Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Pathog ; 20(3): e1012128, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38547254

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is known to suppress the type I interferon (IFNs-α/ß) response during infection. PRRSV also activates the NF-κB signaling pathway, leading to the production of proinflammatory cytokines during infection. In swine farms, co-infections of PRRSV and other secondary bacterial pathogens are common and exacerbate the production of proinflammatory cytokines, contributing to the porcine respiratory disease complex (PRDC) which is clinically a severe disease. Previous studies identified the non-structural protein 1ß (nsp1ß) of PRRSV-2 as an IFN antagonist and the nucleocapsid (N) protein as the NF-κB activator. Further studies showed the leucine at position 126 (L126) of nsp1ß as the essential residue for IFN suppression and the region spanning the nuclear localization signal (NLS) of N as the NF-κB activation domain. In the present study, we generated a double-mutant PRRSV-2 that contained the L126A mutation in the nsp1ß gene and the NLS mutation (ΔNLS) in the N gene using reverse genetics. The immunological phenotype of this mutant PRRSV-2 was examined in porcine alveolar macrophages (PAMs) in vitro and in young pigs in vivo. In PAMs, the double-mutant virus did not suppress IFN-ß expression but decreased the NF-κB-dependent inflammatory cytokine productions compared to those for wild-type PRRSV-2. Co-infection of PAMs with the mutant PRRSV-2 and Streptococcus suis (S. suis) also reduced the production of NF-κB-directed inflammatory cytokines. To further examine the cytokine profiles and the disease severity by the mutant virus in natural host animals, 6 groups of pigs, 7 animals per group, were used for co-infection with the mutant PRRSV-2 and S. suis. The double-mutant PRRSV-2 was clinically attenuated, and the expressions of proinflammatory cytokines and chemokines were significantly reduced in pigs after bacterial co-infection. Compared to the wild-type PRRSV-2 and S. suis co-infection control, pigs coinfected with the double-mutant PRRSV-2 exhibited milder clinical signs, lower titers and shorter duration of viremia, and lower expression of proinflammatory cytokines. In conclusion, our study demonstrates that genetic modification of the type I IFN suppression and NF-κB activation functions of PRRSV-2 may allow us to design a novel vaccine candidate to alleviate the clinical severity of PRRS-2 and PRDC during bacterial co-infection.


Subject(s)
Coinfection , Interferon Type I , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Porcine respiratory and reproductive syndrome virus/metabolism , Cytokines/genetics , Cytokines/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Macrophages, Alveolar/metabolism , Interferon Type I/metabolism , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/metabolism
2.
Vet Microbiol ; 296: 110174, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981201

ABSTRACT

Influenza A Virus in swine (IAV-S) is a zoonotic pathogen that is nearly ubiquitous in commercial swine in the USA. Swine possess sialic acid receptors that allow co-infection of human and avian viruses with the potential of pandemic reassortment. We aimed to develop a fast and robust testing method for IAV-S detection on swine farms. Two primers of the RT-LAMP assay were labeled for use in a lateral flow readout. A commercially available lateral flow kit was used to read the amplicon product. With a runtime of ∼ 45 minutes, the limit of detection for the assay is comparable with an RT-qPCR Cq less than 35, with a sensitivity of 83.5 % and a specificity of 89.6 %. This assay allows veterinarians and producers with limited access to diagnostic services to perform and detect Matrix gene amplification on-site with low equipment costs. The time from sample collection to detection is less than one hour, making this method an accessible, convenient, and affordable tool to prevent the spread of zoonotic disease.


Subject(s)
Influenza A virus , Nucleic Acid Amplification Techniques , Orthomyxoviridae Infections , Sensitivity and Specificity , Swine Diseases , Animals , Swine , Influenza A virus/isolation & purification , Influenza A virus/genetics , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/diagnosis , Swine Diseases/virology , Swine Diseases/diagnosis , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL