Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Small ; 20(22): e2309448, 2024 May.
Article in English | MEDLINE | ID: mdl-38362699

ABSTRACT

Hydrogen peroxide (H2O2) is a highly value-added and environmental-friendly chemical with various applications. The production of H2O2 by electrocatalytic 2e- oxygen reduction reaction (ORR) has emerged as a promising alternative to the energy-intensive anthraquinone process. High selectivity Catalysts combining with superior activity are critical for the efficient electrosynthesis of H2O2. Earth-abundant transition metal selenides (TMSs) being discovered as a classic of stable, low-cost, highly active and selective catalysts for electrochemical 2e- ORR. These features come from the relatively large atomic radius of selenium element, the metal-like properties and the abundant reserves. Moreover, compared with the advanced noble metal or single-atom catalysts, the kinetic current density of TMSs for H2O2 generation is higher in acidic solution, which enable them to become suitable catalyst candidates. Herein, the recent progress of TMSs for ORR to H2O2 is systematically reviewed. The effects of TMSs electrocatalysts on the activity, selectivity and stability of ORR to H2O2 are summarized. It is intended to provide an insight from catalyst design and corresponding reaction mechanisms to the device setup, and to discuss the relationship between structure and activity.

2.
Langmuir ; 40(20): 10561-10570, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728666

ABSTRACT

The weak adsorption of oxygen on transition metal oxide catalysts limits the improvement of their electrocatalytic oxygen reduction reaction (ORR) performance. Herein, a dopamine-assisted method is developed to prepare Mn-doped ceria supported on nitrogen-doped carbon nanotubes (Mn-Ce-NCNTs). The morphology, dispersion of Mn-doped ceria, composition, and oxygen vacancies of the as-prepared catalysts were analyzed using various technologies. The results show that Mn-doped ceria was formed and highly dispersed on NCNTs, on which oxygen vacancies are abundant. The as-prepared Mn-Ce-NCNTs exhibit a high ORR performance, on which the average electron transfer number is 3.86 and the current density is 24.4% higher than that of commercial 20 wt % Pt/C. The peak power density of Mn-Ce-NCNTs is 68.1 mW cm-2 at the current density of 138.9 mA cm-2 for a Zn-air battery, which is close to that of 20 wt % Pt/C (69.4 mW cm-2 at 106.1 mA cm-2). Density functional theory (DFT) calculations show that the oxygen vacancy formation energies of Mn-doped CeO2(111) and pure CeO2(111) are -0.55 and 2.14 eV, respectively. Meanwhile, compared with undoped CeO2(111) (-0.02 eV), Mn-doped CeO2(111) easily adsorbs oxygen with the oxygen adsorption energy of only -0.68 eV. This work provides insights into the synergetic effect of Mn-doped ceria for facilitating oxygen adsorption and enhancing ORR performance.

3.
J Am Chem Soc ; 145(46): 25252-25263, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37957828

ABSTRACT

The development of highly active and low-cost oxygen reduction reaction (ORR) catalysts is crucial for the practical application of hydrogen fuel cells. However, the linear scaling relation (LSR) imposes an inherent Sabatier's limitation for most catalysts including the benchmark Pt with an insurmountable overpotential ceiling, impeding the development of efficient electrocatalysts. To avoid such a limitation, using earth-abundant metal oxides with different crystal phases as model materials, we propose an effective and dynamic reaction pathway through constructing spatially correlated Pt-Mn pair sites, achieving an excellent balance between high activity and low Pt loading. Experimental and theoretical calculations demonstrate that manipulating the intermetallic distance and charge distribution of Pt-Mn pairs can effectively promote O-O bond cleavage at these sites through a bridge configuration, circumventing the formation of *OOH intermediates. Meanwhile, the dynamic adsorption configuration transition from the bridge configuration of O2 to the end-on configuration of *OH improves *OH desorption at the Mn site within such pairs, thereby avoiding Sabatier's limitation. The well-designed Pt-Mn/ß-MnO2 exhibits outstanding ORR activity and stability with a half-wave potential of 0.93 V and barely any activity degradation for 70 h. When applied to the cathode of a H2-O2 anion-exchange membrane fuel cell, this catalyst demonstrates a high peak power density of 287 mW cm-2 and 500 h of stability under a cell voltage of 0.6 V. This work reveals the adaptive bonding interactions of atomic pair sites with multiple reactant/intermediates, offering a new avenue for rational design of highly efficient atomic-level dispersed ORR catalysts beyond the Sabatier optimum.

4.
J Am Chem Soc ; 145(4): 2271-2281, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36654479

ABSTRACT

Dynamic reconstruction of catalyst active sites is particularly important for metal oxide-catalyzed oxygen evolution reaction (OER). However, the mechanism of how vacancy-induced reconstruction aids OER remains ambiguous. Here, we use Co3O4 with Co or O vacancies to uncover the effects of different defects in the reconstruction process and the active motifs relevant to alkaline OER. Combining in situ characterization and theoretical calculations, we found that cobalt oxides are converted to an amorphous [Co(OH)6] intermediate state, and then the mismatched rates of *OH adsorption and deprotonation lead to irreversible catalyst reconstruction. The stronger *OH adsorption but weaker deprotonation induced by O defects provides the driving force for reconstruction, while Co defects favor dehydrogenation and reduce the reconstruction rate. Importantly, both O and Co defects trigger highly OER-active bridge Co sites in reconstructed catalysts, of which Co defects induce a short Co-Co distance (3.38 Å) under compressive lattice stress and show the best OER activity (η10 of 262 mV), superior to reconstructed oxygen-defected Co3O4-VO (η10 of 300 mV) and defect-free Co3O4 (η10 of 320 mV). This work highlights that engineering defect-dependent reconstruction may provide a rational route for electrocatalyst design in energy-related applications.

5.
J Am Chem Soc ; 144(1): 573-581, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34955021

ABSTRACT

Dispersing single palladium atoms on a support is promising to minimize the usage of palladium and improve the selectivity for alkyne semihydrogenation, but its activity is often very low as a result of unfavorable H2 activation. Here, we load palladium onto α-Fe2O3(012) to construct highly active and stable single-site Pd-Fe pairs with luxuriant d-electron domination near the Fermi level driven by strong electronic coupling and prove that Pd-Fe pairs cooperatively adsorb H2 and dissociate an H─H bond, whereas solo Pd sites enable preferential desorption of C═C intermediate, thus achieving both high activity and high selectivity for alkyne hydrogenation. This catalyst exhibits state-of-the-art performance in purifying acetylene of ethylene stream, with 99.6% and 100% conversion and 96.7% and 94.7% selectivity at 353 and 393 K, respectively, and excellent stability with negligible activity decay after a 200 h test. This single-site pair inherits the advantage but overcomes the weakness of both Pd ensemble and single Pd atoms, enabling ultralow-Pd-loading catalysts for selective hydrogenation.

6.
Small ; 18(27): e2202336, 2022 07.
Article in English | MEDLINE | ID: mdl-35665595

ABSTRACT

Hydrogen, a new energy carrier that can replace traditional fossil fuels, is seen as one of the most promising clean energy sources. The use of renewable electricity to drive hydrogen production has very broad prospects for addressing energy and environmental problems. Therefore, many researchers favor electrolytic water due to its green and low-cost advantages. The electrolytic water reaction comprises the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Understanding the OER and HER mechanisms in acidic and alkaline processes contributes to further studying the design of surface regulation of electrolytic water catalysts. The OER and HER catalysts are mainly reviewed for defects, doping, alloying, surface reconstruction, crystal surface structure, and heterostructures. Besides, recent catalysts for overall water splitting are also reviewed. Finally, this review paves the way to the rational design and synthesis of new materials for highly efficient electrocatalysis.


Subject(s)
Electrolysis , Water , Catalysis , Hydrogen/chemistry , Oxygen/chemistry
7.
Small ; 18(6): e2105661, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34854559

ABSTRACT

Polar oxides are widely used as the cathodes to impede the shuttle effect in lithium-sulfur batteries, but suffer from the sluggish desorption and conversion of polysulfides due to too strong affinity of polysulfides on oxygen sites. Herein, employing halloysite as a model, an approach to overcome these shortcomings is proposed via engineering oxygen p-band center by loading titanium dioxide nanoparticles onto Si-O surface of halloysite. Using density functional theory calculations, it is predicted that electron transfer from titanium dioxide nanoparticles to interfacial O sites results in downshift of p-band center of O sites that promote desorption of polysulfides and the cleavage of Li-S and S-S, accelerating the conversion kinetics of polysulfides. The designed composite cathode material delivers outstanding electrochemical performance in Li-S batteries, outperforming the recently reported similar cathodes. The concept could provide valuable insight into the design of other catalysts for Li-S batteries and beyond.

8.
Chemistry ; 28(72): e202202593, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36106822

ABSTRACT

Photocatalysis can create a green way to produce clean energy resources, degrade pollutants and achieve carbon neutrality, making the construction of efficient photocatalysts significant in solving environmental issues. Conjugated polymers (CPs) with adjustable band structures have superior light-absorption capacity and flexible morphology that facilitate contact with other components to form advanced heterojunctions. Interface engineering can strengthen the interfacial contact between the components and further enlarge the interfacial contact area, enhance light absorption, accelerate charge transfer and improve the reusability of the composites. In order to throw some new light on heterojunction interface regulation at a molecular level, herein we summarize CP-based composites with improved photocatalytic performance according to the types of interactions (covalent bonding, hydrogen bonding, electrostatic interactions, π-π stacking, and other polar interactions) between the components and introduce the corresponding interface building methods, identifying techniques. Then the roles of interfaces in different photocatalytic applications are discussed. Finally, we sum up the existing problems in interface engineering of CP-based composites and look forward to the possible solutions.

9.
Chemistry ; 28(71): e202202494, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36103115

ABSTRACT

The piezo-Fenton system has attracted attention not only because it can enhance the Fenton reaction activity by mechanical energy input, but also because it is expected to realize a class of stimuli-responsive advanced oxidation systems by regulating energy input and hydrogen peroxide self-supply, thus greatly enriching the application possibilities of Fenton chemistry. In this work, a series of Fe-doped g-C3 N4 (g-C3 N4 -Fe) as a piezo-Fenton system were synthesized where the iron stably immobilized through Fe-N interaction. The piezo-induced electrons generate on g-C3 N4 matrix support the conversion of Fe(III) to Fe(II) and promote rate-limiting step of Fenton reaction. With the optimal Fe loading, g-C3 N4 -0.5Fe can achieve methylene blue (MB) degradation under ultrasonic treatment with first-order kinetic rate constants of 75×10-3  min-1 . Most importantly, the g-C3 N4 -Fe can maintain good catalytic activity in a wide pH range (pH=2.0∼9.0) and be cyclic used without iron leaching to solution (<0.001 µg ⋅ L-1 ), overcoming the disadvantage of traditional Fe-based Fenton catalysts that can only be applied under acidic conditions and prone to secondary pollution. In addition, g-C3 N4 -0.5Fe also exhibits antibacterial properties of Escherichia coli and Staphylococcus aureus under ultrasound. Hydroxyl radicals mainly contribute to the degradation of MB and the sterilization process. Our work is an attempt to clarify the role of g-C3 N4 -Fe in the conversion of mechanical energy to ROS and provide inspirations for the piezo-Fenton system design.


Subject(s)
Hydrogen Peroxide , Iron , Iron/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Hydroxyl Radical
10.
Angew Chem Int Ed Engl ; 61(34): e202205453, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35700334

ABSTRACT

One pot synthesis of 2,5-dimethylfuran (2,5-DMF) from saccharides under mild conditions is of importance for the production of biofuel and fine chemicals. However, the synthesis requires a multitude of active sites and suffers from slow kinetics due to poor diffusion in most composite catalysts. Herein, a metal-acid functionalized 2D metal-organic framework (MOF; Pd/NUS-SO3 H), as an ultrathin nanosheet of 3-4 nm with Lewis acid, Brønsted acid, and metal active sites, was prepared based on the diazo method for acid modification and subsequent metal loading. This new composite catalyst gives substantially higher yields of DMF than all reported catalysts for different saccharides (fructose, glucose, cellobiose, sucrose, and inulins). Characterization suggests that a cascade of reactions including polysaccharide hydrolysis, isomerization, dehydration, and hydrodeoxygenation takes place with rapid molecular interactions.


Subject(s)
Furans , Metal-Organic Frameworks , Catalysis , Catalytic Domain , Furans/chemistry , Lewis Acids
11.
J Am Chem Soc ; 143(50): 21294-21301, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34874721

ABSTRACT

Hydrogen (H2) is widely used as a reductant for many hydrogenation reactions; however, it has not been recognized as a catalyst for the acid transformation of active sites on solid surface. Here, we report the H2-promoted hydration of alkenes (such as styrenes and cyclic alkenes) and epoxy alkanes over single-atom Co-dispersed nitrogen-doped carbon (Co-NC) via a transformation mechanism of acid-base sites. Specifically, the specific catalytic activity and selectivity of Co-NC are superior to those of classical solid acids (acidic zeolites and resins) per micromole of acid, whereas the hydration catalysis does not take place under a nitrogen atmosphere. Detailed investigations indicate that H2 can be heterolyzed on the Co-N bond to form Hδ--Co-N-Hδ+ and then be converted into OHδ--Co-N-Hδ+ accompanied by H2 generation via a H2O-mediated path, which significantly reduces the activation energy for hydration reactions. This work not only provides a novel catalytic method for hydration reactions but also removes the conceptual barriers between hydrogenation and acid catalysis.

12.
Chemistry ; 27(70): 17628-17636, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34648677

ABSTRACT

Improving the insufficient carrier separation dynamics is still of significance in carbon nitride (C3 N4 ) research. Extensive research has been devoted to improving the carrier separation efficiency through a single strategy, while ignoring the synergistic enhancement effect produced by coupling two or more conventional strategies. Herein, we reported the fabrication of cyano group-containing Fe-doped C3 N4 porous materials via direct co-calcination of iron acetylacetonate and melamine for synergistically improving the photocatalytic performance. Iron acetylacetonate can promote the generation of cyano groups and form Fe-doping in C3 N4 , thereby increasing the visible-light absorption and reactive sites. Further, the internal donor-acceptor system formed by cyano groups and Fe-doped sites promoted charge carrier separation and inhibited the radiation recombination of e- -h+ pairs. The optimized photocatalytic activity of Fe-CN-2 sample was 4.5 times of bulk C3 N4 (BCN).

13.
Angew Chem Int Ed Engl ; 59(6): 2313-2317, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31743560

ABSTRACT

Ferric oxides and (oxy)hydroxides, although plentiful and low-cost, are rarely considered for oxygen evolution reaction (OER) owing to the too high spin state (eg filling ca. 2.0) suppressing the bonding strength with reaction intermediates. Now, a facile adsorption-oxidation strategy is used to anchor FeIII atomically on an ultrathin TiO2 nanobelt to synergistically lower the spin state (eg filling ca. 1.08) to enhance the adsorption with oxygen-containing intermediates and improve the electro-conductibility for lower ohmic loss. The electronic structure of the catalyst is predicted by DFT calculation and perfectly confirmed by experimental results. The catalyst exhibits superior performance for OER with overpotential 270 mV @10 mA cm-2 and 376 mV @100 mA cm-2 in alkaline solution, which is much better than IrO2 /C and RuO2 /C and is the best iron-based OER catalyst free of active metals such as Ni, Co, or precious metals.

14.
J Am Chem Soc ; 138(4): 1359-65, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26777119

ABSTRACT

The development of highly active, universal, and stable inexpensive electrocatalysts/cocatalysts for hydrogen evolution reaction (HER) by morphology and structure modulations remains a great challenge. Herein, a simple self-template strategy was developed to synthesize hollow Co-based bimetallic sulfide (MxCo3-xS4, M = Zn, Ni, and Cu) polyhedra with superior HER activity and stability. Homogenous bimetallic metal-organic frameworks are transformed to hollow bimetallic sulfides by solvothermal sulfidation and thermal annealing. Electrochemical measurements and density functional theory computations show that the combination of hollow structure and homoincorporation of a second metal significantly enhances the HER activity of Co3S4. Specifically, the homogeneous doping in Co3S4 lattice optimizes the Gibbs free energy for H* adsorption and improves the electrical conductivity. Impressively, hollow Zn0.30Co2.70S4 exhibits electrocatalytic HER activity better than most of the reported nobel-metal-free electrocatalysts over a wide pH range, with overpotentials of 80, 90, and 85 mV at 10 mA cm(-2) and 129, 144, and 136 mV at 100 mA cm(-2) in 0.5 M H2SO4, 0.1 M phosphate buffer, and 1 M KOH, respectively. It also exhibits photocatalytic HER activity comparable to that of Pt cocatalyst when working with organic photosensitizer (Eosin Y) or semiconductors (TiO2 and C3N4). Furthermore, this catalyst shows excellent stability in the electrochemical and photocatalytic reactions. The strategy developed here, i.e., homogeneous doping and self-templated hollow structure, provides a way to synthesize transition metal sulfides for catalysis and energy conversion.

15.
J Am Chem Soc ; 137(8): 2975-83, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25655589

ABSTRACT

Defects are critically important for metal oxides in chemical and physical applications. Compared with the often studied oxygen vacancies, engineering metal vacancies in n-type undoped metal oxides is still a great challenge, and the effect of metal vacancies on the physiochemical properties is seldom reported. Here, using anatase TiO2, the most important and widely studied semiconductor, we demonstrate that metal vacancies (VTi) can be introduced in undoped oxides easily, and the presence of VTi results in many novel physiochemical properties. Anatase Ti0.905O2 was synthesized using solvothermal treatment of tetrabutyl titanate in an ethanol-glycerol mixture and then thermal calcination. Experimental measurements and DFT calculations on cell lattice parameters show the unstoichiometry is caused by the presence of VTi rather than oxygen interstitials. The presence of VTi changes the charge density and valence band edge of TiO2, and an unreported strong EPR signal at g = 1.998 presents under room temperature. Contrary to normal n-type and nonferromagnetic TiO2, Ti-defected TiO2 shows inherent p-type conductivity with high charge mobility, and room-temperature ferromagnetism stronger than Co-doped TiO2 nanocrystalline. Moreover, Ti-defected TiO2 shows much better photocatalytic performance than normal TiO2 in H2 generation (4.4-fold) and organics degradation (7.0-fold for phenol), owing to the more efficient charge separation and transfer in bulk and at semiconductor/electrolyte interface. Metal-defected undoped oxides represent a unique material; this work demonstrates the possibility to fabricate such material in easy and reliable way and thus provides new opportunities for multifunctional materials in chemical and physical devices.

16.
Nanoscale ; 16(19): 9169-9185, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38639199

ABSTRACT

Dual-atom site catalysts (DASCs) have sparked considerable interest in heterogeneous photocatalysis as they possess the advantages of excellent photoelectronic activity, photostability, and high carrier separation efficiency and mobility. The DASCs involved in these important photocatalytic processes, especially in the photocatalytic hydrogen evolution reaction (HER), CO2 reduction reaction (CO2RR), N2/nitrate reduction, etc., have been extensively investigated in the past few years. In this review, we highlight the recent progress in DASCs that provides fundamental insights into the photocatalytic conversion of small molecules. The controllable preparation and characterization methods of various DASCs are discussed. Subsequently, the reaction mechanisms of the formation of several important molecules (hydrogen, hydrocarbons and ammonia) on DASCs are introduced in detail, in order to probe the relationship between DASCs's structure and photocatalytic activity. Finally, some challenges and outlooks of DASCs in the photocatalytic conversion of small molecules are summarized and prospected. We hope that this review can provide guidance for in-depth understanding and aid in the design of efficient DASCs for photocatalysis.

17.
Adv Sci (Weinh) ; 11(1): e2306693, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37964410

ABSTRACT

Lignin is the main component of lignocellulose and the largest source of aromatic substances on the earth. Biofuel and bio-chemicals derived from lignin can reduce the use of petroleum products. Current advances in lignin catalysis conversion have facilitated many of progress, but understanding the principles of catalyst design is critical to moving the field forward. In this review, the factors affecting the catalysts (including the type of active metal, metal particle size, acidity, pore size, the nature of the oxide supports, and the synergistic effect of the metals) are systematically reviewed based on the three most commonly used supports (carbon, oxides, and zeolites) in lignin hydrogenolysis. The catalytic performance (selectivity and yield of products) is evaluated, and the emerging catalytic mechanisms are introduced to better understand the catalyst design guidelines. Finally, based on the progress of existing studies, future directions for catalyst design in the field of lignin depolymerization are proposed.

18.
J Colloid Interface Sci ; 672: 642-653, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38865878

ABSTRACT

Photo-thermal co-catalytic reduction of CO2 to synthesize value-added chemicals presents a promising approach to addressing environmental issues. Nevertheless, traditional catalysts exhibit low light utilization efficiency, leading to the generation of a reduced number of electron-hole pairs and rapid recombination, thereby limiting catalytic performance enhancement. Herein, a Mott-Schottky heterojunction catalyst was developed by incorporating nitrogen-doped carbon coated TiO2 supported nickel (Ni) nanometallic particles (Ni/x-TiO2@NC). The optimal Ni/0.5-TiO2@NC sample displayed a conversion rate of 71.6 % and a methane (CH4) production rate of 65.3 mmol/(gcat·h) during photo-thermal co-catalytic CO2 methanation under full-spectrum illumination, with a CH4 selectivity exceeding 99.6 %. The catalyst demonstrates good stability as it shows no decay after two reaction cycles. The Mott-Schottky heterojunction catalysts display excellent efficiency in separating photo-generated electron-hole pairs and elevate the catalysts' temperature, thus accelerating the reaction rate. The in-situ experiments revealed that light-induced electron transfer effectively facilitates H2 dissociation and enhances surface defects, thereby promoting CO2 adsorption. This study introduces a novel approach for developing photo-thermal catalysts for CO2 reduction, aiming to enhance solar energy utilization and facilitate interface electron transfer.

19.
Nanoscale ; 16(18): 8941-8949, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38644794

ABSTRACT

Single-site Fe-N-C catalysts are the most promising Pt-group catalyst alternatives for the oxygen reduction reaction, but their application is impeded by their relatively low activity and unsatisfactory stability as well as production costs. Here, cobalt atoms are introduced into an Fe-N-C catalyst to enhance its catalytic activity by utilizing the synergistic effect between Fe and Co atoms. Meanwhile, phenanthroline is employed as the ligand, which favours stable pyridinic N-coordinated Fe-Co sites. The obtained catalysts exhibit excellent ORR performance with a half-wave potential of 0.892 V and good stability under alkaline conditions. In addition, the excellent ORR activity and durability of FeCo-N-C enabled the constructed zinc-air battery to exhibit a high power density of 247.93 mW cm-2 and a high capacity of 768.59 mA h gZn-1. Moreover, the AEMFC based on FeCo-N-C also achieved a high open circuit voltage (0.95 V) and rated power density (444.7 mW cm-2), surpassing those of many currently reported transition metal-based cathodes. This work emphasizes the feasibility of this non-precious metal catalyst preparation strategy and its practical applicability in fuel cells and metal-air batteries.

20.
Langmuir ; 29(11): 3773-9, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23425314

ABSTRACT

In this work, we demonstrate a convenient, efficient, and environmentally benign strategy to achieving antimicrobial and antiadhesive purposes using a silver-zwitterion nanocomposite. The synthesis of the nanocomposite relies on loading zwitterionic polymer brushes with Ag(+) precursor ions, followed by their in situ reduction to Ag nanoparticle by ultraviolet (UV) irradiation. Both poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA) have been studied as matrices for the embedding of silver. Well-dispersed silver nanoparticles are embedded into pCBMA matrices. The obtained pCBMA-silver hybrid (CB-Ag) is capable of killing bacteria upon contact and releasing dead bacteria under wet conditions. Results suggest the feasibility of using this nanocomposite system as a robust and reliable antimicrobial and antiadhesive platform for the prevention of microbial colonization.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Betaine/chemistry , Nanocomposites/chemistry , Polymethacrylic Acids/chemistry , Silver/chemistry , Adhesiveness/drug effects , Escherichia coli K12/drug effects , Escherichia coli K12/physiology , Microbial Viability/drug effects , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL