Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 385(11): 1005-1017, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34432975

ABSTRACT

BACKGROUND: Malaria control remains a challenge in many parts of the Sahel and sub-Sahel regions of Africa. METHODS: We conducted an individually randomized, controlled trial to assess whether seasonal vaccination with RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria and whether the two interventions combined were superior to either one alone in preventing uncomplicated malaria and severe malaria-related outcomes. RESULTS: We randomly assigned 6861 children 5 to 17 months of age to receive sulfadoxine-pyrimethamine and amodiaquine (2287 children [chemoprevention-alone group]), RTS,S/AS01E (2288 children [vaccine-alone group]), or chemoprevention and RTS,S/AS01E (2286 children [combination group]). Of these, 1965, 1988, and 1967 children in the three groups, respectively, received the first dose of the assigned intervention and were followed for 3 years. Febrile seizure developed in 5 children the day after receipt of the vaccine, but the children recovered and had no sequelae. There were 305 events of uncomplicated clinical malaria per 1000 person-years at risk in the chemoprevention-alone group, 278 events per 1000 person-years in the vaccine-alone group, and 113 events per 1000 person-years in the combination group. The hazard ratio for the protective efficacy of RTS,S/AS01E as compared with chemoprevention was 0.92 (95% confidence interval [CI], 0.84 to 1.01), which excluded the prespecified noninferiority margin of 1.20. The protective efficacy of the combination as compared with chemoprevention alone was 62.8% (95% CI, 58.4 to 66.8) against clinical malaria, 70.5% (95% CI, 41.9 to 85.0) against hospital admission with severe malaria according to the World Health Organization definition, and 72.9% (95% CI, 2.9 to 92.4) against death from malaria. The protective efficacy of the combination as compared with the vaccine alone against these outcomes was 59.6% (95% CI, 54.7 to 64.0), 70.6% (95% CI, 42.3 to 85.0), and 75.3% (95% CI, 12.5 to 93.0), respectively. CONCLUSIONS: Administration of RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria. The combination of these interventions resulted in a substantially lower incidence of uncomplicated malaria, severe malaria, and death from malaria than either intervention alone. (Funded by the Joint Global Health Trials and PATH; ClinicalTrials.gov number, NCT03143218.).


Subject(s)
Amodiaquine/therapeutic use , Antimalarials/therapeutic use , Malaria Vaccines , Malaria, Falciparum/prevention & control , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Antimalarials/adverse effects , Burkina Faso/epidemiology , Chemoprevention , Combined Modality Therapy , Double-Blind Method , Drug Combinations , Drug Therapy, Combination , Female , Hospitalization/statistics & numerical data , Humans , Infant , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria, Falciparum/epidemiology , Malaria, Falciparum/mortality , Male , Mali/epidemiology , Seasons , Seizures, Febrile/etiology
2.
J Infect Dis ; 228(7): 926-935, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37221018

ABSTRACT

BACKGROUND: Despite scale-up of seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine and amodiaquine (SP-AQ) in children 3-59 months of age in Burkina Faso, malaria incidence remains high, raising concerns regarding SMC effectiveness and selection of drug resistance. Using a case-control design, we determined associations between SMC drug levels, drug resistance markers, and presentation with malaria. METHODS: We enrolled 310 children presenting at health facilities in Bobo-Dioulasso. Cases were SMC-eligible children 6-59 months of age diagnosed with malaria. Two controls were enrolled per case: SMC-eligible children without malaria; and older (5-10 years old), SMC-ineligible children with malaria. We measured SP-AQ drug levels among SMC-eligible children and SP-AQ resistance markers among parasitemic children. Conditional logistic regression was used to compute odds ratios (ORs) comparing drug levels between cases and controls. RESULTS: Compared to SMC-eligible controls, children with malaria were less likely to have any detectable SP or AQ (OR, 0.33 [95% confidence interval, .16-.67]; P = .002) and have lower drug levels (P < .05). Prevalences of mutations mediating high-level SP resistance were rare (0%-1%) and similar between cases and SMC-ineligible controls (P > .05). CONCLUSIONS: Incident malaria among SMC-eligible children was likely due to suboptimal levels of SP-AQ, resulting from missed cycles rather than increased antimalarial resistance to SP-AQ.


Subject(s)
Antimalarials , Malaria , Humans , Child , Infant , Child, Preschool , Burkina Faso/epidemiology , Case-Control Studies , Seasons , Malaria/epidemiology , Malaria/prevention & control , Malaria/drug therapy , Antimalarials/therapeutic use , Antimalarials/pharmacology , Sulfadoxine/therapeutic use , Amodiaquine/therapeutic use , Chemoprevention/methods , Drug Combinations , Drug Resistance
3.
Clin Infect Dis ; 75(4): 613-622, 2022 09 10.
Article in English | MEDLINE | ID: mdl-34894221

ABSTRACT

BACKGROUND: A trial in African children showed that combining seasonal vaccination with the RTS,S/AS01E vaccine with seasonal malaria chemoprevention reduced the incidence of uncomplicated and severe malaria compared with either intervention given alone. Here, we report on the anti-circumsporozoite antibody response to seasonal RTS,S/AS01E vaccination in children in this trial. METHODS: Sera from a randomly selected subset of children collected before and 1 month after 3 priming doses of RTS,S/AS01E and before and 1 month after 2 seasonal booster doses were tested for anti-circumsporozoite antibodies using enzyme-linked immunosorbent assay. The association between post-vaccination antibody titer and incidence of malaria was explored. RESULTS: A strong anti-circumsporozoite antibody response to 3 priming doses of RTS,S/AS01E was seen (geometric mean titer, 368.9 enzyme-linked immunosorbent assay units/mL), but titers fell prior to the first booster dose. A strong antibody response to an annual, pre-malaria transmission season booster dose was observed, but this was lower than after the primary vaccination series and lower after the second than after the first booster dose (ratio of geometric mean rise, 0.66; 95% confidence interval [CI], .57-.77). Children whose antibody response was in the upper tercile post-vaccination had a lower incidence of malaria during the following year than children in the lowest tercile (hazard ratio, 0.43; 95% CI, .28-.66). CONCLUSIONS: Seasonal vaccination with RTS,S/AS01E induced a strong booster antibody response that was lower after the second than after the first booster dose. The diminished antibody response to the second booster dose was not associated with diminished efficacy. CLINICAL TRIALS REGISTRATION: NCT03143218.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Antibody Formation , Child , Humans , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Seasons , Vaccination
4.
N Engl J Med ; 380(23): 2197-2206, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-30699301

ABSTRACT

BACKGROUND: Mass administration of azithromycin for trachoma control led to a sustained reduction in all-cause mortality among Ethiopian children. Whether the addition of azithromycin to the monthly sulfadoxine-pyrimethamine plus amodiaquine used for seasonal malaria chemoprevention could reduce mortality and morbidity among African children was unclear. METHODS: We randomly assigned children 3 to 59 months of age, according to household, to receive either azithromycin or placebo, together with sulfadoxine-pyrimethamine plus amodiaquine, during the annual malaria-transmission season in Burkina Faso and Mali. The drug combinations were administered in four 3-day cycles, at monthly intervals, for three successive seasons. The primary end point was death or hospital admission for at least 24 hours that was not due to trauma or elective surgery. Data were recorded by means of active and passive surveillance. RESULTS: In July 2014, a total of 19,578 children were randomly assigned to receive seasonal malaria chemoprevention plus either azithromycin (9735 children) or placebo (9843 children); each year, children who reached 5 years of age exited the trial and new children were enrolled. In the intention-to-treat analysis, the overall number of deaths and hospital admissions during three malaria-transmission seasons was 250 in the azithromycin group and 238 in the placebo group (events per 1000 child-years at risk, 24.8 vs. 23.5; incidence rate ratio, 1.1; 95% confidence interval [CI], 0.88 to 1.3). Results were similar in the per-protocol analysis. The following events occurred less frequently with azithromycin than with placebo: gastrointestinal infections (1647 vs. 1985 episodes; incidence rate ratio, 0.85; 95% CI, 0.79 to 0.91), upper respiratory tract infections (4893 vs. 5763 episodes; incidence rate ratio, 0.85; 95% CI, 0.81 to 0.90), and nonmalarial febrile illnesses (1122 vs. 1424 episodes; incidence rate ratio, 0.79; 95% CI, 0.73 to 0.87). The prevalence of malaria parasitemia and incidence of adverse events were similar in the two groups. CONCLUSIONS: Among children in Burkina Faso and Mali, the addition of azithromycin to the antimalarial agents used for seasonal malaria chemoprevention did not result in a lower incidence of death or hospital admission that was not due to trauma or surgery than antimalarial agents plus placebo, although a lower disease burden was noted with azithromycin than with placebo. (Funded by the Joint Global Health Trials scheme; ClinicalTrials.gov number, NCT02211729.).


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antimalarials/therapeutic use , Azithromycin/therapeutic use , Child Mortality , Hospitalization/statistics & numerical data , Malaria/prevention & control , Amodiaquine/therapeutic use , Burkina Faso/epidemiology , Child, Preschool , Drug Administration Schedule , Drug Combinations , Drug Therapy, Combination , Female , Humans , Incidence , Infant , Infant Mortality , Malaria/mortality , Male , Mali/epidemiology , Mass Drug Administration , Parasitemia/drug therapy , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use
5.
BMC Med ; 20(1): 352, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36203149

ABSTRACT

BACKGROUND: A recent trial of 5920 children in Burkina Faso and Mali showed that the combination of seasonal vaccination with the RTS,S/AS01E malaria vaccine (primary series and two seasonal boosters) and seasonal malaria chemoprevention (four monthly cycles per year) was markedly more effective than either intervention given alone in preventing clinical malaria, severe malaria, and deaths from malaria. METHODS: In order to help optimise the timing of these two interventions, trial data were reanalysed to estimate the duration of protection against clinical malaria provided by RTS,S/AS01E when deployed seasonally, by comparing the group who received the combination of SMC and RTS,S/AS01E with the group who received SMC alone. The duration of protection from SMC was also estimated comparing the combined intervention group with the group who received RTS,S/AS01E alone. Three methods were used: Piecewise Cox regression, Flexible parametric survival models and Smoothed Schoenfeld residuals from Cox models, stratifying on the study area and using robust standard errors to control for within-child clustering of multiple episodes. RESULTS: The overall protective efficacy from RTS,S/AS01E over 6 months was at least 60% following the primary series and the two seasonal booster doses and remained at a high level over the full malaria transmission season. Beyond 6 months, protective efficacy appeared to wane more rapidly, but the uncertainty around the estimates increases due to the lower number of cases during this period (coinciding with the onset of the dry season). Protection from SMC exceeded 90% in the first 2-3 weeks post-administration after several cycles, but was not 100%, even immediately post-administration. Efficacy begins to decline from approximately day 21 and then declines more sharply after day 28, indicating the importance of preserving the delivery interval for SMC cycles at a maximum of four weeks. CONCLUSIONS: The efficacy of both interventions was highest immediately post-administration. Understanding differences between these interventions in their peak efficacy and how rapidly efficacy declines over time will help to optimise the scheduling of SMC, malaria vaccination and the combination in areas of seasonal transmission with differing epidemiology, and using different vaccine delivery systems. TRIAL REGISTRATION: The RTS,S-SMC trial in which these data were collected was registered at clinicaltrials.gov: NCT03143218.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Antibodies, Protozoan , Chemoprevention , Humans , Infant , Malaria/epidemiology , Malaria/prevention & control , Malaria, Falciparum/epidemiology , Plasmodium falciparum , Seasons , Vaccination
6.
Malar J ; 21(1): 77, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35264158

ABSTRACT

The populations of moderate or highly malaria endemic areas gradually acquire some immunity to malaria as a result of repeated exposure to the infection. When this exposure is reduced as a result of effective malaria control measures, subjects who benefitted from the intervention may consequently be at increased risk of malaria if the intervention is withdrawn, especially if this is done abruptly, and an effective malaria vector remains. There have been many examples of this occurring in the past, a phenomenon often termed 'rebound malaria', with the incidence of malaria rebounding to the level present before the intervention was introduced. Because the main clinical burden of malaria in areas with a high level of malaria transmission is in young children, malaria control efforts have, in recent decades, focussed on this group, with substantial success being obtained with interventions such as insecticide treated mosquito nets, chemoprevention and, most recently, malaria vaccines. These are interventions whose administration may not be sustained. This has led to concerns that in these circumstances, the overall burden of malaria in children may not be reduced but just delayed, with the main period of risk being in the period shortly after the intervention is no longer given. Although dependent on the same underlying process as classical 'resurgent' malaria, it may be helpful to differentiate the two conditions, describing the later as 'delayed malaria'. In this paper, some of the evidence that delayed malaria occurs is discussed and potential measures for reducing its impact are suggested.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Malaria , Animals , Child , Child, Preschool , Humans , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control , Mosquito Vectors
7.
Malar J ; 21(1): 103, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35331248

ABSTRACT

BACKGROUND: Seasonal malaria chemoprevention (SMC) is a WHO-recommended intervention for children aged 3-59 months living in areas of high malaria transmission to provide protection against malaria during the rainy season. Operational guidelines were developed, based on WHO guidance, to support countries to mitigate the risk of coronavirus disease 2019 (COVID-19) transmission within communities and among community distributors when delivering SMC. METHODS: A cross-sectional study to determine adherence to infection prevention and control (IPC) measures during two distribution cycles of SMC in Nigeria, Chad and Burkina Faso. Community distributors were observed receiving equipment and delivering SMC. Adherence across six domains was calculated as the proportion of indications in which the community distributor performed the correct action. Focus group discussions were conducted with community distributors to understand their perceptions of the IPC measures and barriers and facilitators to adherence. RESULTS: Data collectors observed community distributors in Nigeria (n = 259), Burkina Faso (n = 252) and Chad (n = 266) receiving IPC equipment and delivering SMC. Adherence to IPC indications varied. In all three countries, adherence to mask use was the highest (ranging from 73.3% in Nigeria to 86.9% in Burkina Faso). Adherence to hand hygiene for at least 30 s was low (ranging from 3.6% in Nigeria to 10.3% in Burkina Faso) but increased substantially when excluding the length of time spent hand washing (ranging from 36.7% in Nigeria to 61.4% in Burkina Faso). Adherence to safe distancing in the compound ranged from 5.4% in Chad to 16.4% in Nigeria. In Burkina Faso and Chad, where disinfection wipes widely available compliance with disinfection of blister packs for SMC was low (17.4% in Burkina Faso and 16.9% in Chad). Community distributors generally found the IPC measures acceptable, however there were barriers to optimal hand hygiene practices, cultural norms made social distancing difficult to adhere to and caregivers needed assistance to administer the first dose of SMC. CONCLUSION: Adherence to IPC measures for SMC delivery during the COVID-19 pandemic varied across domains of IPC, but was largely insufficient, particularly for hand hygiene and safe distancing. Improvements in provision of protective equipment, early community engagement and adaptations to make IPC measures more feasible to implement could increase adherence.


Subject(s)
Antimalarials , COVID-19 , Malaria , Antimalarials/therapeutic use , Burkina Faso/epidemiology , COVID-19/prevention & control , Chad , Chemoprevention , Child , Child, Preschool , Cross-Sectional Studies , Humans , Infant , Malaria/prevention & control , Nigeria/epidemiology , Pandemics/prevention & control , Seasons
8.
Malar J ; 21(1): 59, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35193608

ABSTRACT

BACKGROUND: A recent trial in Burkina Faso and Mali showed that combining seasonal RTS,S/AS01E malaria vaccination with seasonal malaria chemoprevention (SMC) substantially reduced the incidence of uncomplicated and severe malaria in young children compared to either intervention alone. Given the possible negative effect of malaria on nutrition, the study investigated whether these children also experienced lower prevalence of acute and chronic malnutrition. METHODS: In Burkina Faso and Mali 5920 children were randomized to receive either SMC alone, RTS,S/AS01E alone, or SMC combined with RTS,S/AS01E for three malaria transmission seasons (2017-2019). After each transmission season, anthropometric measurements were collected from all study children at a cross-sectional survey and used to derive nutritional status indicators, including the binary variables wasted and stunted (weight-for-height and height-for-age z-scores below - 2, respectively). Binary and continuous outcomes between treatment groups were compared by Poisson and linear regression. RESULTS: In 2017, compared to SMC alone, the combined intervention reduced the prevalence of wasting by approximately 12% [prevalence ratio (PR) = 0.88 (95% CI 0.75, 1.03)], and approximately 21% in 2018 [PR = 0.79 (95% CI 0.62, 1.01)]. Point estimates were similar for comparisons with RTS,S/AS01E, but there was stronger evidence of a difference. There was at least a 30% reduction in the point estimates for the prevalence of severe wasting in the combined group compared to the other two groups in 2017 and 2018. There was no difference in the prevalence of moderate or severe wasting between the groups in 2019. The prevalence of stunting, low-MUAC-for-age or being underweight did not differ between groups for any of the three years. The prevalence of severe stunting was higher in the combined group compared to both other groups in 2018, and compared to RTS,S/AS01E alone in 2017; this observation does not have an obvious explanation and may be a chance finding. Overall, malnutrition was very common in this cohort, but declined over the study as the children became older. CONCLUSIONS: Despite a high burden of malnutrition and malaria in the study populations, and a major reduction in the incidence of malaria in children receiving both interventions, this had only a modest impact on nutritional status. Therefore, other interventions are needed to reduce the high burden of malnutrition in these areas. TRIAL REGISTRATION: https://www.clinicaltrials.gov/ct2/show/NCT03143218 , registered 8th May 2017.


Subject(s)
Antimalarials , Malaria , Antimalarials/therapeutic use , Burkina Faso/epidemiology , Chemoprevention , Child , Child, Preschool , Cross-Sectional Studies , Humans , Infant , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Mali/epidemiology , Nutritional Status , Seasons , Vaccination
9.
Clin Infect Dis ; 73(7): e2379-e2386, 2021 10 05.
Article in English | MEDLINE | ID: mdl-33417683

ABSTRACT

BACKGROUND: Mass drug administration (MDA) with azithromycin (AZ) is being considered as a strategy to promote child survival in sub-Saharan Africa, but the mechanism by which AZ reduces mortality is unclear. To better understand the nature and extent of protection provided by AZ, we explored the profile of protection by time since administration, using data from a household-randomized, placebo-controlled trial in Burkina Faso and Mali. METHODS: Between 2014 and 2016, 30 977 children aged 3-59 months received seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine plus amodiaquine and either AZ or placebo monthly, on 4 occasions each year. Poisson regression with gamma-distributed random effects, accounting for the household randomization and within-individual clustering of illness episodes, was used to compare incidence of prespecified outcomes between SMC+AZ versus SMC+placebo groups in fixed time strata post-treatment. The likelihood ratio test was used to assess evidence for a time-treatment group interaction. RESULTS: Relative to SMC+placebo, there was no evidence of protection from SMC+AZ against hospital admissions and deaths. Additional protection from SMC+AZ against malaria was confined to the first 2 weeks post-administration (protective efficacy (PE): 24.2% [95% CI: 17.8%, 30.1%]). Gastroenteritis and pneumonia were reduced by 29.9% [21.7; 37.3%], and 34.3% [14.9; 49.3%], respectively, in the first 2 weeks postadministration. Protection against nonmalaria fevers with a skin condition persisted up to 28 days: PE: 46.3% [35.1; 55.6%]. CONCLUSIONS: The benefits of AZ-MDA are broad-ranging but short-lived. To maximize impact, timing of AZ-MDA must address the challenge of targeting asynchronous morbidity and mortality peaks from different causes.


Subject(s)
Antimalarials , Malaria , Antimalarials/therapeutic use , Azithromycin/therapeutic use , Burkina Faso/epidemiology , Chemoprevention , Child, Preschool , Drug Combinations , Humans , Infant , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Mali/epidemiology , Seasons
10.
PLoS Med ; 18(9): e1003727, 2021 09.
Article in English | MEDLINE | ID: mdl-34495978

ABSTRACT

BACKGROUND: Seasonal malaria chemoprevention (SMC) has shown high protective efficacy against clinical malaria and severe malaria in a series of clinical trials. We evaluated the effectiveness of SMC treatments against clinical malaria when delivered at scale through national malaria control programmes in 2015 and 2016. METHODS AND FINDINGS: Case-control studies were carried out in Mali and The Gambia in 2015, and in Burkina Faso, Chad, Mali, Nigeria, and The Gambia in 2016. Children aged 3-59 months presenting at selected health facilities with microscopically confirmed clinical malaria were recruited as cases. Two controls per case were recruited concurrently (on or shortly after the day the case was detected) from the neighbourhood in which the case lived. The primary exposure was the time since the most recent course of SMC treatment, determined from SMC recipient cards, caregiver recall, and administrative records. Conditional logistic regression was used to estimate the odds ratio (OR) associated with receipt of SMC within the previous 28 days, and SMC 29 to 42 days ago, compared with no SMC in the past 42 days. These ORs, which are equivalent to incidence rate ratios, were used to calculate the percentage reduction in clinical malaria incidence in the corresponding time periods. Results from individual countries were pooled in a random-effects meta-analysis. In total, 2,126 cases and 4,252 controls were included in the analysis. Across the 7 studies, the mean age ranged from 1.7 to 2.4 years and from 2.1 to 2.8 years among controls and cases, respectively; 42.2%-50.9% and 38.9%-46.9% of controls and cases, respectively, were male. In all 7 individual case-control studies, a high degree of personal protection from SMC against clinical malaria was observed, ranging from 73% in Mali in 2016 to 98% in Mali in 2015. The overall OR for SMC within 28 days was 0.12 (95% CI: 0.06, 0.21; p < 0.001), indicating a protective effectiveness of 88% (95% CI: 79%, 94%). Effectiveness against clinical malaria for SMC 29-42 days ago was 61% (95% CI: 47%, 72%). Similar results were obtained when the analysis was restricted to cases with parasite density in excess of 5,000 parasites per microlitre: Protective effectiveness 90% (95% CI: 79%, 96%; P<0.001), and 59% (95% CI: 34%, 74%; P<0.001) for SMC 0-28 days and 29-42 days ago, respectively. Potential limitations include the possibility of residual confounding due to an association between exposure to malaria and access to SMC, or differences in access to SMC between patients attending a clinic and community controls; however, neighbourhood matching of cases and controls, and covariate adjustment, attempted to control for these aspects, and the observed decline in protection over time, consistent with expected trends, argues against a major bias from these sources. CONCLUSIONS: SMC administered as part of routine national malaria control activities provided a very high level of personal protection against clinical malaria over 28 days post-treatment, similar to the efficacy observed in clinical trials. The case-control design used in this study can be used at intervals to ensure SMC treatments remain effective.


Subject(s)
Amodiaquine/therapeutic use , Antimalarials/therapeutic use , Communicable Disease Control , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Pyrimethamine/therapeutic use , Seasons , Sulfadoxine/therapeutic use , Africa, Western/epidemiology , Age Factors , Amodiaquine/adverse effects , Antimalarials/adverse effects , Case-Control Studies , Child, Preschool , Drug Combinations , Female , Humans , Incidence , Infant , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Parasite Load , Plasmodium falciparum/growth & development , Program Evaluation , Pyrimethamine/adverse effects , Risk Assessment , Risk Factors , Sulfadoxine/adverse effects , Time Factors , Treatment Outcome
11.
Antimicrob Agents Chemother ; 65(8): e0087321, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34060901

ABSTRACT

A recent randomized controlled trial, the WANECAM (West African Network for Clinical Trials of Antimalarial Drugs) trial, conducted at seven centers in West Africa, found that artemether-lumefantrine, artesunate-amodiaquine, pyronaridine-artesunate, and dihydroartemisinin-piperaquine all displayed good efficacy. However, artemether-lumefantrine was associated with a shorter interval between clinical episodes than the other regimens. In a further comparison of these therapies, we identified cases of persisting submicroscopic parasitemia by quantitative PCR (qPCR) at 72 h posttreatment among WANECAM participants from 5 sites in Mali and Burkina Faso, and we compared treatment outcomes for this group to those with complete parasite clearance by 72 h. Among 552 evaluable patients, 17.7% had qPCR-detectable parasitemia at 72 h during their first treatment episode. This proportion varied among sites, reflecting differences in malaria transmission intensity, but did not differ among pooled drug treatment groups. However, patients who received artemether-lumefantrine and were qPCR positive at 72 h were significantly more likely to have microscopically detectable recurrent Plasmodium falciparum parasitemia by day 42 than those receiving other regimens and experienced, on average, a shorter interval before the next clinical episode. Haplotypes of pfcrt and pfmdr1 were also evaluated in persisting parasites. These data identify a possible threat to the parasitological efficacy of artemether-lumefantrine in West Africa, over a decade since it was first introduced on a large scale.


Subject(s)
Antimalarials , Malaria, Falciparum , Antimalarials/therapeutic use , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination , Burkina Faso , Drug Combinations , Ethanolamines/therapeutic use , Humans , Malaria, Falciparum/drug therapy , Mali , Parasitemia/drug therapy , Plasmodium falciparum/genetics , Treatment Failure
12.
Malar J ; 20(1): 326, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34315475

ABSTRACT

BACKGROUND: Seasonal malaria chemoprevention (SMC) consists of administration of sulfadoxine-pyrimethamine (SP) + amodiaquine (AQ) at monthly intervals to children during the malaria transmission period. Whether the addition of azithromycin (AZ) to SMC could potentiate the benefit of the intervention was tested through a double-blind, randomized, placebo-controlled trial. The effect of SMC and the addition of AZ, on malaria transmission and on the life history traits of Anopheles gambiae mosquitoes have been investigated. METHODS: The study included 438 children randomly selected from among participants in the SMC + AZ trial and 198 children from the same area who did not receive chemoprevention. For each participant in the SMC + AZ trial, blood was collected 14 to 21 days post treatment, examined for the presence of malaria sexual and asexual stages and provided as a blood meal to An. gambiae females using a direct membrane-feeding assay. RESULTS: The SMC treatment, with or without AZ, significantly reduced the prevalence of asexual Plasmodium falciparum (LRT X22 = 69, P < 0.0001) and the gametocyte prevalence (LRT X22 = 54, P < 0.0001). In addition, the proportion of infectious feeds (LRT X22 = 61, P < 0.0001) and the prevalence of oocysts among exposed mosquitoes (LRT X22 = 22.8, P < 0.001) was reduced when mosquitoes were fed on blood from treated children compared to untreated controls. The addition of AZ to SPAQ was associated with an increased proportion of infectious feeds (LRT X21 = 5.2, P = 0.02), suggesting a significant effect of AZ on gametocyte infectivity. There was a slight negative effect of SPAQ and SPAQ + AZ on mosquito survival compared to mosquitoes fed with blood from control children (LRTX22 = 330, P < 0.0001). CONCLUSION: This study demonstrates that SMC may contribute to a reduction in human to mosquito transmission of P. falciparum, and the reduced mosquito longevity observed for females fed on treated blood may increase the benefit of this intervention in control of malaria. The addition of AZ to SPAQ in SMC appeared to enhance the infectivity of gametocytes providing further evidence that this combination is not an appropriate intervention.


Subject(s)
Amodiaquine/administration & dosage , Antimalarials/administration & dosage , Azithromycin/administration & dosage , Culicidae/physiology , Genetic Fitness , Malaria, Falciparum , Plasmodium falciparum/physiology , Pyrimethamine/administration & dosage , Sulfadoxine/administration & dosage , Animals , Chemoprevention , Child, Preschool , Drug Combinations , Humans , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Seasons
13.
Malar J ; 20(1): 274, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34158054

ABSTRACT

BACKGROUND: Malaria and malnutrition remain major problems in Sahel countries, especially in young children. The direct effect of malnutrition on malaria remains poorly understood, and may have important implications for malaria control. In this study, nutritional status and the association between malnutrition and subsequent incidence of symptomatic malaria were examined in children in Burkina Faso and Mali who received either azithromycin or placebo, alongside seasonal malaria chemoprevention. METHODS: Mid-upper arm circumference (MUAC) was measured in all 20,185 children who attended a screening visit prior to the malaria transmission season in 2015. Prior to the 2016 malaria season, weight, height and MUAC were measured among 4149 randomly selected children. Height-for-age, weight-for-age, weight-for-height, and MUAC-for-age were calculated as indicators of nutritional status. Malaria incidence was measured during the following rainy seasons. Multivariable random effects Poisson models were created for each nutritional indicator to study the effect of malnutrition on clinical malaria incidence for each country. RESULTS: In both 2015 and 2016, nutritional status prior to the malaria season was poor. The most prevalent form of malnutrition in Burkina Faso was being underweight (30.5%; 95% CI 28.6-32.6), whereas in Mali stunting was most prevalent (27.5%; 95% CI 25.6-29.5). In 2016, clinical malaria incidence was 675 per 1000 person-years (95% CI 613-744) in Burkina Faso, and 1245 per 1000 person-years (95% CI 1152-1347) in Mali. There was some evidence that severe stunting was associated with lower incidence of malaria in Mali (RR 0.81; 95% CI 0.64-1.02; p = 0.08), but this association was not seen in Burkina Faso. Being moderately underweight tended to be associated with higher incidence of clinical malaria in Burkina Faso (RR 1.27; 95% CI 0.98-1.64; p = 0.07), while this was the case in Mali for moderate wasting (RR 1.27; 95% CI 0.98-1.64; p = 0.07). However, these associations were not observed in severely affected children, nor consistent between countries. MUAC-for-age was not associated with malaria risk. CONCLUSIONS: Both malnutrition and malaria were common in the study areas, high despite high coverage of seasonal malaria chemoprevention and long-lasting insecticidal nets. However, no strong or consistent evidence was found for an association between any of the nutritional indicators and the subsequent incidence of clinical malaria.


Subject(s)
Antimalarials/administration & dosage , Azithromycin/administration & dosage , Malaria/epidemiology , Malnutrition/epidemiology , Nutritional Status , Burkina Faso/epidemiology , Child, Preschool , Female , Humans , Incidence , Infant , Malaria/transmission , Male , Mali/epidemiology , Malnutrition/classification , Seasons
14.
Malar J ; 20(1): 64, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33514368

ABSTRACT

BACKGROUND: The use of pyronaridine-artesunate (PA) has been associated with scarce transaminitis in patients. This analysis aimed to evaluate the hepatic safety profile of repeated treatment with PA versus artemether-lumefantrine (AL) in patients with consecutive uncomplicated malaria episodes in Bobo-Dioulasso, Burkina Faso. METHODS: This study analysed data from a clinical trial conducted from 2012 to 2015, in which participants with uncomplicated malaria were assigned to either PA or AL arms and followed up to 42 days. Subsequent malaria episodes within a 2-years follow up period were also treated with the same ACT initially allocated. Transaminases (AST/ALT), alkaline phosphatase (ALP), total and direct bilirubin were measured at days 0 (baseline), 3, 7, 28 and on some unscheduled days if required. The proportions of non-clinical hepatic adverse events (AEs) following first and repeated treatments with PA and AL were compared within study arms. The association of these AEs with retreatment in each arm was also determined using a logistic regression model. RESULTS: A total of 1379 malaria episodes were included in the intention to treat analysis with 60% of all cases occurring in the AL arm. Overall, 179 non-clinical hepatic AEs were recorded in the AL arm versus 145 in the PA arm. Elevated ALT was noted in 3.05% of treated malaria episodes, elevated AST 3.34%, elevated ALP 1.81%, and elevated total and direct bilirubin in 7.90% and 7.40% respectively. Retreated participants were less likely to experience elevated ALT and AST than first episode treated participants in both arms. One case of Hy's law condition was recorded in a first treated participant of the PA arm. Participants from the retreatment group were 76% and 84% less likely to have elevated ALT and AST, respectively, in the AL arm and 68% less likely to present elevated ALT in the PA arm. In contrast, they were almost 2 times more likely to experience elevated total bilirubin in both arms. CONCLUSIONS: Pyronaridine-artesunate and artemether-lumefantrine showed similar hepatic safety when used repeatedly in participants with uncomplicated malaria. Pyronaridine-artesunate represents therefore a suitable alternative to the current first line anti-malarial drugs in use in endemic areas. Trial registration Pan African Clinical Trials Registry. PACTR201105000286876.


Subject(s)
Antimalarials/adverse effects , Artemether, Lumefantrine Drug Combination/adverse effects , Artesunate/adverse effects , Malaria, Falciparum/drug therapy , Naphthyridines/adverse effects , Plasmodium falciparum/drug effects , Adolescent , Burkina Faso , Child , Child, Preschool , Drug Combinations , Female , Humans , Infant , Infant, Newborn , Liver , Male
15.
PLoS Med ; 17(8): e1003214, 2020 08.
Article in English | MEDLINE | ID: mdl-32822362

ABSTRACT

BACKGROUND: Seasonal malaria chemoprevention (SMC) is now widely deployed in the Sahel, including several countries that are major contributors to the global burden of malaria. Consequently, it is important to understand whether SMC continues to provide a high level of protection and how SMC might be improved. SMC was evaluated using data from a large, household-randomised trial in Houndé, Burkina Faso and Bougouni, Mali. METHODS AND FINDINGS: The parent trial evaluated monthly SMC plus either azithromycin (AZ) or placebo, administered as directly observed therapy 4 times per year between August and November (2014-2016). In July 2014, 19,578 children aged 3-59 months were randomised by household to study group. Children who remained within the age range 3-59 months in August each year, plus children born into study households or who moved into the study area, received study drugs in 2015 and 2016. These analyses focus on the approximately 10,000 children (5,000 per country) under observation each year in the SMC plus placebo group. Despite high coverage and high adherence to SMC, the incidence of hospitalisations or deaths due to malaria and uncomplicated clinical malaria remained high in the study areas (overall incidence rates 12.5 [95% confidence interval (CI): 11.2, 14.1] and 871.1 [95% CI: 852.3, 890.6] cases per 1,000 person-years, respectively) and peaked in July each year, before SMC delivery began in August. The incidence rate ratio comparing SMC within the past 28 days with SMC more than 35 days ago-adjusted for age, country, and household clustering-was 0.13 (95% CI: 0.08, 0.20), P < 0.001 for malaria hospitalisations and deaths from malaria and 0.21 (95% CI 0.20, 0.23), P < 0.001 for uncomplicated malaria, indicating protective efficacy of 87.4% (95% CI: 79.6%, 92.2%) and 78.3% (95% CI: 76.8%, 79.6%), respectively. The prevalence of malaria parasitaemia at weekly surveys during the rainy season and at the end of the transmission season was several times higher in children who missed the SMC course preceding the survey contact, and the smallest prevalence ratio observed was 2.98 (95% CI: 1.95, 4.54), P < 0.001. The frequency of molecular markers of sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) resistance did not increase markedly over the study period either amongst study children or amongst school-age children resident in the study areas. After 3 years of SMC deployment, the day 28 PCR-unadjusted adequate clinical and parasitological response rate of the SP + AQ regimen in children with asymptomatic malaria was 98.3% (95% CI: 88.6%, 99.8%) in Burkina Faso and 96.1% (95% CI: 91.5%, 98.2%) in Mali. Key limitations of this study are the potential overdiagnosis of uncomplicated malaria by rapid diagnostic tests and the potential for residual confounding from factors related to adherence to the monthly SMC schedule. CONCLUSION: Despite strong evidence that SMC is providing a high level of protection, the burden of malaria remains substantial in the 2 study areas. These results emphasise the need for continuing support of SMC programmes. A fifth monthly SMC course is needed to adequately cover the whole transmission season in the study areas and in settings with similar epidemiology. TRIAL REGISTRATION: The AZ-SMC trial in which these data were collected was registered at clinicaltrials.gov: NCT02211729.


Subject(s)
Antimalarials/administration & dosage , Family Characteristics , Malaria/epidemiology , Malaria/prevention & control , Seasons , Burkina Faso/epidemiology , Chemoprevention/methods , Child , Child, Preschool , Cohort Studies , Female , Follow-Up Studies , Humans , Infant , Malaria/blood , Male , Mali/epidemiology
16.
Trop Med Int Health ; 25(6): 740-750, 2020 06.
Article in English | MEDLINE | ID: mdl-32166877

ABSTRACT

OBJECTIVES: Mass administration of azithromycin has reduced mortality in children in sub-Saharan Africa but its mode of action is not well characterised. A recent trial found that azithromycin given alongside seasonal malaria chemoprevention was not associated with a reduction in mortality or hospital admissions in young children. We investigated the effect of azithromycin on the nutritional status of children enrolled in this study. METHODS: A total of 19 578 children in Burkina Faso and Mali were randomised to receive either azithromycin or placebo alongside seasonal malaria chemoprevention with sulfadoxine-pyrimethamine plus amodiaquine monthly for three malaria transmission seasons (2014-2016). After each transmission season, anthropometric measurements were collected from approximately 4000 randomly selected children (2000 per country) at a cross-sectional survey and used to derive nutritional status indicators. Binary and continuous outcomes between treatment arms were compared by Poisson and linear regression. RESULTS: Nutritional status among children was poor in both countries with evidence of acute and chronic malnutrition (24.9-33.3% stunted, 15.8-32.0% underweight, 7.2-26.4% wasted). There was a suggestion of improvement in nutritional status in Burkina Faso and deterioration in Mali over the study period. At the end of each malaria transmission season, nutritional status of children did not differ between treatment arms (seasonal malaria chemoprevention plus azithromycin or placebo) in either the intention-to-treat or per-protocol analyses (only children with at least three cycles of SMC in the current intervention year). CONCLUSIONS: The addition of azithromycin to seasonal malaria chemoprevention did not result in an improvement of nutritional outcomes in children in Burkina Faso and Mali.


OBJECTIFS: L'administration massive d'azithromycine a réduit la mortalité infantile en Afrique subsaharienne mais son mode d'action n'est pas bien caractérisé. Un essai récent a révélé que l'azithromycine administrée parallèlement à la chimioprévention du paludisme saisonnier n'était pas associée à une réduction de la mortalité ou des hospitalisations chez les jeunes enfants. Nous avons étudié l'effet de l'azithromycine sur l'état nutritionnel des enfants inscrits à cette étude. MÉTHODES: 19.578 enfants au Burkina Faso et au Mali ont été randomisés pour recevoir soit de l'azithromycine soit un placebo parallèlement à une chimioprévention du paludisme saisonnier avec du sulfadoxine-pyriméthamine plus de l'amodiaquine par mois pendant trois saisons de transmission du paludisme (2014-2016). Après chaque saison de transmission, des mesures anthropométriques ont été recueillies auprès d'environ 4.000 enfants sélectionnés au hasard (2.000 par pays) lors d'une enquête transversale et utilisées pour dériver des indicateurs de l'état nutritionnel. Les résultats binaires et continus entre les bras de traitement ont été comparés par la régression linéaire et de Poisson. RÉSULTATS: L'état nutritionnel des enfants était médiocre dans les deux pays avec des signes de malnutrition aiguë et chronique (24,9 à 33,3% de retard de croissance, 15,8 à 32,0% d'insuffisance pondérale, 7,2 à 26,4% d'émaciation). Il a été suggéré une amélioration de l'état nutritionnel au Burkina Faso et une détérioration au Mali au cours de la période d'étude. A la fin de chaque saison de transmission du paludisme, l'état nutritionnel des enfants ne différait pas entre les bras de traitement (chimioprévention contre le paludisme saisonnier plus azithromycine ou placebo) dans les analyses en intention de traiter ou selon le protocole (seulement les enfants avec au moins trois cycles de chimioprévention dans l'année d'intervention en cours). CONCLUSIONS: L'ajout d'azithromycine à la chimioprévention du paludisme saisonnier n'a pas entraîné d'amélioration des résultats nutritionnels chez les enfants au Burkina Faso et au Mali.


Subject(s)
Antimalarials/therapeutic use , Azithromycin/therapeutic use , Child Nutrition Disorders/epidemiology , Malaria/prevention & control , Antimalarials/administration & dosage , Azithromycin/administration & dosage , Burkina Faso , Chemoprevention , Child, Preschool , Cross-Sectional Studies , Drug Therapy, Combination , Female , Humans , Infant , Male , Mali , Mass Drug Administration , Nutritional Status , Seasons
17.
Trop Med Int Health ; 24(12): 1442-1454, 2019 12.
Article in English | MEDLINE | ID: mdl-31655020

ABSTRACT

OBJECTIVE: A trial was conducted in Burkina Faso and Mali to investigate whether addition of azithromycin to the antimalarials used for seasonal malaria chemoprevention reduces mortality and hospital admissions of children. We tested the sensitivity of nasal isolates of Streptococcus pneumoniae obtained during this trial to azithromycin and other antibiotics. METHODS: Azithromycin or placebo was administered monthly, in combination with the antimalarials used for seasonal malaria chemoprevention, for four months, over the annual malaria transmission seasons of 2014, 2015, and 2016. Nasopharyngeal swabs were collected from 2773 Burkinabe and 2709 Malian children on seven occasions: in July and December each year prior to and after drug administration, and at a final survey in early 2018. Pneumococci were isolated from nasopharyngeal swabs and tested for sensitivity to azithromycin and other antibiotics. RESULTS: A total of 5482 samples were collected. In Burkina Faso, the percentage of pneumococcal isolates resistant to azithromycin among children who had received it increased from 4.9% (95% CI: 2.4%, 9.9%) before the intervention to 25.6% (95% CI: 17.6%, 35.7%) afterward. In Mali, the increase was from 7.6% (95% CI: 3.8%, 14.4%) to 68.5% (95% CI: 55.1%, 79.4%). The percentage of resistant isolates remained elevated (17.7% (95% CI: 11.1%, 27.1%) in Burkina Faso and 19.1% (95% CI: 13.5%, 26.3%) in Mali) among children who had received azithromycin 1 year after stopping the intervention. An increase in resistance to azithromycin was also observed in children who had received a placebo but it was less marked. CONCLUSION: Addition of azithromycin to the antimalarial combination used for seasonal malaria chemoprevention was associated with an increase in resistance of pneumococci to azithromycin and erythromycin, which persisted 1 year after the last administration of azithromycin.


OBJECTIF: Un essai a été mené au Burkina Faso et au Mali pour investiguer si l'addition d'azithromycine aux antipaludéens utilisés dans le cadre de la chimioprévention du paludisme saisonnier réduisait la mortalité et les hospitalisations d'enfants. Nous avons testé la sensibilité à l'azithromycine et à d'autres antibiotiques pour les isolats nasaux de Streptococcus pneumoniae obtenus lors de cet essai. MÉTHODES: L'azithromycine ou un placebo a été administré mensuellement, en association avec les antipaludéens utilisés pour la chimioprévention du paludisme saisonnier, pendant 4 mois, durant les saisons de transmission annuelle du paludisme de 2014, 2015 et 2016. Des échantillons nasopharyngés ont été prélevés sur écouvillons chez 2.773 enfants burkinabés et 2.709 enfants maliens lors de 7 occasions: en juillet et en décembre chaque année avant et après l'administration du médicament, ainsi que lors d'une surveillance finale au début de 2018. Les pneumocoques ont été isolés à partir d'écouvillons nasopharyngés et soumis à des tests de sensibilité à l'azithromycine et à d'autres antibiotiques. RÉSULTATS: 5.482 échantillons ont été collectés. Au Burkina Faso, le pourcentage d'isolats de pneumocoque résistants à l'azithromycine chez les enfants qui l'avaient reçu était passé de 4,9% (IC95%: 2,4%, 9,9%) avant l'intervention à 25,6% (IC95%: 17,6-35,7%) après. Au Mali, l'augmentation est passée de 7,6% (IC95%: 3,8-14,4%) à 68,5% (IC95%: 55,1-79,4%). Le pourcentage d'isolats résistants est resté élevé (17,7% (IC95%: 11,1-27,1%) au Burkina Faso et 19,1% (IC95%: 13,5-26,3%) au Mali) chez les enfants ayant reçu l'azithromycine un an après arrêter l'intervention. Une augmentation de la résistance à l'azithromycine a également été observée chez les enfants ayant reçu un placebo, mais elle était moins marquée. CONCLUSION: L'ajout d'azithromycine à la combinaison antipaludique utilisée pour la chimioprévention du paludisme saisonnier était associé à une augmentation de la résistance du pneumocoque à l'azithromycine et à l'érythromycine, qui persistait un an après la dernière administration d'azithromycine.


Subject(s)
Antimalarials/pharmacology , Azithromycin/pharmacology , Malaria/epidemiology , Streptococcus pneumoniae/drug effects , Burkina Faso/epidemiology , Chemoprevention , Child Health Services , Child, Preschool , Drug Resistance, Bacterial , Female , Humans , Infant , Malaria/prevention & control , Male , Mali/epidemiology , Seasons , Streptococcus pneumoniae/isolation & purification
18.
Nature ; 487(7407): 375-9, 2012 Jul 19.
Article in English | MEDLINE | ID: mdl-22722859

ABSTRACT

Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.


Subject(s)
Biodiversity , High-Throughput Nucleotide Sequencing , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Alleles , Genome, Protozoan , Genotype , Humans , Phylogeny , Plasmodium falciparum/classification , Polymorphism, Single Nucleotide , Principal Component Analysis
19.
PLoS Med ; 14(1): e1002212, 2017 01.
Article in English | MEDLINE | ID: mdl-28072872

ABSTRACT

BACKGROUND: Artemisinin-based combination therapies (ACTs) are the mainstay of the current treatment of uncomplicated Plasmodium falciparum malaria, but ACT resistance is spreading across Southeast Asia. Dihydroartemisinin-piperaquine is one of the five ACTs currently recommended by the World Health Organization. Previous studies suggest that young children (<5 y) with malaria are under-dosed. This study utilised a population-based pharmacokinetic approach to optimise the antimalarial treatment regimen for piperaquine. METHODS AND FINDINGS: Published pharmacokinetic studies on piperaquine were identified through a systematic literature review of articles published between 1 January 1960 and 15 February 2013. Individual plasma piperaquine concentration-time data from 11 clinical studies (8,776 samples from 728 individuals) in adults and children with uncomplicated malaria and healthy volunteers were collated and standardised by the WorldWide Antimalarial Resistance Network. Data were pooled and analysed using nonlinear mixed-effects modelling. Piperaquine pharmacokinetics were described successfully by a three-compartment disposition model with flexible absorption. Body weight influenced clearance and volume parameters significantly, resulting in lower piperaquine exposures in small children (<25 kg) compared to larger children and adults (≥25 kg) after administration of the manufacturers' currently recommended dose regimens. Simulated median (interquartile range) day 7 plasma concentration was 29.4 (19.3-44.3) ng/ml in small children compared to 38.1 (25.8-56.3) ng/ml in larger children and adults, with the recommended dose regimen. The final model identified a mean (95% confidence interval) increase of 23.7% (15.8%-32.5%) in piperaquine bioavailability between each piperaquine dose occasion. The model also described an enzyme maturation function in very young children, resulting in 50% maturation at 0.575 (0.413-0.711) y of age. An evidence-based optimised dose regimen was constructed that would provide piperaquine exposures across all ages comparable to the exposure currently seen in a typical adult with standard treatment, without exceeding the concentration range observed with the manufacturers' recommended regimen. Limited data were available in infants and pregnant women with malaria as well as in healthy individuals. CONCLUSIONS: The derived population pharmacokinetic model was used to develop a revised dose regimen of dihydroartemisinin-piperaquine that is expected to provide equivalent piperaquine exposures safely in all patients, including in small children with malaria. Use of this dose regimen is expected to prolong the useful therapeutic life of dihydroartemisinin-piperaquine by increasing cure rates and thereby slowing resistance development. This work was part of the evidence that informed the World Health Organization technical guidelines development group in the development of the recently published treatment guidelines (2015).


Subject(s)
Malaria, Falciparum/drug therapy , Quinolines/pharmacokinetics , Quinolines/therapeutic use , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Humans , Plasmodium falciparum/drug effects , Quinolines/pharmacology
20.
Malar J ; 16(1): 182, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28464937

ABSTRACT

In many parts of the African Sahel and sub-Sahel, where malaria remains a major cause of mortality and morbidity, transmission of the infection is highly seasonal. Seasonal malaria chemoprevention (SMC), which involves administration of a full course of malaria treatment to young children at monthly intervals during the high transmission season, is proving to be an effective malaria control measure in these areas. However, SMC does not provide complete protection and it is demanding to deliver for both families and healthcare givers. Furthermore, there is a risk of the emergence in the future of resistance to the drugs, sulfadoxine-pyrimethamine and amodiaquine, that are currently being used for SMC. Substantial progress has been made in the development of malaria vaccines during the past decade and one malaria vaccine, RTS,S/AS01, has received a positive opinion from the European Medicines Authority and will soon be deployed in large-scale, pilot implementation projects in sub-Saharan Africa. A characteristic feature of this vaccine, and potentially of some of the other malaria vaccines under development, is that they provide a high level of efficacy during the period immediately after vaccination, but that this wanes rapidly, perhaps because it is difficult to develop effective immunological memory to malaria antigens in subjects exposed previously to malaria infection. A potentially effective way of using malaria vaccines with high initial efficacy but which provide only a short period of protection could be annual, mass vaccination campaigns shortly before each malaria transmission season in areas where malaria transmission is confined largely to a few months of the year.


Subject(s)
Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Malaria/prevention & control , Seasons , Vaccination/statistics & numerical data , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Africa South of the Sahara
SELECTION OF CITATIONS
SEARCH DETAIL