interim target 3 (< 15 µg m-3). Logistic regression analysis showed that perchlorate concentrations positively correlated with the PM2.5 concentrations and negatively correlated with precipitation. The median estimated daily intake (EDI) was highest for infants (0.029 ng kg-1 day-1), and both EDIs and estimated daily uptakes (EDUs) gradually decreased with age. All the EDIs and EDUs were below the reference dose provided by the US National Academy of Sciences (NAS), indicating that exposure to perchlorate in PM2.5 posed negligible health risks for Shenzhen residents. However, the exposure of infants and specific groups who tend to be more highly exposed than average still warrants attention.


Subject(s)
Air Pollutants , Air Pollution , Infant , Humans , Particulate Matter/analysis , Inhalation Exposure/analysis , Air Pollutants/analysis , Perchlorates/analysis , Air Pollution/analysis , China , Environmental Exposure/analysis
18.
J Transl Med ; 20(1): 136, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35303896

ABSTRACT

BACKGROUND: Predicting hospital mortality risk is essential for the care of heart failure patients, especially for those in intensive care units. METHODS: Using a novel machine learning algorithm, we constructed a risk stratification tool that correlated patients' clinical features and in-hospital mortality. We used the extreme gradient boosting algorithm to generate a model predicting the mortality risk of heart failure patients in the intensive care unit in the derivation dataset of 5676 patients from the Medical Information Mart for Intensive Care III database. The logistic regression model and a common risk score for mortality were used for comparison. The eICU Collaborative Research Database dataset was used for external validation. RESULTS: The performance of the machine learning model was superior to that of conventional risk predictive methods, with the area under curve 0.831 (95% CI 0.820-0.843) and acceptable calibration. In external validation, the model had an area under the curve of 0.809 (95% CI 0.805-0.814). Risk stratification through the model was specific when the hospital mortality was very low, low, moderate, high, and very high (2.0%, 10.2%, 11.5%, 21.2% and 56.2%, respectively). The decision curve analysis verified that the machine learning model is the best clinically valuable in predicting mortality risk. CONCLUSION: Using readily available clinical data in the intensive care unit, we built a machine learning-based mortality risk tool with prediction accuracy superior to that of linear regression model and common risk scores. The risk tool may support clinicians in assessing individual patients and making individualized treatment.


Subject(s)
Critical Care , Heart Failure , Hospital Mortality , Humans , Intensive Care Units , Machine Learning , Risk Assessment
19.
Psychol Med ; 52(7): 1386-1392, 2022 05.
Article in English | MEDLINE | ID: mdl-32829730

ABSTRACT

BACKGROUND: No studies have reported on how to relieve distress or relax in medical health workers while wearing medical protective equipment in coronavirus disease 2019 (COVID-19) pandemic. The study aimed to establish which relaxation technique, among six, is the most feasible in first-line medical health workers wearing medical protective equipment. METHODS: This was a two-step study collecting data with online surveys. Step 1: 15 first-line medical health workers were trained to use six different relaxation techniques and reported the two most feasible techniques while wearing medical protective equipment. Step 2: the most two feasible relaxation techniques revealed by step 1 were quantitatively tested in a sample of 65 medical health workers in terms of efficacy, no space limitation, no time limitation, no body position requirement, no environment limitation to be done, easiness to learn, simplicity, convenience, practicality, and acceptance. RESULTS: Kegel exercise and autogenic relaxation were the most feasible techniques according to step 1. In step 2, Kegel exercise outperformed autogenic relaxation on all the 10 dimensions among the 65 participants while wearing medical protective equipment (efficacy: 24 v. 15, no space limitation: 30 v. 4, no time limitation: 31 v. 4, no body position requirement: 26 v. 4, no environment limitation: 30 v. 11, easiness to learn: 28 v. 5, simplicity: 29 v. 7, convenience: 29 v. 4, practicality: 30 v. 14, acceptance: 32 v. 6). CONCLUSION: Kegel exercise seems a promising self-relaxation technique for first-line medical health workers while wearing medical protective equipment among COVID-19 pandemic.


Subject(s)
COVID-19 , COVID-19/prevention & control , Health Personnel , Humans , Pandemics/prevention & control , Protective Devices , Relaxation Therapy
20.
J Biomed Sci ; 29(1): 85, 2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36273169

ABSTRACT

BACKGROUND: Tauopathies are neurodegenerative diseases that are associated with the pathological accumulation of tau-containing tangles in the brain. Tauopathy can impair cognitive and motor functions and has been observed in Alzheimer's disease (AD) and frontotemporal dementia (FTD). The aetiology of tauopathy remains mysterious; however, recent studies suggest that the autophagic-endolysosomal function plays an essential role in the degradation and transmission of pathological tau. We previously demonstrated that tetrandrine could ameliorate memory functions and clear amyloid plaques in transgenic AD mice by restoring autophagic-endolysosomal function. However, the efficacy of tetrandrine and the associated therapeutic mechanism in tauopathies have not been evaluated and elucidated. METHODS: Novel object recognition, fear conditioning and electrophysiology were used to evaluate the effects of tetrandrine on memory functions in transgenic tau mice. Western blotting and immunofluorescence staining were employed to determine the effect of tetrandrine on autophagy and tau clearance in vivo. Calcium (Ca2+) imaging and flow cytometry were used to delineate the role of pathological tau and tetrandrine in lysosomal Ca2+ and pH homeostasis. Biochemical BiFC fluorescence, Western blotting and immunofluorescence staining were used to evaluate degradation of hyperphosphorylated tau in vitro, whereas coculture of brain slices with isolated microglia was used to evaluate tau clearance ex vivo. RESULTS: We observed that tetrandrine treatment mitigated tau tangle development and corrected memory impairment in Thy1-hTau.P301S transgenic mice. Mechanistically, we showed that mutant tau expression disrupts lysosome pH by increasing two-pore channel 2 (TPC2)-mediated Ca2+ release, thereby contributing to lysosome alkalinization. Tetrandrine inhibits TPC2, thereby restoring the lysosomal pH, promotes tau degradation via autophagy, and ameliorates tau aggregation. Furthermore, in an ex vivo assay, we demonstrated that tetrandrine treatment promotes pathological tau clearance by microglia. CONCLUSIONS: Together, these findings suggest that pathological tau disturbs endolysosomal homeostasis to impair tau clearance. This impairment results in a vicious cycle that accelerates disease pathogenesis. The success of tetrandrine in reducing tau aggregation suggests first, that tetrandrine could be an effective drug for tauopathies and second, that rescuing lysosomal Ca2+ homeostasis, thereby restoring ALP function, could be an effective general strategy for the development of novel therapies for tauopathies.


Subject(s)
Alzheimer Disease , Tauopathies , Animals , Mice , tau Proteins/genetics , Calcium , Disease Models, Animal , Tauopathies/drug therapy , Tauopathies/pathology , Mice, Transgenic , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Cognition
SELECTION OF CITATIONS
SEARCH DETAIL