Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Gastroenterology ; 166(5): 886-901.e7, 2024 05.
Article in English | MEDLINE | ID: mdl-38096955

ABSTRACT

BACKGROUND & AIMS: Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS: Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS: We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS: Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.


Subject(s)
Bile Duct Neoplasms , Cancer-Associated Fibroblasts , Cholangiocarcinoma , Hepatic Stellate Cells , Protein-Lysine 6-Oxidase , Tumor Microenvironment , Humans , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/enzymology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/enzymology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/enzymology , Gene Expression Regulation, Neoplastic , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatic Stellate Cells/enzymology , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/enzymology , Oxidative Phosphorylation , Protein-Lysine 6-Oxidase/metabolism , Protein-Lysine 6-Oxidase/genetics , Signal Transduction
2.
Scand J Immunol ; 99(1): e13326, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38441335

ABSTRACT

Specific T cell populations in the skin have been demonstrated as important disease drivers in several dermatoses. Due to the unique skin architecture, these cells are not grouped together in structures but dispersedly spread out throughout the epidermis. Following tissue disruption and isolation, only about 10% of skin T cells are recovered and any in vitro expansion may alter their bona fide phenotype. The Nanostring GeoMx system was developed to address cellular phenotype and protein expression in a tissue spatial context. To do so, regions of interest (ROI) must exceed a certain area threshold (usually 100 µm in diameter) to generate a sufficient signal-to-noise ratio. Here, we present an approach that allows for the pooling of numerous smaller ROIs within the skin, enabling T cell and melanocyte phenotyping. Skin samples from healthy individuals and vitiligo patients were analysed using the GeoMx system and several immune profiling panels. A sufficient signal-to-noise ratio was achieved by pooling smaller ROIs and analysing them as a single group. While this prevents spatial analysis, this method allows for detailed analysis of cells as a population in the context of their physiological environment, making it possible to investigate in situ phenotype of rare cells in different tissue compartments.


Subject(s)
Skin , Vitiligo , Humans , Epidermis , Phenotype
3.
J Hepatol ; 79(1): 93-108, 2023 07.
Article in English | MEDLINE | ID: mdl-36868481

ABSTRACT

BACKGROUND & AIMS: Cholangiocarcinoma (CCA), heterogeneous biliary tumours with dismal prognosis, lacks accurate early diagnostic methods especially important for individuals at high-risk (i.e. those with primary sclerosing cholangitis [PSC]). Here, we searched for protein biomarkers in serum extracellular vesicles (EVs). METHODS: EVs from patients with isolated PSC (n = 45), concomitant PSC-CCA (n = 44), PSC who developed CCA during follow-up (PSC to CCA; n = 25), CCAs from non-PSC aetiology (n = 56), and hepatocellular carcinoma (n = 34) and healthy individuals (n = 56) were characterised by mass spectrometry. Diagnostic biomarkers for PSC-CCA, non-PSC CCA, or CCAs regardless of aetiology (Pan-CCAs) were defined and validated by ELISA. Their expression was evaluated in CCA tumours at a single-cell level. Prognostic EV biomarkers for CCA were investigated. RESULTS: High-throughput proteomics of EVs identified diagnostic biomarkers for PSC-CCA, non-PSC CCA, or Pan-CCA, and for the differential diagnosis of intrahepatic CCA and hepatocellular carcinoma, which were cross-validated by ELISA using total serum. Machine learning-based algorithms disclosed CRP/FIBRINOGEN/FRIL for the diagnosis of PSC-CCA (local disease [LD]) vs. isolated PSC (AUC = 0.947; odds ratio [OR] =36.9) and, combined with carbohydrate antigen 19-9, overpowers carbohydrate antigen 19-9 alone. CRP/PIGR/VWF allowed the diagnosis of LD non-PSC CCAs vs. healthy individuals (AUC = 0.992; OR = 387.5). It is noteworthy that CRP/FRIL accurately diagnosed LD Pan-CCA (AUC = 0.941; OR = 89.4). Levels of CRP/FIBRINOGEN/FRIL/PIGR showed predictive capacity for CCA development in PSC before clinical evidence of malignancy. Multi-organ transcriptomic analysis revealed that serum EV biomarkers were mostly expressed in hepatobiliary tissues, and single-cell RNA sequencing and immunofluorescence analysis of CCA tumours showed their presence mainly in malignant cholangiocytes. Multivariable analysis unveiled EV prognostic biomarkers, with COMP/GNAI2/CFAI and ACTN1/MYCT1/PF4V associated negatively and positively with patients' survival, respectively. CONCLUSIONS: Serum EVs contain protein biomarkers for the prediction, early diagnosis, and prognostication of CCA that are detectable using total serum, representing a tumour cell-derived liquid biopsy tool for personalised medicine. IMPACT AND IMPLICATIONS: The accuracy of current imaging tests and circulating tumour biomarkers for cholangiocarcinoma (CCA) diagnosis is far from satisfactory. Most CCAs are considered sporadic, although up to 20% of patients with primary sclerosing cholangitis (PSC) develop CCA during their lifetime, constituting a major cause of PSC-related death. This international study has proposed protein-based and aetiology-related logistic models with predictive, diagnostic, or prognostic capacities by combining two to four circulating protein biomarkers, moving a step forward into personalised medicine. These novel liquid biopsy tools may allow the (i) easy and non-invasive diagnosis of sporadic CCAs, (ii) identification of patients with PSC with higher risk for CCA development, (iii) establishment of cost-effective surveillance programmes for the early detection of CCA in high-risk populations (e.g. PSC), and (iv) prognostic stratification of patients with CCA, which, altogether, may increase the number of cases eligible for potentially curative options or to receive more successful treatments, decreasing CCA-related mortality.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Cholangitis, Sclerosing , Liver Neoplasms , Humans , Cholangitis, Sclerosing/complications , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/complications , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/etiology , Cholangiocarcinoma/metabolism , Biomarkers, Tumor , Early Diagnosis , Liquid Biopsy , Bile Ducts, Intrahepatic/pathology , Liver Neoplasms/etiology , Liver Neoplasms/complications , Carbohydrates , Nuclear Proteins
4.
Int J Mol Sci ; 24(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894818

ABSTRACT

Essential oils (EOs) are of commercial importance for medicine, food, cosmetics, the perfume industry, and agriculture. In plants, EOs, like the wax cover, serve as protection against abiotic stresses, such as high temperatures and water deficiency. The use of spraying with exogenous hormones of aromatic plants affects the accumulation and composition of volatile compounds, as well as tolerance to abiotic stress. As a result of cytokinin treatment with 6-BAP (6-benzylaminopurine) (200 mg L-l) of Anetum graveolens L. "Uzory" and "Rusich" varieties, several responses to its action were revealed: a change in the division of leaf blades, inhibition of flowering, an increase in the content of EO and its main components α-phellandrene and p-cymene in leaves, and limonene in umbels and fruits. It was revealed that the increased accumulation of EO in dill leaves was longer with sufficient moisture. In contrast, under conditions of heat and water deficiency, the effect of 6-BAP treatment on accumulations of the EO in leaves was short-lived and did not appear on umbels and fruits. The study of the cytokinin effect on a fine structure of a wax cover on the adaxial side of leaves by scanning electron microscopy revealed a change in its elements (from amorphous layers with scales to thin tubules), which probably increased the sensitivity of leaves to water deficiency and, consequently, led to a decrease in the biosynthetic activity of leaf tissue. Thus, 6-BAP had an impact on the adaptive properties of dill plants, prolonging the "youth" of vegetative organs and the ability to EO biosynthesis under conditions of sufficient moisture.


Subject(s)
Anethum graveolens , Oils, Volatile , Anethum graveolens/chemistry , Oils, Volatile/pharmacology , Plant Leaves , Fruit , Cytokinins , Water
5.
Gut ; 70(7): 1345-1361, 2021 07.
Article in English | MEDLINE | ID: mdl-32907830

ABSTRACT

OBJECTIVE: Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer usually arising on a background of chronic liver injury involving inflammatory and hepatic regenerative processes. The triggering receptor expressed on myeloid cells 2 (TREM-2) is predominantly expressed in hepatic non-parenchymal cells and inhibits Toll-like receptor signalling, protecting the liver from various hepatotoxic injuries, yet its role in liver cancer is poorly defined. Here, we investigated the impact of TREM-2 on liver regeneration and hepatocarcinogenesis. DESIGN: TREM-2 expression was analysed in liver tissues of two independent cohorts of patients with HCC and compared with control liver samples. Experimental HCC and liver regeneration models in wild type and Trem-2-/- mice, and in vitro studies with hepatic stellate cells (HSCs) and HCC spheroids were conducted. RESULTS: TREM-2 expression was upregulated in human HCC tissue, in mouse models of liver regeneration and HCC. Trem-2-/- mice developed more liver tumours irrespective of size after diethylnitrosamine (DEN) administration, displayed exacerbated liver damage, inflammation, oxidative stress and hepatocyte proliferation. Administering an antioxidant diet blocked DEN-induced hepatocarcinogenesis in both genotypes. Similarly, Trem-2-/- animals developed more and larger tumours in fibrosis-associated HCC models. Trem-2-/- livers showed increased hepatocyte proliferation and inflammation after partial hepatectomy. Conditioned media from human HSCs overexpressing TREM-2 inhibited human HCC spheroid growth in vitro through attenuated Wnt ligand secretion. CONCLUSION: TREM-2 plays a protective role in hepatocarcinogenesis via different pleiotropic effects, suggesting that TREM-2 agonism should be investigated as it might beneficially impact HCC pathogenesis in a multifactorial manner.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics , Adult , Aged , Animals , Carcinogenesis/genetics , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Diethylnitrosamine , Female , Gain of Function Mutation , Gene Expression , Hepatic Stellate Cells/metabolism , Hepatitis/metabolism , Hepatocytes/pathology , Hepatocytes/physiology , Humans , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Liver Regeneration/genetics , Liver Regeneration/physiology , Macrophages/metabolism , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Knockout , Middle Aged , Oxidative Stress , Protective Factors , RNA/metabolism , Reactive Oxygen Species/metabolism , Receptors, Immunologic/metabolism , Spheroids, Cellular , Up-Regulation , Wnt Proteins/metabolism , Wnt Signaling Pathway , Wnt3 Protein/metabolism
6.
Nat Rev Gastroenterol Hepatol ; 19(6): 367-382, 2022 06.
Article in English | MEDLINE | ID: mdl-35273358

ABSTRACT

The evolutionary history of hepatobiliary cancers is embedded in their genomes. By analysing their catalogue of somatic mutations and the DNA sequence context in which they occur, it is possible to infer the mechanisms underpinning tumorigenesis. These mutational signatures reflect the exogenous and endogenous origins of genetic damage as well as the capacity of hepatobiliary cells to repair and replicate DNA. Genomic analysis of thousands of patients with hepatobiliary cancers has highlighted the diversity of mutagenic processes active in these malignancies, highlighting a prominent source of the inter-cancer-type, inter-patient, intertumour and intratumoural heterogeneity that is observed clinically. However, a substantial proportion of mutational signatures detected in hepatocellular carcinoma and biliary tract cancer remain of unknown cause, emphasizing the important contribution of processes yet to be identified. Exploiting mutational signatures to retrospectively understand hepatobiliary carcinogenesis could advance preventative management of these aggressive tumours as well as potentially predict treatment response and guide the development of therapies targeting tumour evolution.


Subject(s)
Neoplasms , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Humans , Mutation , Retrospective Studies
7.
EBioMedicine ; 73: 103661, 2021 11.
Article in English | MEDLINE | ID: mdl-34740106

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is affecting more people globally. Indeed, NAFLD is a spectrum of metabolic dysfunctions that can progress to hepatocellular carcinoma (NAFLD-HCC). This development can occur in a non-cirrhotic liver and thus, often lack clinical surveillance. The aim of this study was to develop non-invasive surveillance method for NAFLD-HCC. METHODS: Using comprehensive ultra-high-performance liquid chromatography mass-spectrometry, we investigated 1,295 metabolites in serum from 249 patients. Area under the receiver operating characteristic curve was calculated for all detected metabolites and used to establish their diagnostic potential. Logistic regression analysis was used to establish the diagnostic score. FINDINGS: We show that NAFLD-HCC is characterised by a complete rearrangement of the serum lipidome, which distinguishes NAFLD-HCC from non-cancerous individuals and other HCC patients. We used machine learning to build a diagnostic model for NAFLD-HCC. We quantified predictive metabolites and developed the NAFLD-HCC Diagnostic Score (NHDS), presenting superior diagnostic potential compared to alpha-fetoprotein (AFP). Patients' metabolic landscapes show a progressive depletion in unsaturated fatty acids and acylcarnitines during transformation. Upregulation of fatty acid transporters in NAFLD-HCC tumours contribute to fatty acid depletion in the serum. INTERPRETATION: NAFLD-HCC patients can be efficiently distinguished by serum metabolic alterations from the healthy population and from HCC patients related to other aetiologies (alcohol and viral hepatitis). Our model can be used for non-invasive surveillance of individuals with metabolic syndrome(s), allowing for early detection of NAFLD-HCC. Therefore, serum metabolomics may provide valuable insight to monitor patients at risk, including morbidly obese, diabetics, and NAFLD patients. FUNDING: The funding sources for this study had no role in study design, data collection, data analyses, interpretation or writing of the report as it is presented herein.


Subject(s)
Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/diagnosis , Lipidomics , Lipids/blood , Liver Neoplasms/blood , Liver Neoplasms/diagnosis , Non-alcoholic Fatty Liver Disease/blood , Biomarkers , Carcinoma, Hepatocellular/etiology , Case-Control Studies , Gene Expression Profiling/methods , Humans , Lipidomics/methods , Liver Neoplasms/etiology , Non-alcoholic Fatty Liver Disease/complications , Prognosis , ROC Curve , Reproducibility of Results , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL