Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Dig Dis Sci ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652389

ABSTRACT

BACKGROUND: Molecular changes in HCC development are largely unknown. As the liver plays a fundamental role in the body's metabolism, metabolic changes are to be expected. AIMS: We aimed to identify metabolomic changes in HCC in comparison to liver cirrhosis (LC) patients, which could potentially serve as novel biomarkers for HCC diagnosis and prognosis. METHODS: Metabolite expression from 38 HCC from the SORAMIC trial and 32 LC patients were analyzed by mass spectrometry. Metabolites with significant differences between LC and HCC at baseline were analyzed regarding expression over follow-up. In addition, association with overall survival was tested using univariate Cox proportional-hazard analysis. RESULTS: 41 metabolites showed differential expression between LC and HCC patients. 14 metabolites demonstrated significant changes in HCC patients during follow-up. Campesterol, lysophosphatidylcholine, octadecenoic and octadecadienoic acid, and furoylglycine showed a differential expression in the local ablation vs. palliative care group. High expression of eight metabolites (octadecenoic acid, 2-hydroxybutyrate, myo-inositol, isocitrate, erythronic acid, creatinine, pseudouridine, and erythrol) were associated with poor overall survival. The association between poor OS and octadecenoic acid and creatinine remained statistically significant even after adjusting for tumor burden and LC severity. CONCLUSION: Our findings give promising insides into the metabolic changes during HCC carcinogenesis and provide candidate biomarkers for future studies. Campesterol and furoylglycine in particular were identified as possible biomarkers for HCC progression. Moreover, eight metabolites were detected as predictors for poor overall survival.

2.
J Hepatol ; 79(2): 296-313, 2023 08.
Article in English | MEDLINE | ID: mdl-37224925

ABSTRACT

BACKGROUND & AIMS: The progression of non-alcoholic steatohepatitis (NASH) to fibrosis and hepatocellular carcinoma (HCC) is aggravated by auto-aggressive T cells. The gut-liver axis contributes to NASH, but the mechanisms involved and the consequences for NASH-induced fibrosis and liver cancer remain unknown. We investigated the role of gastrointestinal B cells in the development of NASH, fibrosis and NASH-induced HCC. METHODS: C57BL/6J wild-type (WT), B cell-deficient and different immunoglobulin-deficient or transgenic mice were fed distinct NASH-inducing diets or standard chow for 6 or 12 months, whereafter NASH, fibrosis, and NASH-induced HCC were assessed and analysed. Specific pathogen-free/germ-free WT and µMT mice (containing B cells only in the gastrointestinal tract) were fed a choline-deficient high-fat diet, and treated with an anti-CD20 antibody, whereafter NASH and fibrosis were assessed. Tissue biopsy samples from patients with simple steatosis, NASH and cirrhosis were analysed to correlate the secretion of immunoglobulins to clinicopathological features. Flow cytometry, immunohistochemistry and single-cell RNA-sequencing analysis were performed in liver and gastrointestinal tissue to characterise immune cells in mice and humans. RESULTS: Activated intestinal B cells were increased in mouse and human NASH samples and licensed metabolic T-cell activation to induce NASH independently of antigen specificity and gut microbiota. Genetic or therapeutic depletion of systemic or gastrointestinal B cells prevented or reverted NASH and liver fibrosis. IgA secretion was necessary for fibrosis induction by activating CD11b+CCR2+F4/80+CD11c-FCGR1+ hepatic myeloid cells through an IgA-FcR signalling axis. Similarly, patients with NASH had increased numbers of activated intestinal B cells; additionally, we observed a positive correlation between IgA levels and activated FcRg+ hepatic myeloid cells, as well the extent of liver fibrosis. CONCLUSIONS: Intestinal B cells and the IgA-FcR signalling axis represent potential therapeutic targets for the treatment of NASH. IMPACT AND IMPLICATIONS: There is currently no effective treatment for non-alcoholic steatohepatitis (NASH), which is associated with a substantial healthcare burden and is a growing risk factor for hepatocellular carcinoma (HCC). We have previously shown that NASH is an auto-aggressive condition aggravated, amongst others, by T cells. Therefore, we hypothesized that B cells might have a role in disease induction and progression. Our present work highlights that B cells have a dual role in NASH pathogenesis, being implicated in the activation of auto-aggressive T cells and the development of fibrosis via activation of monocyte-derived macrophages by secreted immunoglobulins (e.g., IgA). Furthermore, we show that the absence of B cells prevented HCC development. B cell-intrinsic signalling pathways, secreted immunoglobulins, and interactions of B cells with other immune cells are potential targets for combinatorial NASH therapies against inflammation and fibrosis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Microbiota , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/complications , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Mice, Inbred C57BL , Liver/pathology , Fibrosis , Liver Cirrhosis/complications , Mice, Transgenic , Immunoglobulin A/metabolism , Immunoglobulin A/pharmacology , Disease Models, Animal , Diet, High-Fat/adverse effects
3.
Lab Invest ; 102(12): 1400-1405, 2022 12.
Article in English | MEDLINE | ID: mdl-36045222

ABSTRACT

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) allows spatial analysis of proteins, metabolites, or small molecules from tissue sections. Here, we present the simultaneous generation and analysis of MALDI-MSI, whole-exome sequencing (WES), and RNA-sequencing data from the same formalin-fixed paraffin-embedded (FFPE) tissue sections. Genomic DNA and total RNA were extracted from (i) untreated, (ii) hematoxylin-eosin (HE) stained, and (iii) MALDI-MSI-analyzed FFPE tissue sections from three head and neck squamous cell carcinomas. MALDI-MSI data were generated by a time-of-flight analyzer prior to preprocessing and visualization. WES data were generated using a low-input protocol followed by detection of single-nucleotide variants (SNVs), tumor mutational burden, and mutational signatures. The transcriptome was determined using 3'-RNA sequencing and was examined for similarities and differences between processing stages. All data met the commonly accepted quality criteria. Besides SNVs commonly identified between differently processed tissues, FFPE-typical artifactual variants were detected. Tumor mutational burden was in the same range for tissues from the same patient and mutational signatures were highly overlapping. Transcriptome profiles showed high levels of correlation. Our data demonstrate that simultaneous molecular profiling of MALDI-MSI-processed FFPE tissue sections at the transcriptome and exome levels is feasible and reliable.


Subject(s)
Exome , Neoplasms , Humans , Paraffin Embedding , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tissue Fixation/methods , Exome/genetics , Formaldehyde/chemistry , Exome Sequencing , Gene Expression Profiling , Biomarkers, Tumor , RNA
4.
Mol Cancer ; 21(1): 178, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36076232

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) is both a driver oncogene and a therapeutic target in advanced head and neck squamous cell carcinoma (HNSCC). However, response to EGFR treatment is inconsistent and lacks markers for treatment prediction. This study investigated EGFR-induced epithelial-to-mesenchymal transition (EMT) as a central parameter in tumor progression and identified novel prognostic and therapeutic targets, and a candidate predictive marker for EGFR therapy response. METHODS: Transcriptomic profiles were analyzed by RNA sequencing (RNA-seq) following EGFR-mediated EMT in responsive human HNSCC cell lines. Exclusive genes were extracted via differentially expressed genes (DEGs) and a risk score was determined through forward feature selection and Cox regression models in HNSCC cohorts. Functional characterization of selected prognostic genes was conducted in 2D and 3D cellular models, and findings were validated by immunohistochemistry in primary HNSCC. RESULTS: An EGFR-mediated EMT gene signature composed of n = 171 genes was identified in responsive cell lines and transferred to the TCGA-HNSCC cohort. A 5-gene risk score comprising DDIT4, FADD, ITGB4, NCEH1, and TIMP1 prognosticated overall survival (OS) in TCGA and was confirmed in independent HNSCC cohorts. The EGFR-mediated EMT signature was distinct from EMT hallmark and partial EMT (pEMT) meta-programs with a differing enrichment pattern in single malignant cells. Molecular characterization showed that ITGB4 was upregulated in primary tumors and metastases compared to normal mucosa and correlated with EGFR/MAPK activity in tumor bulk and single malignant cells. Preferential localization of ITGB4 together with its ligand laminin 5 at tumor-stroma interfaces correlated with increased tumor budding in primary HNSCC tissue sections. In vitro, ITGB4 knock-down reduced EGFR-mediated migration and invasion and ITGB4-antagonizing antibody ASC8 impaired 2D and 3D invasion. Furthermore, a logistic regression model defined ITGB4 as a predictive marker of progression-free survival in response to Cetuximab in recurrent metastatic HNSCC patients. CONCLUSIONS: EGFR-mediated EMT conveyed through MAPK activation contributes to HNSCC progression upon induction of migration and invasion. A 5-gene risk score based on a novel EGFR-mediated EMT signature prognosticated survival of HNSCC patients and determined ITGB4 as potential therapeutic and predictive target in patients with strong EGFR-mediated EMT.


Subject(s)
Head and Neck Neoplasms , Transcriptome , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Humans , Neoplasm Recurrence, Local/genetics , Prognosis , Squamous Cell Carcinoma of Head and Neck/genetics
5.
Int J Cancer ; 150(4): 603-616, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34648658

ABSTRACT

Biomarkers with relevance for loco-regional therapy are needed in human papillomavirus negative aka HPV(-) head and neck squamous cell carcinoma (HNSCC). Based on the premise that DNA methylation pattern is highly conserved, we sought to develop a reliable and robust methylome-based classifier identifying HPV(-) HNSCC patients at risk for loco-regional recurrence (LR) and all-event progression after postoperative radiochemotherapy (PORT-C). The training cohort consisted of HPV-DNA negative HNSCC patients (n = 128) homogeneously treated with PORT-C in frame of the German Cancer Consortium-Radiation Oncology Group (DKTK-ROG) multicenter biomarker trial. DNA Methylation analysis was performed using Illumina 450 K and 850 K-EPIC microarray technology. The performance of the classifier was integrated with a series of biomarkers studied in the training set namely hypoxia-, 5-microRNA (5-miR), stem-cell gene-expression signatures and immunohistochemistry (IHC)-based immunological characterization of tumors (CD3/CD8/PD-L1/PD1). Validation occurred in an independent cohort of HPV(-) HNSCC patients, pooled from two German centers (n = 125). We identified a 38-methylation probe-based HPV(-) Independent Classifier of disease Recurrence (HICR) with high prognostic value for LR, distant metastasis and overall survival (P < 10-9 ). HICR remained significant after multivariate analysis adjusting for anatomical site, lymph node extracapsular extension (ECE) and size (T-stage). HICR high-risk tumors were enriched for younger patients with hypoxic tumors (15-gene signature) and elevated 5-miR score. After adjustment for hypoxia and 5-miR covariates, HICR maintained predicting all endpoints. HICR provides a novel mean for assessing the risk of LR in HPV(-) HNSCC patients treated with PORT-C and opens a new opportunity for biomarker-assisted stratification and therapy adaptation in these patients.


Subject(s)
Chemoradiotherapy , DNA Methylation , DNA, Neoplasm/metabolism , Head and Neck Neoplasms/genetics , Neoplasm Recurrence, Local/etiology , Squamous Cell Carcinoma of Head and Neck/genetics , Combined Modality Therapy , Female , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/virology , Humans , Male , MicroRNAs/analysis , Middle Aged , Papillomaviridae/isolation & purification , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/therapy , Squamous Cell Carcinoma of Head and Neck/virology
6.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209135

ABSTRACT

Radiation-induced damage to normal lung parenchyma remains a dose-limiting factor in thorax-associated radiotherapy (RT). Severe early and late complications with lungs can increase the risk of morbidity in cancer patients after RT. Herein, senescence of lung epithelial cells following RT-induced cellular stress, or more precisely the respective altered secretory profile, the senescence-associated secretory phenotype (SASP), was suggested as a central process for the initiation and progression of pneumonitis and pulmonary fibrosis. We previously reported that abrogation of certain aspects of the secretome of senescent lung cells, in particular, signaling inhibition of the SASP-factor Ccl2/Mcp1 mediated radioprotection especially by limiting endothelial dysfunction. Here, we investigated the therapeutic potential of a combined metformin treatment to protect normal lung tissue from RT-induced senescence and associated lung injury using a preclinical mouse model of radiation-induced pneumopathy. Metformin treatment efficiently limited RT-induced senescence and SASP expression levels, thereby limiting vascular dysfunctions, namely increased vascular permeability associated with increased extravasation of circulating immune and tumor cells early after irradiation (acute effects). Complementary in vitro studies using normal lung epithelial cell lines confirmed the senescence-limiting effect of metformin following RT finally resulting in radioprotection, while fostering RT-induced cellular stress of cultured malignant epithelial cells accounting for radiosensitization. The radioprotective action of metformin for normal lung tissue without simultaneous protection or preferable radiosensitization of tumor tissue might increase tumor control probabilities and survival because higher radiation doses could be used.


Subject(s)
Bronchi , Epithelial Cells , Metformin/pharmacology , Radiation Injuries, Experimental , Radiation-Protective Agents/pharmacology , Animals , Bronchi/metabolism , Bronchi/pathology , Cellular Senescence/drug effects , Cellular Senescence/radiation effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Mice , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/prevention & control
7.
Int J Cancer ; 142(3): 573-583, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28944451

ABSTRACT

Ionizing radiation is a well-recognized risk factor for the development of breast cancer. However, it is unknown whether radiation-specific molecular oncogenic mechanisms exist. We investigated post-Chernobyl breast cancers from radiation-exposed female clean-up workers and nonexposed controls for molecular changes. Radiation-associated alterations identified in the discovery cohort (n = 38) were subsequently validated in a second cohort (n = 39). Increased expression of hsa-miR-26b-5p was associated with radiation exposure in both of the cohorts. Moreover, downregulation of the TRPS1 protein, which is a transcriptional target of hsa-miR-26b-5p, was associated with radiation exposure. As TRPS1 overexpression is common in sporadic breast cancer, its observed downregulation in radiation-associated breast cancer warrants clarification of the specific functional role of TRPS1 in the radiation context. For this purpose, the impact of TRPS1 on the transcriptome was characterized in two radiation-transformed breast cell culture models after siRNA-knockdown. Deregulated genes upon TRPS1 knockdown were associated with DNA-repair, cell cycle, mitosis, cell migration, angiogenesis and EMT pathways. Furthermore, we identified the interaction partners of TRPS1 from the transcriptomic correlation networks derived from gene expression data on radiation-transformed breast cell culture models and sporadic breast cancer tissues provided by the TCGA database. The genes correlating with TRPS1 in the radiation-transformed breast cell lines were primarily linked to DNA damage response and chromosome segregation, while the transcriptional interaction partners in the sporadic breast cancers were mostly associated with apoptosis. Thus, upregulation of hsa-miR-26b-5p and downregulation of TRPS1 in radiation-associated breast cancer tissue samples suggests these molecules representing radiation markers in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Chernobyl Nuclear Accident , DNA-Binding Proteins/biosynthesis , MicroRNAs/biosynthesis , Neoplasms, Radiation-Induced/metabolism , Transcription Factors/biosynthesis , Adult , Breast Neoplasms/etiology , Breast Neoplasms/genetics , DNA-Binding Proteins/genetics , Female , Humans , MicroRNAs/genetics , Middle Aged , Neoplasms, Radiation-Induced/etiology , Neoplasms, Radiation-Induced/genetics , Paraffin Embedding , Repressor Proteins , Transcription Factors/genetics
8.
Int J Cancer ; 143(6): 1505-1515, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29663366

ABSTRACT

Breast cancer is the second leading cause of cancer death among women worldwide and besides life style, age and genetic risk factors, exposure to ionizing radiation is known to increase the risk for breast cancer. Further, DNA copy number alterations (CNAs), which can result from radiation-induced double-strand breaks, are frequently occurring in breast cancer cells. We set out to identify a signature of CNAs discriminating breast cancers from radiation-exposed and non-exposed female patients. We analyzed resected breast cancer tissues from 68 exposed female Chernobyl clean-up workers and evacuees and 68 matched non-exposed control patients for CNAs by array comparative genomic hybridization analysis (aCGH). Using a stepwise forward-backward selection approach a non-complex CNA signature, that is, less than ten features, was identified in the training data set, which could be subsequently validated in the validation data set (p value < 0.05). The signature consisted of nine copy number regions located on chromosomal bands 7q11.22-11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23-11.21, 1p21.1, 2q35, 2q35, 6p22.2. The signature was independent of any clinical characteristics of the patients. In all, we identified a CNA signature that has the potential to allow identification of radiation-associated breast cancer at the individual level.


Subject(s)
Breast Neoplasms/genetics , Chernobyl Nuclear Accident , DNA Copy Number Variations , Neoplasms, Radiation-Induced/genetics , Radiation Exposure/adverse effects , Adult , Breast Neoplasms/epidemiology , Breast Neoplasms/pathology , Cohort Studies , Comparative Genomic Hybridization , Female , Follow-Up Studies , Gene Dosage , Genomics , Humans , Middle Aged , Neoplasm Invasiveness , Neoplasms, Radiation-Induced/epidemiology , Neoplasms, Radiation-Induced/pathology , Prognosis , ROC Curve , Ukraine/epidemiology
9.
Immunol Cell Biol ; 96(9): 948-957, 2018 10.
Article in English | MEDLINE | ID: mdl-29665088

ABSTRACT

Activation-induced cytidine deaminase (AID) is required for the immunoglobulin diversification processes of somatic hypermutation, gene conversion and class-switch recombination. The targeting of AID's deamination activity is thought to be a combination of cis- and trans-acting elements, but has not been fully elucidated. Deletion analysis of putative proximal cis-regulatory motifs, while helpful, fails to identify additive versus cumulative effects, redundancy, and may create new motifs where none previously existed. In contrast, gain-of-function analysis can be more insightful with fewer of the same drawbacks and the output is a positive result. Here, we show five defined DNA regions of the avian Igλ locus that are sufficient to confer events of hypermutation to a target gene. In our analysis, the essential cis-targeting elements fully reconstituted diversification of a transgene under heterologous promotion in the avian B-cell line DT40. Furthermore, to the best of our knowledge two of the five regions we report on here have not previously been described as individually having an influence on somatic hypermutation.


Subject(s)
B-Lymphocytes/immunology , Cytidine Deaminase/genetics , Gain of Function Mutation , Immunoglobulin Class Switching , Animals , Cell Line , Chickens , Gene Conversion , Somatic Hypermutation, Immunoglobulin
10.
Radiat Environ Biophys ; 57(2): 163-168, 2018 05.
Article in English | MEDLINE | ID: mdl-29550923

ABSTRACT

The Chernobyl reactor accident in 1986 has caused significant exposure to ionizing radiation of the Ukrainian population, in particular clean-up workers and evacuees from the exclusion zones. A study aiming at the discovery of radiation markers of the breast cancer was conducted from 2008 to 2015 within a collaborative project by HZM, LMU, and NRCRM. In this study, post-Chernobyl breast cancer cases both in radiation-exposed female patients diagnosed at age less than 60 from 1992 to 2014 and in non-exposed controls matched for residency, tumor type, age at diagnosis, TNM classification as well as tumor grading were investigated for molecular changes with special emphasis to copy number alterations and miRNA profiles. Cancer registry and clinical archive data were used to identify 435 breast cancer patients among female clean-up workers and 14 among evacuees from highly contaminated territories as candidates for the study. Of these, 129 breast cancer patients fit study inclusion criteria and were traced for individual reconstruction of the target organ (breast) doses. The doses were estimated for 71 exposed cases (clean-up workers and evacuees from which biomaterial was available for molecular studies and who agreed to participate in a dosimetric interview) by the use of the well-established RADRUE method, which was adjusted specifically for the assessment of breast doses. The results of 58 female clean-up workers showed a large inter-individual variability of doses in a range of about five orders of magnitude: from 0.03 to 929 mGy, with median of 5.8 mGy. The study provides the first quantitative estimate of exposures received by female clean-up workers, which represent a limited but very important group of population affected by the Chernobyl accident. The doses of 13 women evacuated after the accident who did not take part in the clean-up activities (from 4 to 45 mGy with median of 19 mGy) are in line with the previous estimates for the evacuees from Pripyat and the 30-km zone.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Chernobyl Nuclear Accident , Environmental Restoration and Remediation , Neoplasms, Radiation-Induced/diagnosis , Neoplasms, Radiation-Induced/epidemiology , Occupational Exposure/adverse effects , Adult , Breast Neoplasms/etiology , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Female , Humans , Neoplasms, Radiation-Induced/etiology , Ukraine/epidemiology
11.
Radiat Environ Biophys ; 57(2): 99-113, 2018 05.
Article in English | MEDLINE | ID: mdl-29327260

ABSTRACT

Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.125 and 0.5 Gy at 10 weeks of age, determined lens opacities for up to 2 years and compared it with overall survival, cytogenetic alterations and cancer development. The highest dose was significantly associated with increased body weight and reduced survival rate. Chromosomal aberrations in bone marrow cells showed a dose-dependent increase 12 months after irradiation. Pathological screening indicated a dose-dependent risk for several types of tumors. Scheimpflug imaging of the lens revealed a significant dose-dependent effect of 1% of lens opacity. Comparison of different biological end points demonstrated long-term effects of low-dose irradiation for several biological end points.


Subject(s)
Cataract/genetics , Radiation Injuries, Experimental/genetics , Animals , Cataract/etiology , Chromosome Aberrations/radiation effects , Dose-Response Relationship, Radiation , Female , Kaplan-Meier Estimate , Male , Mice , Radiation Injuries, Experimental/etiology , Radiation Protection , Risk Assessment , Telomere/radiation effects , Time Factors
12.
Carcinogenesis ; 37(12): 1152-1160, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27729373

ABSTRACT

Strong evidence for the statistical association between radiation exposure and disease has been produced for thyroid cancer by epidemiological studies after the Chernobyl accident. However, limitations of the epidemiological approach in order to explore health risks especially at low doses of radiation appear obvious. Statistical fluctuations due to small case numbers dominate the uncertainty of risk estimates. Molecular radiation markers have been searched extensively to separate radiation-induced cancer cases from sporadic cases. The overexpression of the CLIP2 gene is the most promising of these markers. It was found in the majority of papillary thyroid cancers (PTCs) from young patients included in the Chernobyl tissue bank. Motivated by the CLIP2 findings we propose a mechanistic model which describes PTC development as a sequence of rate-limiting events in two distinct paths of CLIP2-associated and multistage carcinogenesis. It integrates molecular measurements of the dichotomous CLIP2 marker from 141 patients into the epidemiological risk analysis for about 13 000 subjects from the Ukrainian-American cohort which were exposed below age 19 years and were put under enhanced medical surveillance since 1998. For the first time, a radiation risk has been estimated solely from marker measurements. Cross checking with epidemiological estimates and model validation suggests that CLIP2 is a marker of high precision. CLIP2 leaves an imprint in the epidemiological incidence data which is typical for a driver gene. With the mechanistic model, we explore the impact of radiation on the molecular landscape of PTC. The model constitutes a unique interface between molecular biology and radiation epidemiology.


Subject(s)
Biomarkers, Tumor/biosynthesis , Carcinoma/genetics , Microtubule-Associated Proteins/biosynthesis , Neoplasms, Radiation-Induced/genetics , Thyroid Neoplasms/genetics , Adolescent , Adult , Biomarkers, Tumor/genetics , Carcinoma/epidemiology , Carcinoma/pathology , Carcinoma, Papillary , Chernobyl Nuclear Accident , Child , Female , Gene Expression Regulation, Neoplastic/radiation effects , Humans , Male , Microtubule-Associated Proteins/genetics , Neoplasms, Radiation-Induced/epidemiology , Neoplasms, Radiation-Induced/pathology , Thyroid Cancer, Papillary , Thyroid Gland/pathology , Thyroid Gland/radiation effects , Thyroid Neoplasms/epidemiology , Thyroid Neoplasms/pathology
13.
Anal Chem ; 88(10): 5281-9, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27065343

ABSTRACT

In research and clinical settings, formalin-fixed and paraffin-embedded (FFPE) tissue specimens are collected routinely and therefore this material constitutes a highly valuable source to gather insight in metabolic changes of diseases. Among mass spectrometry techniques to examine the molecular content of FFPE tissue, mass spectrometry imaging (MSI) is the most appropriate when morphological and histological features are to be related to metabolic information. Currently, high-resolution mass spectrometers are widely used for metabolomics studies. However, with regards to matrix-assisted laser desorption/ionization (MALDI) MSI, no study has so far addressed the necessity of instrumental mass resolving power in terms of clinical diagnosis and prognosis using archived FFPE tissue. For this matter we performed for the first time a comprehensive comparison between a high mass resolution Fourier-transform ion cyclotron resonance (FTICR) mass spectrometer and a time-of-flight (TOF) instrument with lower mass resolving power. Spectra analysis revealed that about one-third of the detected peaks remained unresolved by MALDI-TOF, which led to a 3-5 times lower number of m/z features compared to FTICR measurements. Overlaid peak information and background noise in TOF images made a precise assignment of molecular attributes to morphological features more difficult and limited classification approaches. This clearly demonstrates the need for high-mass resolution capabilities for metabolite imaging. Nevertheless, MALDI-TOF allowed reproducing and verifying individual markers identified previously by MALDI-FTICR MSI. The systematic comparison gives rise to a synergistic combination of the different MSI platforms for high-throughput discovery and validation of biomarkers.


Subject(s)
Colonic Neoplasms/pathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Biomarkers/analysis , Colonic Neoplasms/mortality , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Formaldehyde/chemistry , Fourier Analysis , Humans , Image Processing, Computer-Assisted , Metabolomics , Paraffin Embedding , Survival Rate
14.
J Pathol ; 237(1): 123-32, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25965788

ABSTRACT

We present the first analytical approach to demonstrate the in situ imaging of metabolites from formalin-fixed, paraffin-embedded (FFPE) human tissue samples. Using high-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR MSI), we conducted a proof-of-principle experiment comparing metabolite measurements from FFPE and fresh frozen tissue sections, and found an overlap of 72% amongst 1700 m/z species. In particular, we observed conservation of biomedically relevant information at the metabolite level in FFPE tissues. In biomedical applications, we analysed tissues from 350 different cancer patients and were able to discriminate between normal and tumour tissues, and different tumours from the same organ, and found an independent prognostic factor for patient survival. This study demonstrates the ability to measure metabolites in FFPE tissues using MALDI-FT-ICR MSI, which can then be assigned to histology and clinical parameters. Our approach is a major technical, histochemical, and clinicopathological advance that highlights the potential for investigating diseases in archived FFPE tissues.


Subject(s)
Biomarkers, Tumor/metabolism , Fixatives/chemistry , Formaldehyde/chemistry , Metabolomics/methods , Neoplasms/metabolism , Paraffin Embedding , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tissue Fixation/methods , Cluster Analysis , Computational Biology , Cyclotrons , Diagnosis, Differential , Disease-Free Survival , Female , Fourier Analysis , Germany , Humans , Male , Neoplasms/mortality , Neoplasms/pathology , Neoplasms/therapy , Netherlands , Predictive Value of Tests , Proportional Hazards Models , Reproducibility of Results , Time Factors , Treatment Outcome
15.
Carcinogenesis ; 36(11): 1381-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26320103

ABSTRACT

One of the major consequences of the 1986 Chernobyl reactor accident was a dramatic increase in papillary thyroid carcinoma (PTC) incidence, predominantly in patients exposed to the radioiodine fallout at young age. The present study is the first on genomic copy number alterations (CNAs) of PTCs of the Ukrainian-American cohort (UkrAm) generated by array comparative genomic hybridization (aCGH). Unsupervised hierarchical clustering of CNA profiles revealed a significant enrichment of a subgroup of patients with female gender, long latency (>17 years) and negative lymph node status. Further, we identified single CNAs that were significantly associated with latency, gender, radiation dose and BRAF V600E mutation status. Multivariate analysis revealed no interactions but additive effects of parameters gender, latency and dose on CNAs. The previously identified radiation-associated gain of the chromosomal bands 7q11.22-11.23 was present in 29% of cases. Moreover, comparison of our radiation-associated PTC data set with the TCGA data set on sporadic PTCs revealed altered copy numbers of the tumor driver genes NF2 and CHEK2. Further, we integrated the CNA data with transcriptomic data that were available on a subset of the herein analyzed cohort and did not find statistically significant associations between the two molecular layers. However, applying hierarchical clustering on a 'BRAF-like/RAS-like' transcriptome signature split the cases into four groups, one of which containing all BRAF-positive cases validating the signature in an independent data set.


Subject(s)
Carcinoma, Papillary/genetics , Carcinoma/genetics , Iodine Radioisotopes/adverse effects , Neoplasms, Radiation-Induced/genetics , Radioactive Fallout/adverse effects , Thyroid Neoplasms/genetics , Chernobyl Nuclear Accident , Comparative Genomic Hybridization , DNA Copy Number Variations , Female , Genome, Human , Genome-Wide Association Study , Humans , Male , Mutation, Missense , Proto-Oncogene Proteins B-raf/genetics , Thyroid Cancer, Papillary , Ukraine/ethnology , United States
16.
Carcinogenesis ; 36(7): 748-56, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25957251

ABSTRACT

A previous study on papillary thyroid carcinomas (PTC) in young patients who were exposed to (131)iodine from the Chernobyl fallout revealed an exclusive gain of chromosomal band 7q11.23 in exposed cases compared to an age-matched control cohort. CLIP2, a gene located within band 7q11.23 was shown to be differentially expressed between exposed and non-exposed cases at messenger RNA and protein level. Therefore, a standardized procedure for CLIP2 typing of PTCs has been developed in a follow-up study. Here we used CLIP2 typing data on 117 post-Chernobyl PTCs from two cohorts of exposed patients with individual dose estimates and 24 non-exposed controls to investigate a possible quantitative dose-response relationship of the CLIP2 marker. The 'Genrisk-T' cohort consisted of 45 PTCs and the 'UkrAm' cohort of 72 PTCs. Both cohorts differed in mean dose (0.59 Gy Genrisk-T, 1.2 Gy UkrAm) and mean age at exposure (AaE) (2 years Genrisk-T, 8 years UkrAm), whilst the median latency (16 years Genrisk-T, 18 years UkrAm) was comparable. We analyzed the association between the binary CLIP2 typing and continuous thyroid dose with logistic regression. A clear positive dose-response relationship was found for young PTC cases [age at operation (AaO) < 20 years, AaE < 5 years]. In the elder age group a higher proportion of sporadic tumors is assumed due to a negligible dose response, suggesting different molecular mechanisms in sporadic and radiation-induced cases. This is further supported by the association of elder patients (AaO > 20 years) with positivity for BRAF V600E mutation.


Subject(s)
Carcinoma/metabolism , Dose-Response Relationship, Radiation , Microtubule-Associated Proteins/metabolism , Thyroid Neoplasms/metabolism , Adolescent , Adult , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma/etiology , Carcinoma/surgery , Carcinoma, Papillary , Chernobyl Nuclear Accident , Child , Child, Preschool , Cohort Studies , Humans , Iodine Radioisotopes/administration & dosage , Logistic Models , Microtubule-Associated Proteins/genetics , Neoplasms, Radiation-Induced/metabolism , Neoplasms, Radiation-Induced/surgery , Thyroid Cancer, Papillary , Thyroid Neoplasms/etiology , Thyroid Neoplasms/surgery , Young Adult
17.
BMC Genomics ; 16: 654, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26328888

ABSTRACT

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is a very heterogeneous disease resulting in huge differences in the treatment response. New individualized therapy strategies including molecular targeting might help to improve treatment success. In order to identify potential targets, we developed a HNSCC radiochemotherapy cell culture model of primary HNSCC cells derived from two different patients (HN1957 and HN2092) and applied an integrative microRNA (miRNA) and mRNA analysis in order to gain information on the biological networks and processes of the cellular therapy response. We further identified potential target genes of four therapy-responsive miRNAs detected previously in the circulation of HNSCC patients by pathway enrichment analysis. RESULTS: The two primary cell cultures differ in global copy number alterations and P53 mutational status, thus reflecting heterogeneity of HNSCC. However, they also share many copy number alterations and chromosomal rearrangements as well as deregulated therapy-responsive miRNAs and mRNAs. Accordingly, six common therapy-responsive pathways (direct P53 effectors, apoptotic execution phase, DNA damage/telomere stress induced senescence, cholesterol biosynthesis, unfolded protein response, dissolution of fibrin clot) were identified in both cell cultures based on deregulated mRNAs. However, inflammatory pathways represented an important part of the treatment response only in HN1957, pointing to differences in the treatment responses of the two primary cultures. Focused analysis of target genes of four therapy-responsive circulating miRNAs, identified in a previous study on HNSCC patients, revealed a major impact on the pathways direct P53 effectors, the E2F transcription factor network and pathways in cancer (mainly represented by the PTEN/AKT signaling pathway). CONCLUSIONS: The integrative analysis combining miRNA expression, mRNA expression and the related cellular pathways revealed that the majority of radiochemotherapy-responsive pathways in primary HNSCC cells are related to cell cycle, proliferation, cell death and stress response (including inflammation). Despite the heterogeneity of HNSCC, the two primary cell cultures exhibited strong similarities in the treatment response. The findings of our study suggest potential therapeutic targets in the E2F transcription factor network and the PTEN/AKT signaling pathway.


Subject(s)
Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/therapy , Chemoradiotherapy , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy , MicroRNAs/genetics , Aged , Aged, 80 and over , Cell Line, Tumor , Cluster Analysis , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Male , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Signal Transduction/genetics , Squamous Cell Carcinoma of Head and Neck
18.
Anal Bioanal Chem ; 407(8): 2107-16, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25311193

ABSTRACT

Tissue distribution and quantitative analysis of small molecules is a key to assess the mechanism of drug action and evaluate treatment efficacy. The prodrug irinotecan (CPT-11) is widely used for chemotherapeutic treatment of colorectal cancer. CPT-11 requires conversion into its active metabolite SN-38 to exert the desired pharmacological effect. MALDI-Fourier transform ion cyclotron resonance (FT-ICR) and MALDI-time-of-flight (TOF) mass spectrometry imaging (MSI) were performed for detection of CPT-11 and SN-38 in tissue sections from mice post CPT-11 injection. In-depth information was gained about the distribution and quantity of drug compounds in normal and tumor tissue. The prodrug was metabolized, as proven by the detection of SN-38 in liver, kidney and digestive tract. In tumors from genetic mouse models for colorectal cancer (Apc (1638N/wt) x pvillin-Kras (V12G) ), CPT-11 was detected but not the active metabolite. In order to correlate drug distribution relative to vascularization, MALDI data were superimposed with CD31 (PECAM-1) immunohistochemistry. This analysis indicated that intratumoral access of CPT-11 mainly occurred by extravasation from microvessels. The present study exploits the power of MALDI MSI in drug analysis, and presents a novel approach to monitor drug distribution in relation to vessel functionality in preclinical and clinical research.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Camptothecin/analogs & derivatives , Colorectal Neoplasms/drug therapy , Drug Monitoring/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Antineoplastic Agents/analysis , Camptothecin/analysis , Camptothecin/metabolism , Camptothecin/pharmacokinetics , Drug Monitoring/instrumentation , Female , Humans , Irinotecan , Male , Mice , Mice, Inbred C57BL , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Tissue Distribution
19.
Anal Chem ; 86(21): 10568-75, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25263480

ABSTRACT

Drug efficacy strongly depends on the presence of the drug substance at the target site. As vascularization is an important factor for the distribution of drugs in tissues, we analyzed drug distribution as a function of blood vessel localization in tumor tissue. To explore distribution of the anticancer drugs afatinib, erlotinib, and sorafenib, a combined approach of matrix-assisted laser desorption/ionization (MALDI) drug imaging and immunohistochemical vessel staining was applied and examined by digital image analysis. The following two xenograft models were investigated: (1) mice carrying squamous cell carcinoma (FaDu) xenografts (ntumor = 13) were treated with afatinib or erlotinib, and (2) sarcoma (A673) xenograft bearing mice (ntumor = 8) received sorafenib treatment. MALDI drug imaging revealed a heterogeneous distribution of all anticancer drugs. The tumor regions containing high drug levels were associated with a higher degree of vascularization than the regions without drug signals (p < 0.05). When correlating the impact of blood vessel size to drug abundance in the sarcoma model, a higher amount of small vessels was detected in the tumor regions with high drug levels compared to the tumor regions with low drug levels (p < 0.05). With the analysis of coregistered MALDI imaging and CD31 immunohistochemical data by digital image analysis, we demonstrate for the first time the potential of correlating MALDI drug imaging and immunohistochemistry. Here we describe a specific and precise approach for correlating histological features and pharmacokinetic properties of drugs at microscopic level, which will provide information for the improvement of drug design, administration formula or treatment schemes.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Immunohistochemistry/methods , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacokinetics , Protein Kinase Inhibitors/pharmacokinetics , Quinazolines/pharmacokinetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Afatinib , Animals , Carcinoma, Squamous Cell/drug therapy , Erlotinib Hydrochloride , Female , Mice , Mice, SCID , Niacinamide/pharmacokinetics , Sarcoma/drug therapy , Sorafenib , Tissue Distribution
20.
J Pathol ; 230(4): 410-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23592244

ABSTRACT

Chemotherapeutic drugs kill cancer cells, but it is unclear why this happens in responding patients but not in non-responders. Proteomic profiles of patients with oesophageal adenocarcinoma may be helpful in predicting response and selecting more effective treatment strategies. In this study, pretherapeutic oesophageal adenocarcinoma biopsies were analysed for proteomic changes associated with response to chemotherapy by MALDI imaging mass spectrometry. Resulting candidate proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated for functional relevance in vitro. Clinical impact was validated in pretherapeutic biopsies from an independent patient cohort. Studies on the incidence of these defects in other solid tumours were included. We discovered that clinical response to cisplatin correlated with pre-existing defects in the mitochondrial respiratory chain complexes of cancer cells, caused by loss of specific cytochrome c oxidase (COX) subunits. Knockdown of a COX protein altered chemosensitivity in vitro, increasing the propensity of cancer cells to undergo cell death following cisplatin treatment. In an independent validation, patients with reduced COX protein expression prior to treatment exhibited favourable clinical outcomes to chemotherapy, whereas tumours with unchanged COX expression were chemoresistant. In conclusion, previously undiscovered pre-existing defects in mitochondrial respiratory complexes cause cancer cells to become chemosensitive: mitochondrial defects lower the cells' threshold for undergoing cell death in response to cisplatin. By contrast, cancer cells with intact mitochondrial respiratory complexes are chemoresistant and have a high threshold for cisplatin-induced cell death. This connection between mitochondrial respiration and chemosensitivity is relevant to anticancer therapeutics that target the mitochondrial electron transport chain.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Electron Transport Complex IV/metabolism , Esophageal Neoplasms/drug therapy , Mitochondria/drug effects , Adenocarcinoma/enzymology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Aged , Biomarkers, Tumor/genetics , Biopsy , Cell Line, Tumor , Chemotherapy, Adjuvant , Chromatography, Liquid , Cisplatin/administration & dosage , Down-Regulation , Drug Resistance, Neoplasm , Electron Transport Complex IV/genetics , Esophageal Neoplasms/enzymology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Fluorouracil/administration & dosage , Humans , Middle Aged , Mitochondria/enzymology , Mitochondria/pathology , Neoadjuvant Therapy , Precision Medicine , Proteomics/methods , RNA Interference , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Transfection , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL