Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36719094

ABSTRACT

With the emergence of high-throughput technologies, computational screening based on gene expression profiles has become one of the most effective methods for drug discovery. More importantly, profile-based approaches remarkably enhance novel drug-disease pair discovery without relying on drug- or disease-specific prior knowledge, which has been widely used in modern medicine. However, profile-based systematic screening of active ingredients of traditional Chinese medicine (TCM) has been scarcely performed due to inadequate pharmacotranscriptomic data. Here, we develop the largest-to-date online TCM active ingredients-based pharmacotranscriptomic platform integrated traditional Chinese medicine (ITCM) for the effective screening of active ingredients. First, we performed unified high-throughput experiments and constructed the largest data repository of 496 representative active ingredients, which was five times larger than the previous one built by our team. The transcriptome-based multi-scale analysis was also performed to elucidate their mechanism. Then, we developed six state-of-art signature search methods to screen active ingredients and determine the optimal signature size for all methods. Moreover, we integrated them into a screening strategy, TCM-Query, to identify the potential active ingredients for the special disease. In addition, we also comprehensively collected the TCM-related resource by literature mining. Finally, we applied ITCM to an active ingredient bavachinin, and two diseases, including prostate cancer and COVID-19, to demonstrate the power of drug discovery. ITCM was aimed to comprehensively explore the active ingredients of TCM and boost studies of pharmacological action and drug discovery. ITCM is available at http://itcm.biotcm.net.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Humans , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Gene Expression Profiling , Transcriptome
2.
J Cell Mol Med ; 28(3): e18058, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38098246

ABSTRACT

Ionizing radiation (IR)-induced intestinal injury is usually accompanied by high lethality. Intestinal stem cells (ISCs) are critical and responsible for the regeneration of the damaged intestine. Astragalus polysaccharide (APS), one of the main active ingredients of Astragalus membranaceus (AM), has a variety of biological functions. This study was aimed to investigate the potential effects of APS on IR-induced intestine injury via promoting the regeneration of ISCs. We have established models of IR-induced intestinal injury and our results showed that APS played great radioprotective effects on the intestine. APS improved the survival rate of irradiated mice, reversed the radiation damage of intestinal tissue, increased the survival rate of intestinal crypts, the number of ISCs and the expression of intestinal tight junction-related proteins after IR. Moreover, APS promoted the cell viability while inhibited the apoptosis of MODE-K. Through organoid experiments, we found that APS promoted the regeneration of ISCs. Remarkably, the results of network pharmacology, RNA sequencing and RT-PCR assays showed that APS significantly upregulated the HIF-1 signalling pathway, and HIF-1 inhibitor destroyed the radioprotection of APS. Our findings suggested that APS promotes the regeneration of ISCs through HIF-1 signalling pathway, and it may be an effective radioprotective agent for IR-induced intestinal injury.


Subject(s)
Astragalus Plant , Signal Transduction , Mice , Animals , Polysaccharides/pharmacology , Intestines , Stem Cells
3.
Biomed Chromatogr ; 37(6): e5621, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36895149

ABSTRACT

Cistanche tubulosa (CT), a well-known traditional Chinese medicine, has always been processed with rice wine for the treatment of kidney-yang deficiency syndrome (KYDS) since time immemorial. To explore the effect of processing on the efficacy and metabolites of CT in vivo, a comprehensive method using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was established for the analysis of the altered endogenous metabolites in response to the intervention of the raw and processed CT in KYDS model and the metabolites of the absorbed compounds in rats after gastric perfusion. It was shown that CT could improve KYDS, and the effect of the processed product was more significant. A total of 47 differential metabolites were identified in urine. Pathway analysis proved that purine metabolism; alanine, aspartate, and glutamate metabolism; and citrate cycle were the main pathways. Furthermore, 53 prototypes and 48 metabolites have been detected in rats. This was the first systematic research focus on the metabolites of raw and processed CT in vivo, which could provide a scientific basis for explaining the increasing efficiency of the processed CT. Moreover, it provides a valuable strategy for analyzing the chemical components and metabolites of other TCM prescriptions.


Subject(s)
Cistanche , Drugs, Chinese Herbal , Rats , Animals , Rats, Sprague-Dawley , Cistanche/metabolism , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Chromatography, Liquid
4.
Phytother Res ; 37(10): 4557-4571, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37427974

ABSTRACT

Cryptotanshinone (CPT), a major biological active ingredient extracted from root of Salvia miltiorrhiza (Danshen), has shown several pharmacological activities. However, the effect of CPT on radiation-induced lung fibrosis (RILF) is unknown. In this study, we explored the protective effects of CPT on RILF from gut-lung axis angle, specifically focusing on the bile acid (BA)-gut microbiota axis. We found that CPT could inhibit the process of epithelial mesenchymal transformation (EMT) and suppress inflammation to reduce the deposition of extracellular matrix in lung fibrosis in mice induced by radiation. In addition, 16S rDNA gene sequencing and BAs-targeted metabolomics analysis demonstrated that CPT could improve the dysbiosis of gut microbiota and BA metabolites in RILF mice. CPT significantly enriched the proportion of the beneficial genera Enterorhabdus and Akkermansia, and depleted that of Erysipelatoclostridium, which were correlated with increased intestinal levels of several farnesoid X receptor (FXR) natural agonists, such as deoxycholic acid and lithocholic acid, activating the FXR pathway. Taken together, these results suggested that CPT can regulate radiation-induced disruption of gut microbiota and BAs metabolism of mice, and reduce the radiation-induced lung inflammation and fibrosis. Thus, CPT may be a promising drug candidate for treating RILF.

5.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1463-1482, 2023 Mar.
Article in Zh | MEDLINE | ID: mdl-37005834

ABSTRACT

Dolomiaea plants are perennial herbs in the Asteraceae family with a long medicinal history. They are rich in chemical constituents, mainly including sesquiterpenes, phenylpropanoids, triterpenes, and steroids. The extracts and chemical constituents of Dolomiaea plants have various pharmacological effects, such as anti-inflammatory, antibacterial, antitumor, anti-gastric ulcer, hepatoprotective and choleretic effects. However, there are few reports on Dolomiaea plants. This study systematically reviewed the research progress on the chemical constituents and pharmacological effects of Dolomiaea plants to provide references for the further development and research of Dolomiaea plants.


Subject(s)
Asteraceae , Sesquiterpenes , Triterpenes , Plant Extracts/pharmacology , Sesquiterpenes/pharmacology , Anti-Inflammatory Agents , Phytochemicals/pharmacology
6.
Biol Pharm Bull ; 45(12): 1743-1753, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36130913

ABSTRACT

Delavatine A (DA) is an unusual isoquinoline alkaloid with a novel skeleton isolated from Chinese folk medicine Incarvillea delavayi. Studies conducted in our lab have demonstrated that DA has potential anti-inflammatory activity in lipopolysaccharide (LPS)-treated BV-2 cells. DA, however, has not been studied for its protective effect on neuronal cells yet. Thus, to explore whether DA can protect neurons, oxygen and glucose deprivation/reperfusion (OGD/R)-injured PC12 cell and middle cerebral artery occlusion/reperfusion (MCAO/R) rat model were used to assess the protective efficacy of DA against OGD/R damaged PC12 cells and MCAO/R injured rats. Our results demonstrated that DA pretreatment (0.31-2.5 µM) dose-dependently increased cell survival and mitochondrial membrane potential (MMP), whereas it lowered the leakage of lactate dehydrogenase (LDH), intracellular cumulation of Ca2+, and overproduction of reactive oxygen species (ROS), and inhibited the apoptosis rate in OGD/R-injured PC12 cells. Western blot demonstrated that DA pretreatment lowered the expression of apoptotic proteins and repressed the activation of the mitogen-activated protein kinase kinase 7 (MKK7)/c-Jun N-terminal kinase (JNK) pathway. It was also found that the neuroprotective efficacy of DA was significantly reversed by co-treatment with the JNK agonist anisomycin, suggesting that DA reduced PC12 cell injury and apoptosis by suppressing the MKK7/JNK pathway. Furthermore, DA oral administration greatly alleviated the neurological dysfunction and reduced the infarct volume of MCAO/R rats. Taken together, DA could ameliorate OGD/R-caused PC12 cell injury and improve brain ischemia/reperfusion (I/R) damage in MCAO/R rats, and its neuroprotection might be attributed to suppressing the MKK7/JNK signaling pathway.


Subject(s)
Neuroprotective Agents , Reperfusion Injury , Animals , Rats , PC12 Cells , Glucose/metabolism , Oxygen/metabolism , MAP Kinase Signaling System , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Reperfusion Injury/metabolism , Apoptosis , Reperfusion
7.
Biomed Chromatogr ; 36(6): e5357, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35191054

ABSTRACT

Sophorae tonkinensis Radix et Rhizoma (S. tonkinensis) has been recorded as a 'poisonous' Chinese herbal medicine in Chinese Pharmacopoeia 2020. The clinical reaction reports of S. tonkinensis indicated its neurotoxicity; however, there still exists dispute about its toxic substances. At present, no report is available on the blood and brain prototype research of S. tonkinensis. Most studies focused on alkaloids and less on other compounds. Moreover, the constituents absorbed into the blood and brain have been rarely investigated so far. This study established a rapid and efficient qualitative analysis method using UPLC-Q-TOF-MSE to characterize the ingredients of S. tonkinensis and those entering into the rat's body after oral administration. A total of 91 compounds were identified in S. tonkinensis, of which 28 were confirmed by the standards. In addition, 30 and 19 prototypes were also first identified in the rat's blood and brain, respectively. It was found that most flavonoids, except alkaloids, were detected in the rat's body and distributed in the cerebrospinal fluid, suggesting that flavonoids may be one of the important toxic or effective substances of S. tonkinensis. This finding provides new clues and data for clarifying the toxicity or efficacy of this medicinal plant.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Sophora , Alkaloids/chemistry , Animals , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Flavonoids/analysis , Rats , Rhizome/chemistry , Sophora/chemistry
8.
Ecotoxicol Environ Saf ; 248: 114341, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36442401

ABSTRACT

Radiation-induced intestinal damage (RIID) is a serious disease with limited effective treatment. Nuclear explosion, nuclear release, nuclear application and especially radiation therapy are all highly likely to cause radioactive intestinal damage. The intestinal microecology is an organic whole with a symbiotic relationship formed by the interaction between a relatively stable microbial community living in the intestinal tract and the host. Imbalance and disorders of intestinal microecology are related to the occurrence and development of multiple systemic diseases, especially intestinal diseases. Increasing evidence indicates that the gut microbiota and its metabolites play an important role in the pathogenesis and prevention of RIID. Radiation leads to gut microbiota imbalance, including a decrease in the number of beneficial bacteria and an increase in the number of harmful bacteria that cause RIID. In this review, we describe the pathological mechanisms of RIID, the changes in intestinal microbiota, the metabolites induced by radiation, and their mechanism in RIID. Finally, the mechanisms of various methods for regulating the microbiota in the treatment of RIID are summarized.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Intestines
9.
Chem Biodivers ; 19(3): e202101013, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35229460

ABSTRACT

Three new monoterpene alkaloids, delavatines C-E (1-3), along with five known ones (4-8), were separated from the whole plants of Incarvillea delavayi. All compounds were deduced by interpretation of comprehensive NMR spectral data and X-Ray single crystal diffraction, in combination with a quantum chemical calculation of NMR chemical shift coupled with an advanced statistical procedure DP4+. Compounds 1-8 were assessed NO suppressive effect in LPS-stimulated BV2 microglia cells. Compounds 2, 3, 6, and 8 exhibited significant inhibition against NO production in LPS-induced BV2 cells with IC50 values of 25.62, 17.29, 19.94 and 23.88 µM, stronger than or comparable to the positive control (AG) with IC50 value of 26.13 µM.


Subject(s)
Alkaloids , Bignoniaceae , Alkaloids/pharmacology , Bignoniaceae/chemistry , Lipopolysaccharides/pharmacology , Microglia , Monoterpenes/pharmacology , Nitric Oxide
10.
Zhongguo Zhong Yao Za Zhi ; 47(3): 593-602, 2022 Feb.
Article in Zh | MEDLINE | ID: mdl-35178941

ABSTRACT

Chinese medicine processing is a procedure to process medicinal materials under the guidance of traditional Chinese medicine(TCM) theories by using unique methods in China. The medicinal materials can only be used clinically after proper processing. With the development of the modernization of TCM, it is difficult to solve the problems in the inheritance, development, and internationalization of Chinese medicine processing. Metabonomics, a new omics technology developed at the end of the last century, is used to infer the physiological or pathological conditions of the organism with the methods such as NMR and LC-MS via investigating the changes in endogenous small molecule metabolic network after the organism is stimulated by external environment. Metabonomics coincides with the holistic view of TCM because it displays the characteristics of integrity, comprehensiveness, and dynamics, and it has been widely applied in the field of Chinese medicine processing in recent years. This study summarized the application of metabonomics in the processing mechanism and quality control of Chinese medicine processing and prospected the development of this technology in the field of Chinese medicine processing.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Chromatography, Liquid , Mass Spectrometry , Metabolomics/methods , Quality Control
11.
Zhongguo Zhong Yao Za Zhi ; 47(2): 367-375, 2022 Jan.
Article in Zh | MEDLINE | ID: mdl-35178978

ABSTRACT

Syndrome is a nonlinear "internal-excess external-deficiency", "dynamic spatial-temporal" and "multi-dimensional" complex system and thus only by using a versatile method can the connotation be expounded. Metabonomics, which is dynamic, holistic, and systematic, is consistent with the overall mode of traditional Chinese medicine(TCM)(holistic view and syndrome differentiation and treatment). Therefore, metabonomics is very important for the research on the differentiation, material basis, and metabolic pathways of syndromes, and efficacy on syndromes. This study reviewed the application of metabonomics in the study of TCM syndromes in recent years, which is expected to objectify the research on TCM syndromes.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Metabolomics , Syndrome
12.
Anal Bioanal Chem ; 413(1): 129-139, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33079212

ABSTRACT

Chinese materia medica processing is a distinguished and unique pharmaceutical technique in traditional Chinese medicine (TCM), which has played an important role in reducing side effects, increasing medical potencies, altering the properties and even changing the curative effects of raw herbs. The efficacy improvement in medicinal plants is mainly caused by changes in the key substances through an optimized processing procedure. Thus, the use of a rapid method for determining suitable chemical markers between raw and processed TCM is critical in order to elucidate how the bioactive compounds influence the clinical effects. In this study, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry combined with MS/MS-based molecular networking (MN) and a multivariate statistical analysis method is proposed for the first time. This combination was used to identify the complex chemical composition and clarify the changed constituents between raw and processed Cistanche tubulosa (C. tubulosa). The chemical analysis results demonstrated that a total of 85 compounds were identified in the crude and processed C. tubulosa. Moreover, 34 compounds were detected as chemical markers. This systematic research into chemical constituents and chemical markers of crude and processed C. tubulosa lays a solid foundation for further study of the quality control of C. tubulosa. Moreover, the study provides a new and valuable technical strategy for analyzing chemical components and identifying potential chemical markers for the processing of herbal medicines.Graphical abstract.


Subject(s)
Chromatography, High Pressure Liquid/methods , Cistanche/chemistry , Tandem Mass Spectrometry/methods , Biomarkers/analysis , Databases, Chemical , Drugs, Chinese Herbal/chemistry , Glycosides/analysis , Iridoids/analysis , Lignans/analysis , Medicine, Chinese Traditional , Plant Extracts/chemistry , Reference Standards , Reproducibility of Results
13.
Biomed Chromatogr ; 35(3): e5000, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33460195

ABSTRACT

XiaoJin Capsule (XJC) is a classic Traditional Chinese Medicine formula for clinical treatment of thyroid nodules, mammary gland hyperplasia and breast cancer. For the specification and rational application of XJC in the future, an accurate and specific LC-MS/MS method was developed and validated for quantitative determination of five components in rat plasma after oral administration of XJC. The collected plasma samples were extracted by protein precipitation with methanol-acetonitrile (1:3, v/v) mixture solvent and separated on a C18 column using a gradient elution system. Mass spectrometry was performed on a triple quadrupole mass spectrometer, and samples were detected in positive ionization and multiple reactions monitoring mode. The method was properly validated in terms of linearity, precision, accuracy, recovery, matrix effect and stability. All calibration curves showed good linearity (r2 > 0.9910) over their concentration ranges. The intra- and inter-day precisions (RSD) were within 11.0%, and the LLOQ was 0.1, 0.2, 0.5, 7.5 and 7.5 ng/ml for aconine, songorine, neoline, 3-acetyl-11-keto-ß-boswellic acid and 11-keto-ß-boswellic acid, respectively. Extraction recovery, matrix effect and stability were satisfactory in rat plasma. This established method was successfully applied to a pharmacokinetics study of five compounds after oral administration of XJC to normal and mammary gland hyperplasia model rats.


Subject(s)
Alkaloids/blood , Chromatography, Liquid/methods , Drugs, Chinese Herbal , Mammary Neoplasms, Experimental/blood , Tandem Mass Spectrometry/methods , Triterpenes/blood , Alkaloids/pharmacokinetics , Animals , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacokinetics , Female , Hyperplasia , Linear Models , Mammary Glands, Animal/pathology , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity , Triterpenes/pharmacokinetics
14.
Chem Pharm Bull (Tokyo) ; 68(8): 694-712, 2020.
Article in English | MEDLINE | ID: mdl-32741910

ABSTRACT

Herba Cistanche, known as Rou Cong Rong in Chinese, is a very valuable Chinese herbal medicine that has been recorded in the Chinese Pharmacopoeia. Rou Cong Rong has been extensively used in clinical practice in traditional herbal formulations and has also been widely used as a health food supplement for a long time in Asian countries such as China and Japan. There are many bioactive compounds in Rou Cong Rong, the most important of which are phenylethanoid glycosides. This article summarizes the up-to-date information regarding the phytochemistry, pharmacology, processing, toxicity and safety of Rou Cong Rong to reveal its pharmacodynamic basis and potential therapeutic effects, which could be of great value for its use in future research.


Subject(s)
Cistanche/chemistry , Phytochemicals/chemistry , Animals , Cistanche/metabolism , Drugs, Chinese Herbal , Gastrointestinal Microbiome/drug effects , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/pharmacology , Glycosides/therapeutic use , Monoterpenes/chemistry , Monoterpenes/isolation & purification , Monoterpenes/pharmacology , Monoterpenes/therapeutic use , Oxidative Phosphorylation/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/veterinary , Phenylethyl Alcohol/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
15.
Zhongguo Zhong Yao Za Zhi ; 44(18): 3917-3923, 2019 Sep.
Article in Zh | MEDLINE | ID: mdl-31872725

ABSTRACT

Dengzhan Shengmai Capsules( DZSMC),a well-known traditional Chinese medicine( TCM) formula,is comprised of the main drug of Erigeron breviscapus,and supplemented with Panax ginseng,Ophiopogon japonicus and Schisandra chinensis,with functions of supplementing Qi and nourishing Yin,promoting blood circulation and strengthening brain. DZSMC is the only Chinese patent drug with A-level evidence-based medicine in secondary prevention for stroke and ranks first among TCMs for neurological treatment. Modern studies indicate that the chemical constituents of DZSMC mainly include flavonoids,phenolic acids,lignans,saponins and so on. Pharmacological experimental studies have shown that DZSMC has such pharmacological effects as anti-oxidation,anti-inflammatory and anti-myocardial ischemia. DZSMC is mainly used in the convalescent care of ischemic cardiovascular and cerebrovascular diseases,and is often used in combination with various conventional therapeutic drugs to exert clinical efficacy through brain protection,neuroprotection,etc.,and improve clinical symptoms in patients. In this review,according to domestic and international related literature combined with research results obtained by our project,the research advances in the chemical constituents,pharmacological effects and clinical application of DZSMC have been systematically reviewed and summarized,providing reference and support for further study and secondary development of the formula.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Erigeron/chemistry , Humans , Medicine, Chinese Traditional , Ophiopogon , Panax , Phytochemicals/pharmacology , Phytotherapy , Schisandra
16.
Neurochem Res ; 42(11): 3233-3244, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28758176

ABSTRACT

Preliminary studies conducted in our laboratory have confirmed that Bacopaside I (BS-I), a saponin compound isolated from Bacopa monnieri, displayed antidepressant-like activity in the mouse behavioral despair model. The present investigation aimed to verify the antidepressant-like action of BS-I using a mouse model of behavioral deficits induced by chronic unpredictable mild stress (CUMS) and further probe its underlying mechanism of action. Mice were exposed to CUMS for a period of 5 consecutive weeks to induce depression-like behavior. Then, oral gavage administrations with vehicle (model group), fluoxetine (12 mg/kg, positive group) or BS-I (5, 15, 45 mg/kg, treated group) once daily were started during the last two weeks of CUMS procedure. The results showed that BS-I significantly ameliorated CUMS-induced depression-like behaviors in mice, as characterized by an elevated sucrose consumption in the sucrose preference test and reduced immobility time without affecting spontaneous locomotor activity in the forced swimming test, tail suspension test and open field test. It was also found that BS-I treatment reversed the increased level of plasma corticosterone and decreased mRNA and protein expressions of glucocorticoid receptor induced by CUMS exposure, indicating that hypothalamic-pituitary-adrenal (HPA) axis hyperactivity of CUMS-exposed mice was restored by BS-I treatment. Furthermore, chronic administration of BS-I elevated expression levels of brain-derived neurotrophic factor (BDNF) (mRNA and protein) and activated the phosphorylation of extracellular signal-regulated kinase and cAMP response element-binding protein in the hippocampus and prefrontal cortex in mice subjected to CUMS procedure. Taken together, these results indicated that BS-I exhibited an obvious antidepressant-like effect in mouse model of CUMS-induced depression that was mediated, at least in part, by modulating HPA hyperactivity and activating BDNF signaling pathway.


Subject(s)
Antidepressive Agents/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Depression/metabolism , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Saponins/therapeutic use , Stress, Psychological/metabolism , Triterpenes/therapeutic use , Animals , Antidepressive Agents/pharmacology , Chronic Disease , Depression/drug therapy , Depression/psychology , Dose-Response Relationship, Drug , Hypothalamo-Hypophyseal System/drug effects , Male , Mice , Mice, Inbred C57BL , Pituitary-Adrenal System/drug effects , Saponins/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Stress, Psychological/drug therapy , Stress, Psychological/psychology , Treatment Outcome , Triterpenes/pharmacology
17.
Yao Xue Xue Bao ; 51(6): 843-52, 2016 06.
Article in Zh | MEDLINE | ID: mdl-29878736

ABSTRACT

The international cooperated research projects of the Human Microbiome Project (HMP) and Metagenomics of The Human Intestinal Tract (MetaHIT) were officially launched in 2007, which indicated the era of metagenomics research of microorganisms in human gastrointestinal tract had been coming. Each human body is a superorganism which is composed of 90% commensal microorganisms, especially the intestinal microorganisms. The intestinal microorganisms play an important role on health maintenance since they are involved in the absorption and metabolism of nutrients in the human bodies. Herein, we review the research progress in the mechanism of intestinal microorganisms in human diseases. Our purpose is to provide novel ideas on human health and therapeutic targets of diseases.


Subject(s)
Gastrointestinal Microbiome , Intestines/microbiology , Metagenomics , Humans , Symbiosis
18.
Zhongguo Zhong Yao Za Zhi ; 41(10): 1766-1772, 2016 May.
Article in Zh | MEDLINE | ID: mdl-28895319

ABSTRACT

A large number and wide varieties of microorganisms colonize in the human gastrointestinal tract. They construct an intestinal microecological system in the intestinal environment. The intestinal symbiotic flora regulates a series of life actions, including digestion and absorption of nutrient, immune response, biological antagonism, and is closely associated with the occurrence and development of many diseases. Therefore, it is greatly essential for the host's health status to maintain the equilibrium of intestinal microecological environment. After effective compositions of traditional Chinese medicines are metabolized or biotransformed by human intestinal bacteria, their metabolites can be absorbed more easily, and can even decrease or increase toxicity and then exhibit significant different biological effects. Meanwhile, traditional Chinese medicines can also regulate the composition of the intestinal flora and protect the function of intestinal mucosal barrier to restore the homeostasis of intestinal microecology. The relevant literatures in recent 15 years about the interactive relationship between traditional Chinese medicines and gut microbiota have been collected in this review, in order to study the classification of gut microflora, the relationship between intestinal dysbacteriosis and diseases, the important roles of gut microflora in intestinal bacterial metabolism in effective ingredients of traditional Chinese medicines and bioactivities, as well as the modulation effects of Chinese medicine on intestinal dysbacteriosis. In addition, it also makes a future prospect for the research strategies to study the mechanism of action of traditional Chinese medicines based on multi-omics techniques.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/drug effects , Medicine, Chinese Traditional , Dysbiosis/drug therapy , Humans , Intestinal Mucosa/drug effects , Intestines/microbiology
19.
Neurosci Res ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848903

ABSTRACT

Underwater exercise is becoming increasingly prevalent, during which brain function is necessary but is also at risk. However, no study has explored how prolonged exercise affect the brain in underwater environment. Previous studies have indicated that excessive exercise in common environment causes brain dysfunction but have failed to provide appropriate interventions. Numerous evidence has indicated the neuroprotective effect of hyperbaric oxygen preconditioning (HBO-PC). The objective of this study was to investigate the cognitive effect of prolonged underwater exercise (PUE) and to explore the potential neuroprotective effect of HBO-PC in underwater environment. Rats swimming for 3 h in a simulated hyperbaric chamber (2.0 ATA) was used to establish the PUE animal model and HBO-PC (2.5 ATA for 1, 3,5 times respectively) was administrated before PUE. The results demonstrated that PUE triggers anxiety-like behaviors, cognitive impairment accompanied by hippocampal dysfunction, microglia activation and neuroinflammation. Conversely, 3 HBO-PC rescued anxiety-like behaviors and cognitive impairment. Mechanistically, 3 HBO-PC reduced microglia activation and switched the activated microglia from a pro-inflammatory to neuroprotective phenotype. These findings illustrated that PUE induces anxiety-like behaviors and cognitive impairment and HBO-PC of proper frequency may provide an appropriate and less invasive intervention for protecting the brain in underwater exercise.

20.
Biomed Pharmacother ; 170: 115679, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113632

ABSTRACT

Bacopaside I (BSI) is a natural compound that is difficult to absorb orally but has been shown to have antidepressant effects. The microbiota-gut-brain axis is involved in the development of depression through the peripheral nervous system, endocrine system, and immune system and may be a key factor in the effect of BSI. Therefore, this study aimed to investigate the potential mechanism of BSI in the treatment of depression via the microbiota-gut-brain axis and to validate it in a fecal microbiota transplantation model. The antidepressant effect of BSI was established in CUMS-induced mice using behavioral tests and measurement of changes in hypothalamicpituitaryadrenal (HPA) axis-related hormones. The improvement of stress-induced gut-brain axis damage by BSI was observed by histopathological sections and enzyme-linked immunosorbent assay (ELISA). 16 S rDNA sequencing analysis indicated that BSI could modulate the abundance of gut microbiota and increase the abundance of probiotic bacteria. We also observed an increase in short-chain fatty acids, particularly acetic acid. In addition, BSI could modulate the disruption of lipid metabolism induced by CUMS. Fecal microbiota transplantation further confirmed that disruption of the microbiota-gut-brain axis is closely associated with the development of depression, and that the microbiota regulated by BSI exerts a partial antidepressant effect. In conclusion, BSI exerts antidepressant effects by remodeling gut microbiota, specifically through the Lactobacillus and Streptococcus-acetic acid-neurotrophin signaling pathways. Furthermore, BSI can repair damage to the gut-brain axis, regulate HPA axis dysfunction, and maintain immune homeostasis.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Depression/metabolism , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Acetates/pharmacology , Stress, Psychological/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL