Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nature ; 632(8024): 307-312, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885694

ABSTRACT

An ideal synthesis of alkyl amines would involve the direct use of abundant and easily accessible molecules such as dinitrogen (N2) and feedstock alkenes1-4. However, this ambition remains a great challenge as it is usually difficult to simultaneously activate both N2 and a simple alkene and combine them together through carbon-nitrogen (C-N) bond formation. Currently, the synthesis of alkyl amines relies on the use of ammonia produced through the Haber-Bosch process and prefunctionalized electrophilic carbon sources. Here we report the hydroamination of simple alkenes with N2 in a trititanium hydride framework, which activates both alkenes and N2, leading to selective C-N bond formation and providing the corresponding alkyl amines on further hydrogenation and protonation. Computational studies reveal key mechanistic details of N2 activation and selective C-N bond formation. This work demonstrates a strategy for the transformation of N2 and simple hydrocarbons into nitrogen-containing organic compounds mediated by a multinuclear hydride framework.

2.
J Am Chem Soc ; 146(15): 10984-10992, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38578866

ABSTRACT

Dinitrogen (N2) activation and functionalization through N-N bond cleavage and N-C bond formation are of great interest and importance but remain highly challenging. We report here for the first time N2 cleavage and selective multicoupling with isocyanides in a dititanium dihydride framework. The reaction of a dinitrogen dititanium dihydride complex [{(acriPNP)Ti}2(µ-η1:η2-N2)(µ-H)2] (1) with an excess (four or more equivalents) of p-methoxyphenyl isocyanide at room temperature gave a novel amidoamidinatoguanidinate complex [(acriPNP)Ti{NC(═NR)NC(═NR)CH2NR}Ti(acriPNP)(CNR)] (2, acriPNP = 4,5-bis(diisopropylphosphino)-2,7,9,9-tetramethyl-9H-acridin-10-ide; R = p-MeOC6H4) through N2 splitting and coupling with three isocyanide molecules. When 1 equiv of p-methoxyphenyl isocyanide was used to react with 1 at -30 °C, the hydrogenation of the isocyanide unit by the two hydride ligands in 1 took place, affording an amidomethylene-bridged dititanium dinitrogen complex [{(acriPNP)Ti}2(µ-η1:η2-N2){µ-η1:η2-CH2N(p-MeOC6H4)}] (3), which upon reaction with another equivalent of p-methoxyphenyl isocyanide at room temperature gave an amidomethylene/nitrido/carbodiimido complex [(acriPNP)Ti(N═C═NR)(µ-N)(µ-η1:η2-CH2NR)Ti(acriPNP)] (4) through N2 cleavage and N═C bond formation. Further reaction of 4 with 1 equiv of p-methoxyphenyl isocyanide led to an unprecedented four-component (carbodiimido, nitrido, isocyanide, and amidomethylene) coupling, yielding an amidoamidinatoguanidinate complex [{(acriPNP)Ti}2{NC(═NR)NC(═NR)CH2NR}] (5), which on reaction with another equivalent of p-methoxyphenyl isocyanide afforded the isocyanide-coordinated analogue 2. The reaction of 1 with 2-naphthyl isocyanide also took place in a similar multicoupling fashion. Moreover, the cross-coupling reactions of the p-methoxyphenyl isocyanide-derived amidomethylene/nitrido/carbodiimido complex 4 with 2-naphthyl isocyanide, cyclohexyl isocyanide, and tert-butyl isocyanide were also achieved, which afforded the corresponding amidoamidinatoguanidinate products consisting of two different isocyanides. Density functional theory (DFT) calculations further elucidated the mechanistic details.

3.
J Am Chem Soc ; 146(14): 10187-10198, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38545960

ABSTRACT

The [3 + 2] or [4 + 2] annulation of α,ß-unsaturated aldimines with alkenes via ß'- or γ-allylic C(sp3)-H activation is, in principle, an atom-efficient route for the synthesis of five- or six-membered-ring cycloalkylamines, which are important structural motifs in numerous natural products, bioactive molecules, and pharmaceuticals. However, such a transformation has remained undeveloped to date probably due to the lack of suitable catalysts. We report herein for the first time the regio- and diastereoselective [3 + 2] and [4 + 2] annulations of α,ß-unsaturated imines with alkenes via allylic C(sp3)-H activation by half-sandwich rare-earth catalysts having different metal ion sizes. The reaction of α-methyl-substituted α,ß-unsaturated aldimines with alkenes by a C5Me4SiMe3-ligated scandium catalyst took place in a trans-diastereoselective [3 + 2] annulation fashion via C(sp3)-H activation at the α-methyl group (ß'-position), exclusively affording alkylidene-functionalized cyclopentylamines with excellent trans-diastereoselectivity. In contrast, the reaction of ß-methyl-substituted α,ß-unsaturated aldimines with alkenes by a C5Me5-ligated cerium catalyst proceeded in a cis-diastereoselective [4 + 2] annulation fashion via γ-allylic C(sp3)-H activation, selectively yielding multisubstituted 2-cyclohexenylamines with excellent cis-diastereoselectivity. The mechanistic details of these transformations have been elucidated by deuterium-labeling experiments, kinetic isotope effect studies, and the isolation and transformations of key reaction intermediates. This work offers an efficient and selective protocol for the synthesis of a new family of cycloalkylamine derivatives, featuring 100% atom efficiency, high regio- and diastereoselectivity, broad substrate scope, and an unprecedented reaction mechanism.

4.
Angew Chem Int Ed Engl ; 63(13): e202318203, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38226440

ABSTRACT

The search for efficient and selective methods for the divergent synthesis of multi-substituted aminotetralins is of much interest and importance. We report herein for the first time the diastereoselective [4+2] annulation of 2-methyl aromatic aldimines with alkenes via benzylic C(sp3 )-H activation by half-sandwich rare-earth catalysts, which constitutes an efficient route for the divergent synthesis of both trans and cis diastereoisomers of multi-substituted 1-aminotetralin derivatives from readily accessible aldimines and alkenes. The use of a scandium catalyst bearing a sterically demanding cyclopentadienyl ligand such as C5 Me4 SiMe3 or C5 Me5 exclusively afforded the trans-selective annulation products in the reaction of aldimines with styrenes and aliphatic alkenes. In contrast, the analogous yttrium catalyst, whose metal ion size is larger than that of scandium, yielded the cis-selective annulation products. This protocol features 100 % atom-efficiency, excellent diastereoselectivity, broad substrate scope, and good functional group compatibility. The reaction mechanisms have been elucidated by kinetic isotope effect (KIE) experiments and the isolation and transformations of some key reaction intermediates.

SELECTION OF CITATIONS
SEARCH DETAIL