Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Mol Cell ; 84(10): 1964-1979.e6, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759628

ABSTRACT

The role of the mitochondrial electron transport chain (ETC) in regulating ferroptosis is not fully elucidated. Here, we reveal that pharmacological inhibition of the ETC complex I reduces ubiquinol levels while decreasing ATP levels and activating AMP-activated protein kinase (AMPK), the two effects known for their roles in promoting and suppressing ferroptosis, respectively. Consequently, the impact of complex I inhibitors on ferroptosis induced by glutathione peroxidase 4 (GPX4) inhibition is limited. The pharmacological inhibition of complex I in LKB1-AMPK-inactivated cells, or genetic ablation of complex I (which does not trigger apparent AMPK activation), abrogates the AMPK-mediated ferroptosis-suppressive effect and sensitizes cancer cells to GPX4-inactivation-induced ferroptosis. Furthermore, complex I inhibition synergizes with radiotherapy (RT) to selectively suppress the growth of LKB1-deficient tumors by inducing ferroptosis in mouse models. Our data demonstrate a multifaceted role of complex I in regulating ferroptosis and propose a ferroptosis-inducing therapeutic strategy for LKB1-deficient cancers.


Subject(s)
AMP-Activated Protein Kinases , Electron Transport Complex I , Ferroptosis , Animals , Female , Humans , Mice , AMP-Activated Protein Kinase Kinases/genetics , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Cell Line, Tumor , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Ferroptosis/genetics , Ferroptosis/drug effects , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/drug effects , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/drug therapy , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Xenograft Model Antitumor Assays
2.
J Surg Res ; 298: 251-259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636181

ABSTRACT

INTRODUCTION: This study is a retrospective study. This study aims to explore the association between lobectomy in lung cancer patients and subsequent compensatory lung growth (CLG), and to identify factors that may be associated with variations in CLG. METHODS: 207 lung cancer patients who underwent lobectomy at Yunnan Cancer Hospital between January 2020 and December 2020. All patients had stage IA primary lung cancer and were performed by the same surgical team. And computed tomography examinations were performed before and 1 y postoperatively. Based on computed tomography images, the volume of each lung lobe was measured using computer software and manual, the radiological lung weight was calculated. And multiple linear regressions were used to analyze the factors related to the increase in postoperative lung weight. RESULTS: One year after lobectomy, the radiological lung weight increased by an average of 112.4 ± 20.8%. Smoking history, number of resected lung segments, preoperative low attenuation volume, intraoperative arterial oxygen partial pressure/fraction of inspired oxygen ratio and postoperative visual analog scale scores at 48 h were significantly associated with postoperative radiological lung weight gain. CONCLUSIONS: Our results suggest that CLG have occurred after lobectomy in adults. In addition, anesthetists should maintain high arterial oxygen partial pressure/fraction of inspired oxygen ratio during one-lung ventilation and improve acute postoperative pain to benefit CLG.


Subject(s)
Lung Neoplasms , Lung , Pneumonectomy , Tomography, X-Ray Computed , Humans , Lung Neoplasms/surgery , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Male , Retrospective Studies , Middle Aged , Female , Lung/diagnostic imaging , Lung/surgery , Lung/growth & development , Aged , Adult , Organ Size , Postoperative Period
3.
Mol Biol Rep ; 51(1): 365, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409611

ABSTRACT

A low-frequency variant of sushi, von Willebrand factor type A, EGF, and pentraxin domain-containing protein 1 (SVEP1) is associated with the risk of coronary artery disease, as determined by a genome-wide association study. SVEP1 induces vascular smooth muscle cell proliferation and an inflammatory phenotype to promote atherosclerosis. In the present study, qRT‒PCR demonstrated that the mRNA expression of SVEP1 was significantly increased in atherosclerotic plaques compared to normal tissues. Bioinformatics revealed that EGR1 was a transcription factor for SVEP1. The results of the luciferase reporter assay, siRNA interference or overexpression assay, mutational analysis and ChIP confirmed that EGR1 positively regulated the transcriptional activity of SVEP1 by directly binding to its promoter. EGR1 promoted human coronary artery smooth muscle cell (HCASMC) proliferation and migration via SVEP1 in response to oxidized low-density lipoprotein (ox-LDL) treatment. Moreover, the expression level of EGR1 was increased in atherosclerotic plaques and showed a strong linear correlation with the expression of SVEP1. Our findings indicated that EGR1 binding to the promoter region drive SVEP1 transcription to promote HCASMC proliferation and migration.


Subject(s)
MicroRNAs , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/metabolism , Coronary Vessels/metabolism , Genome-Wide Association Study , Cell Movement , Lipoproteins, LDL/pharmacology , Cells, Cultured , Cell Proliferation/genetics , Myocytes, Smooth Muscle/metabolism , MicroRNAs/genetics , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Cell Adhesion Molecules/genetics
4.
Environ Res ; 245: 118038, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38147916

ABSTRACT

The basis for bioelectrochemical technology is the capability of electroactive bacteria (EAB) to perform bidirectional extracellular electron transfer (EET) with electrodes, i.e. outward- and inward-EET. Extracellular polymeric substances (EPS) surrounding EAB are the necessary media for EET, but the biochemical and molecular analysis of EPS of Geobacter biofilms on electrode surface is largely lacked. This study constructed Geobacter sulfurreducens-biofilms performing bidirectional EET to explore the bidirectional EET mechanisms through EPS characterization using electrochemical, spectroscopic fingerprinting and proteomic techniques. Results showed that the inward-EET required extracellular redox proteins with lower formal potentials relative to outward-EET. Comparing to the EPS extracted from anodic biofilm (A-EPS), the EPS extracted from cathodic biofilm (C-EPS) exhibited a lower redox activity, mainly due to a decrease of protein/polysaccharide ratio and α-helix content of proteins. Furthermore, less cytochromes and more tyrosine- and tryptophan-protein like substances were detected in C-EPS than in A-EPS, indicating a diminished role of cytochromes and a possible role of other redox proteins in inward-EET. Proteomic analysis identified a variety of redox proteins including cytochrome, iron-sulfur clusters-containing protein, flavoprotein and hydrogenase in EPS, which might serve as an extracellular redox network for bidirectional EET. Those redox proteins that were significantly stimulated in A-EPS and C-EPS might be essential for outward- and inward-EET and warranted further research. This work sheds light on the mechanism of bidirectional EET of G. sulfurreducens biofilms and has implications in improving the performance of bioelectrochemical technology.


Subject(s)
Extracellular Polymeric Substance Matrix , Geobacter , Extracellular Polymeric Substance Matrix/metabolism , Electrons , Proteomics , Biofilms , Oxidation-Reduction , Cytochromes/metabolism
5.
Ecotoxicol Environ Saf ; 283: 116798, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39083874

ABSTRACT

Propylparaben (PrPB) is a known endocrine disrupting chemicals that is widely applied as preservative in pharmaceuticals, food and cosmetics. PrPB has been detected in human urine samples and human serum and has been proven to cause functional decline in reproduction. However, the direct effects of PrPB on mammalian oocyte are still unknown. Here, we demonstrationed that exposure to PrPB disturbed mouse oocyte maturation in vitro, causing meiotic resumption arrest and first polar body extrusion failure. Our results indicated that 600 µM PrPB reduced the rate of oocyte germinal vesicle breakdown (GVBD). Further research revealed that PrPB caused mitochondrial dysfunction and oxidative stress, which led to oocyte DNA damage. This damage further disturbed the activity of the maturation promoting factor (MPF) complex Cyclin B1/ Cyclin-dependent kinase 1 (CDK1) and induced G2/M arrest. Subsequent experiments revealed that PrPB exposure can lead to spindle morphology disorder and chromosome misalignment due to unstable microtubules. In addition, PrPB adversely affected the attachment between microtubules and kinetochore, resulting in persistent activation of BUB3 amd BubR1, which are two spindle-assembly checkpoint (SAC) protein. Taken together, our studies indicated that PrPB damaged mouse oocyte maturation via disrupting MPF related G2/M transition and SAC depended metaphase-anaphase transition.

6.
Sci Technol Adv Mater ; 25(1): 2351791, 2024.
Article in English | MEDLINE | ID: mdl-38817250

ABSTRACT

Targeted nanoparticles offer potential to selectively deliver therapeutics to cells; however, their subcellular fate following endocytosis must be understood to properly design mechanisms of drug release. Here we describe a nanoparticle platform and associated cell-based assay to observe lysosome trafficking of targeted nanoparticles in live cells. The nanoparticle platform utilizes two fluorescent dyes loaded onto PEG-poly(glutamic acid) and PEG-poly(Lysine) block co-polymers that also comprise azide reactive handles on PEG termini to attach antibody-based targeting ligands. Fluorophores were selected to be pH-sensitive (pHrodo Red) or pH-insensitive (Alexafluor 488) to report when nanoparticles enter low pH lysosomes. Dye-labelled block co-polymers were further assembled into polyion complex micelle nanoparticles and crosslinked through amide bond formation to form stable nano-scaffolds for ligand attachment. Cell binding and lysosome trafficking was determined in live cells by fluorescence imaging in 96-well plates and quantification of red- and green-fluorescence signals over time. The platform and assay was validated for selection of optimal antibody-derived targeting ligands directed towards CD22 for nanoparticle delivery. Kinetic analysis of uptake and lysosome trafficking indicated differences between ligand types and the ligand with the highest lysosome trafficking efficiency translated into effective DNA delivery with nanoparticles bearing the optimal ligand.


The ability of this pH-sensitive reporter platform to rapidly screen ligands in nanoparticle format will enable identification and production of targeted NPs with desired lysosome trafficking properties.

7.
J Sci Food Agric ; 104(10): 5944-5954, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38415770

ABSTRACT

BACKGROUND: Soy 11S globulin has high thermal stability, limiting its application in the production of low-temperature gel foods. In this study, the low-frequency magnetic field (LF-MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin. RESULTS: Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water-holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF-MF treatment. The LF-MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF-MF modification time being 90 min. CONCLUSION: LF-MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant-based proteins in the food industry. © 2024 Society of Chemical Industry.


Subject(s)
Globulins , Glycine max , Hydrophobic and Hydrophilic Interactions , Magnetic Fields , Rheology , Solubility , Soybean Proteins , Soybean Proteins/chemistry , Viscosity , Globulins/chemistry , Glycine max/chemistry , Protein Conformation
8.
J Clin Invest ; 134(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618953

ABSTRACT

N6-Methyladenosine (m6A), a prevalent posttranscriptional modification, plays an important role in cancer progression. Clear cell renal cell carcinoma (ccRCC) is chiefly associated with the loss of the von Hippel-Lindau (VHL) gene, encoding a component of the E3 ubiquitin ligase complex. In this issue of the JCI, Zhang and colleagues unveiled a function of VHL beyond its canonical role as an E3 ubiquitin ligase in regulating hypoxia-inducible factors (HIFs). It also governed m6A modification by orchestrating the assembly of m6A writer proteins METTL3 and METTL14, thereby stabilizing PIK3R3 mRNA. Mechanistically, PIK3R3 contributed to p85 ubiquitination, which restrained PI3K/AKT signaling and consequently impeded ccRCC growth in cell and mouse models. This discovery provides potential treatment targets in VHL-deficient ccRCCs.


Subject(s)
Adenine , Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Mice , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Phosphatidylinositol 3-Kinases/genetics , RNA Stability , Ubiquitin-Protein Ligases , Humans
9.
Cancer Cell ; 42(4): 513-534, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38593779

ABSTRACT

In cancer treatment, the recurrent challenge of inducing apoptosis through conventional therapeutic modalities, often thwarted by therapy resistance, emphasizes the critical need to explore alternative cell death pathways. Ferroptosis, an iron-dependent form of regulated cell death triggered by the lethal accumulation of lipid peroxides on cellular membranes, has emerged as one such promising frontier in oncology. Induction of ferroptosis not only suppresses tumor growth but also holds potential for augmenting immunotherapy responses and surmounting resistance to existing cancer therapies. This review navigates the role of ferroptosis in tumor suppression. Furthermore, we delve into the complex role of ferroptosis within the tumor microenvironment and its interplay with antitumor immunity, offering insights into the prospect of targeting ferroptosis as a strategic approach in cancer therapy.


Subject(s)
Ferroptosis , Neoplasms , Humans , Tumor Microenvironment , Neoplasms/therapy , Immunotherapy , Medical Oncology
10.
Protein Cell ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38428031

ABSTRACT

Cell death resistance represents a hallmark of cancer. Recent studies have identified metabolic cell death as unique forms of regulated cell death resulting from an imbalance in the cellular metabolism. This review discusses the mechanisms of metabolic cell death-ferroptosis, cuproptosis, disulfidptosis, lysozincrosis, and alkaliptosis-and explores their potential in cancer therapy. Our review underscores the complexity of the metabolic cell death pathways and offers insights into innovative therapeutic avenues for cancer treatment.

11.
Biosens Bioelectron ; 250: 116068, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38280298

ABSTRACT

Bioelectrochemical systems (BESs) are unique devices that harness the metabolic activity of electroactive microorganisms (EAMs) to convert chemical energy stored in organic substrates into electrical energy. Enhancing electron transfer efficiency between EAMs and electrodes is the key to practical implementation of BESs. Considering the role of outer membrane vesicles (OMVs) in mediating electron transfer of EAMs, a genetic engineering strategy to achieve OMVs overproduction was explored to enhance electron transfer efficiency and the underlying mechanisms were investigated. This study constructed a mutant strain of Geobacter sulfurreducens that lacked the ompA gene encoding an outer membrane protein. Experimental results showed that the mutant strain produced more OMVs and possessed higher electron transfer efficiency in Fe(III) reduction, dye degradation and current generation in BESs than the wild-type strain. More cargoes such as c-type cytochromes, functional proteins, eDNA, polysaccharides and signaling molecules that might be favorable for electron transfer and biofilm formation were found in OMVs produced by ompA-deficient anodic biofilm, which possibly contributed to the improved electron transfer efficiency of ompA-deficient biofilm. The results indicate that overproduction of OMVs in EAMs might be a potential strategy to enhance BESs performance.


Subject(s)
Biosensing Techniques , Geobacter , Oxidation-Reduction , Ferric Compounds , Electrons , Electron Transport , Geobacter/genetics
12.
MedComm (2020) ; 5(1): e419, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38188605

ABSTRACT

Although tuberculosis (TB) is an infectious disease, the progression of the disease following Mycobacterium tuberculosis (MTB) infection is closely associated with the host's immune response. In this review, a comprehensive analysis of TB prevention, diagnosis, and treatment was conducted from an immunological perspective. First, we delved into the host's immune response mechanisms against MTB infection as well as the immune evasion mechanisms of the bacteria. Addressing the challenges currently faced in TB diagnosis and treatment, we also emphasized the importance of protein, genetic, and immunological biomarkers, aiming to provide new insights for early and personalized diagnosis and treatment of TB. Building upon this foundation, we further discussed intervention strategies involving chemical and immunological treatments for the increasingly critical issue of drug-resistant TB and other forms of TB. Finally, we summarized TB prevention, diagnosis, and treatment challenges and put forward future perspectives. Overall, these findings provide valuable insights into the immunological aspects of TB and offer new directions toward achieving the WHO's goal of eradicating TB by 2035.

13.
PLoS One ; 19(2): e0296671, 2024.
Article in English | MEDLINE | ID: mdl-38394221

ABSTRACT

Bone marrow-derived CD34-positive (CD34+) endothelial progenitor cells (EPCs) has unique functions in the mechanism of compensatory lung growth (CLG). The content of this study is mainly to describe the effect of microRNA (miR)-155 in the mechanisms of EPCs and CLG. Our study found that transfection of miR-155 mimic could promote EPC proliferation, migration and tube formation, while transfection of miR-155 inhibitor had the opposite effect. It was also found that transfection of pc-JARID2 inhibited EPC proliferation, migration and tube formation, while transfection of si-JARID2 had the opposite effect. miR-155 can target and negatively regulate JARID2 expression. Overexpression of JARID2 weakened the promoting effects of miR-155 mimic on EPC proliferation, migration, and tubular formation, while silencing JARID2 weakened the inhibitory effects of miR-155 inhibitors on EPC proliferation, migration, and tubular formation. Transplantation of EPCs transfected with miR-155 mimic into the left lung model effectively increased lung volume, total alveolar number, diaphragm surface area, and lung endothelial cell number, while transplantation of EPCs co-transfected with miR-155 mimic and pc-JARID2 reversed this phenomenon. Overall, we found that miR-155 activates CD34+ EPC by targeting negative regulation of JARID2 and promotes CLG.


Subject(s)
Endothelial Progenitor Cells , Lung , MicroRNAs , Antigens, CD34/metabolism , Cell Movement , Cell Proliferation , Endothelial Progenitor Cells/metabolism , Lung/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Polycomb Repressive Complex 2/metabolism
14.
Sci Total Environ ; 927: 172242, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582122

ABSTRACT

Bacterial adhesion plays a vital role in forming and shaping the structure of electroactive biofilms that are essential for the performance of bioelectrochemical systems (BESs). Type IV pili are known to mediate cell adhesion in many Gram-negative bacteria, but the mechanism of pili-mediated cell adhesion of Geobacter species on anode surface remains unclear. Herein, a minor pilin PilV2 was found to be essential for cell adhesion ability of Geobacter sulfurreducens since the lack of pilV2 gene depressed the cell adhesion capability by 81.2% in microplate and the anodic biofilm density by 23.1 % at -0.1 V and 37.7 % at -0.3 V in BESs. The less cohesiveness of mutant biofilms increased the charge transfer resistance and biofilm resistance, which correspondingly lowered current generation of the pilV2-deficient strain by up to 63.2 % compared with that of the wild-type strain in BESs. The deletion of pilV2 posed an insignificant effect on the production of extracellular polysaccharides, pili, extracellular cytochromes and electron shuttles that are involved in biofilm formation or extracellular electron transfer (EET) process. This study demonstrated the significance of pilV2 gene in cell adhesion and biofilm formation of G. sulfurreducens, as well as the importance of pili-mediated adhesion for EET of electroactive biofilm.


Subject(s)
Bacterial Adhesion , Biofilms , Fimbriae Proteins , Geobacter , Geobacter/physiology , Geobacter/genetics , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/physiology , Fimbriae, Bacterial/metabolism , Bioelectric Energy Sources
15.
Zhen Ci Yan Jiu ; 49(1): 57-63, 2024 Jan 25.
Article in English, Zh | MEDLINE | ID: mdl-38239139

ABSTRACT

OBJECTIVES: To observe the clinical efficacy of the spirit-regulation method of Jin's three-needle therapy on post-stroke anxiety and its effects on the hypothalamus-pituitary-adrenal (HPA) axis. METHODS: Fifty-four patients with post-stroke anxiety were divided into spirit regulation (Jin's three needle therapy) group and sham-acupuncture group according to the random number table method, 28 cases in the spirit regulation and 26 cases in the sham-acupuncture group. The patients of the two groups received the same regimen of basic medication and rehabilitation, and the same acupoint prescription was adopted, including Sishenzhen (extra points, 1.5 cun to Baihui [GV20] at 3, 6, 9 and 12 o'clock positions), Shenting (GV24), Yintang (EX-HN3), and bilateral Shenmen (HT7), Sanyinjiao (SP6), Hegu (LI4) and Taichong (LR3). The true acupuncture was delivered in the spirit regulation group and the sham acupuncture operated in the sham-acupuncture group. One treatment lasted for 30 min, once daily, 5 times a week. The duration of treatment was 3 weeks in the trial. Before treatment and on day 10 and day 21 of treatment, the changes in the score of Hamilton anxiety scale (HAMA) and that of National Institutes of Health Stroke Scale (NIHSS) were compared between the two groups separately. Using ELISA, the contents of adrenocorticotropin (ACTH) and cortisol (CORT) in the serum were detected, and the adverse reactions were recorded. RESULTS: In the within-group comparison before and after treatment, HAMA score and NIHSS score dropped on day 10 and day 21 after treatment in the spirit regulation group (P<0.05);HAMA score and NIHSS score in the sham-acupuncture group were decreased on day 21 of treatment (P<0.05). After 21 days of treatment, HAMA score and NIHSS score in the spirit-regulation group were decreased significantly than those in the sham-acupuncture group (P<0.05) and the contents of ACTH and CORT in the serum decreased when compared with those before treatment and those of the sham-operation group (P<0.05). No obvious adverse events occurred in the spirit-regulation group and the sham-acupuncture group. CONCLUSIONS: Using sham acupuncture as a control, it is preliminarily confirmed that the spirit regulation method of Jin's three-needle therapy is effective on post-stroke anxiety. In association of the downtrend of serological indicators, it is speculated that the underlying mechanism of this therapy is related to HPA axis.


Subject(s)
Acupuncture Therapy , Stroke , Humans , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Stroke/complications , Stroke/therapy , Acupuncture Therapy/methods , Anxiety/therapy , Treatment Outcome , Acupuncture Points , Adrenocorticotropic Hormone
16.
Plants (Basel) ; 13(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891266

ABSTRACT

Rodents, such as those that feed on plants and nest in plant roots, can significantly affect the growth and development of desert plants. The aim of this study was to investigate the effects of Rhombomys opimus disturbance on the photosynthetic characteristics and nutrient status of Haloxylon ammodendron at different growth stages in the Gurbantunggut Desert. The effects of great gerbil disturbance on the photosynthetic characteristics of H. ammodendron at different growth stages were investigated by measuring the gas exchange parameters, instantaneous water use efficiency, and chlorophyll fluorescence parameters of H. ammodendron at different ages (young, middle, and adult) under the disturbance of great gerbils. The soil nutrients in the assimilated branches and rhizosphere of H. ammodendron at different growth stages were tracked to reveal the relationship between the H. ammodendron nutrient content and gerbil disturbance. The results showed that great gerbil disturbance decreased the organic carbon content in the rhizosphere soil of adult H. ammodendron and increased the total nitrogen content in the rhizosphere soil and the nitrogen and potassium contents in the assimilated branches at each growth stage. The net photosynthetic rate and instantaneous water use efficiency of H. ammodendron decreased at each growth stage, and the maximum photochemical efficiency and non-photochemical quenching parameters of the young H. ammodendron decreased. However, the actual photochemical efficiency and photochemical parameters of the middle H. ammodendron increased. It was concluded that the disturbance of great gerbils decreased the photosynthetic capacity of H. ammodendron and increased the content of total nitrogen in the soil and nitrogen and potassium in the plant. This study revealed that the Gurbantunggut Desert great gerbil and H. ammodendron do not have a simple predation relationship. It laid a foundation for the study of the moderate disturbance threshold and better use of the mutually beneficial relationship between the two.

17.
Sci Total Environ ; 944: 173928, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38871308

ABSTRACT

Mercury (Hg) pollution in soil has grown into a severe environmental issue. Effective in situ immobilization techniques are crucially demanded. In this study, we explored the application of carboxymethyl cellulose stabilized iron sulfide nanoparticles (CMC-FeS) for in situ immobilization of Hg in soil. CMC-FeS (a CMC-to-FeS molar ratio of 0.0004) was prepared via the reaction between FeSO4 and Na2S using CMC as a stabilizer. Remedying the Hg-polluted soil using 0.03 % CMC-FeS via batch experiments effectively reduced the acid leachable Hg by 97.5 % upon equilibrium after 71 days. Column elution tests demonstrated that the addition of CMC-FeS decreased the peak Hg concentration by 89.9 % and the total Hg mass eluted by 94.9 % after 523 pore volumes. CMC-FeS immobilized Hg in soil via chemical precipitation, ion exchange, and surface complexation. After the CMC-FeS treatment, Hg was transformed from more available exchangeable, carbonate-bound, and organic material-bound forms into the less available residual fraction, reducing the environmental risk of soil Hg from medium to low. The application of CMC-FeS boosted the soil enzyme activities and enhanced the soil bacterial diversity whereas decreased the production of methylmercury. CMC-FeS also facilitated long-term immobilization of Hg in soil. The acid leachable Hg and relative Hg bioaccessibility was decreased. Lift cycle assessment indicated that the preparation and application of CMC-FeS for in situ Hg remediation in soil met green chemistry principles. The present study confirms that CMC-FeS can be applied as an efficient and "green" amending agent for long-term Hg immobilization in soil/sediment.

18.
Mol Biomed ; 5(1): 15, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38679629

ABSTRACT

Tuberculosis (TB) is an infectious disease that significantly threatens human health. However, the differential diagnosis of latent tuberculosis infection (LTBI) and active tuberculosis (ATB) remains a challenge for clinicians in early detection and preventive intervention. In this study, we developed a novel biomarker named HP16118P, utilizing 16 helper T lymphocyte (HTL) epitopes, 11 cytotoxic T lymphocyte (CTL) epitopes, and 8 B cell epitopes identified from 15 antigens associated with LTBI-RD using the IEDB database. We analyzed the physicochemical properties, spatial structure, and immunological characteristics of HP16118P using various tools, which indicated that it is a hydrophilic and relatively stable alkaline protein. Furthermore, HP16118P exhibited good antigenicity and immunogenicity, while being non-toxic and non-allergenic, with the potential to induce immune responses. We observed that HP16118P can stimulate the production of high levels of IFN-γ+ T lymphocytes in individuals with ATB, LTBI, and health controls. IL-5 induced by HP16118P demonstrated potential in distinguishing LTBI individuals and ATB patients (p=0.0372, AUC=0.8214, 95% CI [0.5843 to 1.000]) with a sensitivity of 100% and specificity of 71.43%. Furthermore, we incorporated the GM-CSF, IL-23, IL-5, and MCP-3 induced by HP16118P into 15 machine learning algorithms to construct a model. It was found that the Quadratic discriminant analysis model exhibited the best diagnostic performance for discriminating between LTBI and ATB, with a sensitivity of 1.00, specificity of 0.86, and accuracy of 0.93. In summary, HP16118P has demonstrated strong antigenicity and immunogenicity, with the induction of GM-CSF, IL-23, IL-5, and MCP-3, suggesting their potential for the differential diagnosis of LTBI and ATB.


Subject(s)
Biomarkers , Latent Tuberculosis , Mycobacterium tuberculosis , Humans , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Biomarkers/blood , Diagnosis, Differential , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Latent Tuberculosis/diagnosis , Latent Tuberculosis/immunology , Mycobacterium tuberculosis/immunology
19.
Front Neurol ; 15: 1328911, 2024.
Article in English | MEDLINE | ID: mdl-39144713

ABSTRACT

Objective: To systematically evaluate the efficacy of hyperbaric oxygen therapy (HBOT) as an adjunct therapy for treating sleep disorders in patients with Parkinson's disease (PD). Methods: We conducted comprehensive searches in eight databases from inception through September 2023, including PubMed, Cochrane Library, Embase, Web of Science, SinoMed, China National Knowledge Infrastructure (CNKI), China Science and Technology Periodical Database (VIP), and Wanfang Database. The objective was to identify randomized controlled trials (RCTs) evaluating HBOT's effectiveness in alleviating sleep disorder symptoms in PD patients as an adjunct therapy. Literature screening and data extraction were independently executed by the authors. Meta-analyses were performed using Review Manager 5.3 software, and publication bias and sensitivity analyses were assessed using Stata 17.0 software. Results: Seven RCTs involving 461 participants were included. The findings revealed that the addition of HBOT significantly enhanced sleep efficiency (MD = 15.26, 95% CI [10.89, 19.63], p < 0.00001), increased time in bed (MD = 69.65, 95% CI [43.01, 96.30], p < 0.00001), total sleep time (MD = 75.87, 95% CI [25.42, 126.31], p = 0.003), slow-wave sleep (SWS) time (MD = 6.14, 95% CI [3.95, 8.34], p < 0.00001), and rapid eye movement sleep (REM) time (MD = 4.07, 95% CI [2.05, 6.08], p < 0.0001), and reduced awakening frequency (MD = -11.55, 95% CI [-15.42, -7.68], p < 0.00001) and sleep latency (MD = -6.60, 95% CI [-9.43, -3.89], p < 0.00001). Additionally, significant improvements were observed in the Pittsburgh Sleep Quality Index (PSQI) (MD = -2.52, 95% CI [-2.85, -2.18], p < 0.00001), Epworth Sleepiness Scale (ESS) (MD = -2.90, 95% CI [-3.34, -2.47], p < 0.00001), Unified Parkinson's Disease Rating Scale Part III (UPDRS III) (MD = -1.32, 95% CI [-2.16, -0.47], p = 0.002), and Hoehn and Yahr grading (H-Y grading) (MD = -0.15, 95% CI [-0.28, -0.01], p = 0.03). Conclusion: The current meta-analysis supports the efficacy of HBOT as an adjunct therapy in managing sleep disorders in PD patients. It is recommended for PD patients experiencing sleep disturbances.Systematic review registration:https://www.crd.york.ac.uk/, identifier: CRD42023462201.

20.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167349, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39002703

ABSTRACT

Asthma is a chronic respiratory disease characterized by airway inflammation and remodeling. Epithelial-mesenchymal transition (EMT) of bronchial epithelial cells is considered to be a crucial player in asthma. Methyltransferase-like 14 (METTL14), an RNA methyltransferase, is implicated in multiple pathological processes, including EMT, cell proliferation and migration. However, the role of METTL14 in asthma remains uncertain. This research aimed to explore the biological functions of METTL14 in asthma and its underlying upstream mechanisms. METTL14 expression was down-regulated in asthmatic from three GEO datasets (GSE104468, GSE165934, and GSE74986). Consistent with this trend, METTL14 was decreased in the lung tissues of OVA-induced asthmatic mice and transforming growth factor-ß1 (TGF-ß1)-stimulated human bronchial epithelial cells (Beas-2B) in this study. Overexpression of METTL14 caused reduction in mesenchymal markers (FN1, N-cad, Col-1 and α-SMA) in TGF-ß1-treated cells, but caused increase in epithelial markers (E-cad), thus inhibiting EMT. Also, METTL14 suppressed the proliferation and migration ability of TGF-ß1-treated Beas-2B cells. Two transcription factors, ETS1 and RBPJ, could both bind to the promoter region of METTL14 and drive its expression. Elevating METTL14 expression could reversed EMT, cell proliferation and migration promoted by ETS1 or RBPJ deficiency. These results indicate that the ETS1/METTL14 and RBPJ/METTL14 transcription axes exhibit anti-EMT, anti-proliferation and anti-migration functions in TGF-ß1-induced bronchial epithelial cells, implying that METTL14 may be considered an alternative candidate target for the treatment of asthma.


Subject(s)
Asthma , Bronchi , Epithelial Cells , Epithelial-Mesenchymal Transition , Methyltransferases , Proto-Oncogene Protein c-ets-1 , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Animals , Bronchi/metabolism , Bronchi/pathology , Bronchi/cytology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Mice , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Asthma/pathology , Asthma/metabolism , Asthma/genetics , Cell Line , Cell Proliferation , Mice, Inbred BALB C , Cell Movement , Gene Expression Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL