Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nature ; 576(7786): 274-280, 2019 12.
Article in English | MEDLINE | ID: mdl-31802000

ABSTRACT

Embryonal tumours with multilayered rosettes (ETMRs) are aggressive paediatric embryonal brain tumours with a universally poor prognosis1. Here we collected 193 primary ETMRs and 23 matched relapse samples to investigate the genomic landscape of this distinct tumour type. We found that patients with tumours in which the proposed driver C19MC2-4 was not amplified frequently had germline mutations in DICER1 or other microRNA-related aberrations such as somatic amplification of miR-17-92 (also known as MIR17HG). Whole-genome sequencing revealed that tumours had an overall low recurrence of single-nucleotide variants (SNVs), but showed prevalent genomic instability caused by widespread occurrence of R-loop structures. We show that R-loop-associated chromosomal instability can be induced by the loss of DICER1 function. Comparison of primary tumours and matched relapse samples showed a strong conservation of structural variants, but low conservation of SNVs. Moreover, many newly acquired SNVs are associated with a mutational signature related to cisplatin treatment. Finally, we show that targeting R-loops with topoisomerase and PARP inhibitors might be an effective treatment strategy for this deadly disease.


Subject(s)
MicroRNAs/genetics , Neoplasms, Germ Cell and Embryonal/genetics , DEAD-box RNA Helicases/genetics , DNA Topoisomerases, Type I/genetics , Humans , Mutation , Neoplasms, Germ Cell and Embryonal/diagnosis , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/genetics , Polymorphism, Single Nucleotide , RNA, Long Noncoding , Recurrence , Ribonuclease III/genetics
2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34479993

ABSTRACT

Neuroblastomas are childhood tumors with frequent fatal relapses after induction treatment, which is related to tumor evolution with additional genomic events. Our whole-genome sequencing data analysis revealed a high frequency of somatic cytosine > adenine (C > A) substitutions in primary neuroblastoma tumors, which was associated with poor survival. We showed that increased levels of C > A substitutions correlate with copy number loss (CNL) of OGG1 or MUTYH Both genes encode DNA glycosylases that recognize 8-oxo-guanine (8-oxoG) lesions as a first step of 8-oxoG repair. Tumor organoid models with CNL of OGG1 or MUTYH show increased 8-oxoG levels compared to wild-type cells. We used CRISPR-Cas9 genome editing to create knockout clones of MUTYH and OGG1 in neuroblastoma cells. Whole-genome sequencing of single-cell OGG1 and MUTYH knockout clones identified an increased accumulation of C > A substitutions. Mutational signature analysis of these OGG1 and MUTYH knockout clones revealed enrichment for C > A signatures 18 and 36, respectively. Clustering analysis showed that the knockout clones group together with tumors containing OGG1 or MUTYH CNL. In conclusion, we demonstrate that defects in 8-oxoG repair cause accumulation of C > A substitutions in neuroblastoma, which contributes to mutagenesis and tumor evolution.


Subject(s)
DNA Repair/genetics , Guanosine/analogs & derivatives , Neuroblastoma/genetics , Adenine/metabolism , Child , Cytosine/metabolism , DNA Damage , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Female , Guanine/metabolism , Guanosine/genetics , Guanosine/metabolism , Humans , Male , Mutagenesis , Neoplasm Recurrence, Local/genetics , Neuroblastoma/metabolism , Oxidative Stress , Polymorphism, Single Nucleotide/genetics
3.
BMC Biol ; 20(1): 182, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986286

ABSTRACT

BACKGROUND: SP140 is a bromodomain-containing protein expressed predominantly in immune cells. Genetic polymorphisms and epigenetic modifications in the SP140 locus have been linked to Crohn's disease (CD), suggesting a role in inflammation. RESULTS: We report the development of the first small molecule SP140 inhibitor (GSK761) and utilize this to elucidate SP140 function in macrophages. We show that SP140 is highly expressed in CD mucosal macrophages and in in vitro-generated inflammatory macrophages. SP140 inhibition through GSK761 reduced monocyte-to-inflammatory macrophage differentiation and lipopolysaccharide (LPS)-induced inflammatory activation, while inducing the generation of CD206+ regulatory macrophages that were shown to associate with a therapeutic response to anti-TNF in CD patients. SP140 preferentially occupies transcriptional start sites in inflammatory macrophages, with enrichment at gene loci encoding pro-inflammatory cytokines/chemokines and inflammatory pathways. GSK761 specifically reduces SP140 chromatin binding and thereby expression of SP140-regulated genes. GSK761 inhibits the expression of cytokines, including TNF, by CD14+ macrophages isolated from CD intestinal mucosa. CONCLUSIONS: This study identifies SP140 as a druggable epigenetic therapeutic target for CD.


Subject(s)
Crohn Disease , Tumor Necrosis Factor Inhibitors , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Crohn Disease/genetics , Crohn Disease/metabolism , Cytokines/genetics , Cytokines/metabolism , Epigenesis, Genetic , Humans , Macrophages , Transcription Factors/genetics
4.
Nature ; 483(7391): 589-93, 2012 Feb 22.
Article in English | MEDLINE | ID: mdl-22367537

ABSTRACT

Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours.


Subject(s)
Chromosomes, Human/genetics , Neurites/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Aging/genetics , Cluster Analysis , DNA Helicases/genetics , DNA Mutational Analysis , Gene Expression Regulation, Neoplastic , Genome, Human/genetics , Growth Cones/metabolism , Growth Cones/pathology , Guanine Nucleotide Exchange Factors/genetics , Humans , Mutation , Neoplasm Staging , Neuroblastoma/diagnosis , Neuroblastoma/metabolism , Nuclear Proteins/genetics , Prognosis , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , X-linked Nuclear Protein , rac GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/metabolism
5.
Cell Rep Med ; 5(5): 101523, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38670098

ABSTRACT

Peritoneal metastases (PMs) from colorectal cancer (CRC) respond poorly to treatment and are associated with unfavorable prognosis. For example, the addition of hyperthermic intraperitoneal chemotherapy (HIPEC) to cytoreductive surgery in resectable patients shows limited benefit, and novel treatments are urgently needed. The majority of CRC-PMs represent the CMS4 molecular subtype of CRC, and here we queried the vulnerabilities of this subtype in pharmacogenomic databases to identify novel therapies. This reveals the copper ionophore elesclomol (ES) as highly effective against CRC-PMs. ES exhibits rapid cytotoxicity against CMS4 cells by targeting mitochondria. We find that a markedly reduced mitochondrial content in CMS4 cells explains their vulnerability to ES. ES demonstrates efficacy in preclinical models of PMs, including CRC-PMs and ovarian cancer organoids, mouse models, and a HIPEC rat model of PMs. The above proposes ES as a promising candidate for the local treatment of CRC-PMs, with broader implications for other PM-prone cancers.


Subject(s)
Colorectal Neoplasms , Mitochondria , Peritoneal Neoplasms , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/therapy , Animals , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Cell Line, Tumor , Rats , Female , Hyperthermic Intraperitoneal Chemotherapy/methods
6.
Acta Neuropathol ; 125(3): 385-94, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23179372

ABSTRACT

Recent studies showed frequent mutations in histone H3 lysine 27 (H3K27) demethylases in medulloblastomas of Group 3 and Group 4, suggesting a role for H3K27 methylation in these tumors. Indeed, trimethylated H3K27 (H3K27me3) levels were shown to be higher in Group 3 and 4 tumors compared to WNT and SHH medulloblastomas, also in tumors without detectable mutations in demethylases. Here, we report that polycomb genes, required for H3K27 methylation, are consistently upregulated in Group 3 and 4 tumors. These tumors show high expression of the homeobox transcription factor OTX2. Silencing of OTX2 in D425 medulloblastoma cells resulted in downregulation of polycomb genes such as EZH2, EED, SUZ12 and RBBP4 and upregulation of H3K27 demethylases KDM6A, KDM6B, JARID2 and KDM7A. This was accompanied by decreased H3K27me3 and increased H3K27me1 levels in promoter regions. Strikingly, the decrease of H3K27me3 was most prominent in promoters that bind OTX2. OTX2-bound promoters showed high levels of the H3K4me3 and H3K9ac activation marks and intermediate levels of the H3K27me3 inactivation mark, reminiscent of a bivalent modification. After silencing of OTX2, H3K27me3 levels strongly dropped, but H3K4me3 and H3K9ac levels remained high. OTX2-bound bivalent genes showed high expression levels in D425, but the expression of most of these genes did not change after OTX2 silencing and loss of the H3K27me3 mark. Maintaining promoters in a bivalent state by sustaining H3K27 trimethylation therefore seems to be an important function of OTX2 in medulloblastoma, while other transcription factors might regulate the actual expression levels of these genes.


Subject(s)
Gene Expression Regulation, Neoplastic/physiology , Histones/metabolism , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , Gene Expression Profiling , Histones/genetics , Humans , Medulloblastoma/classification , Medulloblastoma/genetics , Medulloblastoma/pathology , Methylation , Oligonucleotide Array Sequence Analysis , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Promoter Regions, Genetic/genetics , RNA, Messenger
7.
FEBS J ; 290(24): 5811-5834, 2023 12.
Article in English | MEDLINE | ID: mdl-37646174

ABSTRACT

Notch receptor activation is regulated by the intramembrane protease γ-secretase, which cleaves and liberates the Notch intracellular domain (Nicd) that regulates gene transcription. While γ-secretase cleavage is necessary, we demonstrate it is insufficient for Notch activation and requires vesicular trafficking. Here, we report Divalent metal transporter 1 (Dmt1, Slc11A2) as a novel and essential regulator of Notch signalling. Dmt1-deficient cells are defective in Notch signalling and have perturbed endolysosomal trafficking and function. Dmt1 encodes for two isoforms, with and without an iron response element (ire). We show that isoform-specific silencing of Dmt1-ire and Dmt1+ire has opposite consequences on Notch-dependent cell fates in cell lines and intestinal organoids. Loss of Dmt1-ire suppresses Notch activation and promotes differentiation, whereas loss of Dmt1+ire causes Notch activation and maintains stem-progenitor cell fates. Dmt1 isoform expression correlates with Notch and Wnt signalling in Apc-deficient intestinal organoids and human colorectal cancers. Consistently, Dmt1-ire silencing induces Notch-dependent differentiation in colorectal cancer cells. These data identify Dmt1 isoforms as binary switches controlling Notch cell fate decisions in normal and tumour cells.


Subject(s)
Amyloid Precursor Protein Secretases , Cation Transport Proteins , Iron , Humans , Amyloid Precursor Protein Secretases/metabolism , Cell Line , Iron/metabolism , Iron-Binding Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Cation Transport Proteins/genetics , Regulatory Sequences, Nucleic Acid
8.
Int J Cancer ; 131(2): E21-32, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-21964830

ABSTRACT

The transcription factor OTX2 has been implicated as an oncogene in medulloblastoma, which is the most common malignant brain tumor in children. It is highly expressed in most medulloblastomas and amplified in a subset of them. To study the role OTX2 has in medulloblastoma we investigated the downstream pathway of OTX2. We generated D425 medulloblastoma cells in which endogenous OTX2 can be silenced by inducible shRNA. Silencing of OTX2 strongly inhibited cell proliferation and resulted in a neuronal-like differentiation. Expression profiling of time courses after silencing showed a progressive change in gene expression for many cellular processes. Downregulated genes were highly enriched for cell cycle and visual perception genes, while upregulated genes were enriched for genes involved in development and differentiation. This shift is reminiscent of expression changes described during normal cerebellum development where proliferating granule progenitor cells have high OTX2 expression, which diminishes when these cells exit the cell cycle and start to differentiate. ChIP-on-chip analyses of OTX2 in D425 cells identified cell cycle and perception genes as direct OTX2 targets, while regulation of most differentiation genes appeared to be indirect. The expression of many directly regulated genes correlated to OTX2 expression in primary tumors, suggesting the in vivo relevance of these genes and their potential as targets for therapeutic intervention. These analyses provide more insight in the molecular network of OTX2, demonstrating that OTX2 is essential in medulloblastoma and directly drives proliferation by regulation of cell cycle genes.


Subject(s)
Medulloblastoma/genetics , Medulloblastoma/metabolism , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism , Cell Cycle/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation , Cerebellum/growth & development , Cerebellum/metabolism , Cerebellum/pathology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Medulloblastoma/pathology , RNA Interference , RNA, Small Interfering , Visual Perception/genetics
9.
Cell Rep ; 41(10): 111761, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476851

ABSTRACT

Ewing sarcoma (EwS) is characterized by EWSR1-ETS fusion transcription factors converting polymorphic GGAA microsatellites (mSats) into potent neo-enhancers. Although the paucity of additional mutations makes EwS a genuine model to study principles of cooperation between dominant fusion oncogenes and neo-enhancers, this is impeded by the limited number of well-characterized models. Here we present the Ewing Sarcoma Cell Line Atlas (ESCLA), comprising whole-genome, DNA methylation, transcriptome, proteome, and chromatin immunoprecipitation sequencing (ChIP-seq) data of 18 cell lines with inducible EWSR1-ETS knockdown. The ESCLA shows hundreds of EWSR1-ETS-targets, the nature of EWSR1-ETS-preferred GGAA mSats, and putative indirect modes of EWSR1-ETS-mediated gene regulation, converging in the duality of a specific but plastic EwS signature. We identify heterogeneously regulated EWSR1-ETS-targets as potential prognostic EwS biomarkers. Our freely available ESCLA (http://r2platform.com/escla/) is a rich resource for EwS research and highlights the power of comprehensive datasets to unravel principles of heterogeneous gene regulation by chimeric transcription factors.


Subject(s)
Sarcoma, Ewing , Humans , Sarcoma, Ewing/genetics , Multiomics , Oncogenes , Cell Line , Transcription Factors
10.
Cell Rep Med ; 3(11): 100802, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36334593

ABSTRACT

Neoadjuvant chemoradiotherapy (nCRT) improves outcomes in resectable esophageal adenocarcinoma (EAC), but acquired resistance precludes long-term efficacy. Here, we delineate these resistance mechanisms. RNA sequencing on matched patient samples obtained pre-and post-neoadjuvant treatment reveal that oxidative phosphorylation was the most upregulated of all biological programs following nCRT. Analysis of patient-derived models confirms that mitochondrial content and oxygen consumption strongly increase in response to nCRT and that ionizing radiation is the causative agent. Bioinformatics identifies estrogen-related receptor alpha (ESRRA) as the transcription factor responsible for reprogramming, and overexpression and silencing of ESRRA functionally confirm that its downstream metabolic rewiring contributes to resistance. Pharmacological inhibition of ESRRA successfully sensitizes EAC organoids and patient-derived xenografts to radiation. In conclusion, we report a profound metabolic rewiring following chemoradiation and demonstrate that its inhibition resensitizes EAC cells to radiation. These findings hold broader relevance for other cancer types treated with radiation as well.


Subject(s)
Drug Resistance, Neoplasm , Esophageal Neoplasms , Neoadjuvant Therapy , Organelle Biogenesis , Receptors, Estrogen , Humans , Esophageal Neoplasms/therapy , Mitochondria , Receptors, Estrogen/metabolism , Animals , ERRalpha Estrogen-Related Receptor
11.
Cancers (Basel) ; 13(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466359

ABSTRACT

mRNA RT-qPCR is shown to be a very sensitive technique to detect minimal residual disease (MRD) in patients with neuroblastoma. Multiple mRNA markers are known to detect heterogeneous neuroblastoma cells in bone marrow (BM) or blood from patients. However, the limited volumes of BM and blood available can hamper the detection of multiple markers. To make optimal use of these samples, we developed a multiplex RT-qPCR for the detection of MRD in neuroblastoma. GUSB and PHOX2B were tested as single markers. The adrenergic markers TH, GAP43, CHRNA3 and DBH and mesenchymal markers POSTN, PRRX1 and FMO3 were tested in multiplex. Using control blood and BM, we established new thresholds for positivity. Comparison of multiplex and singleplex RT-qPCR results from 21 blood and 24 BM samples from neuroblastoma patients demonstrated a comparable sensitivity. With this multiplex RT-qPCR, we are able to test seven different neuroblastoma mRNA markers, which overcomes tumor heterogeneity and improves sensitivity of MRD detection, even in those samples of low RNA quantity. With resources and time being saved, reduction in sample volume and consumables can assist in the introduction of MRD by RT-qPCR into clinical practice.

12.
Nat Commun ; 10(1): 1530, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30948783

ABSTRACT

Transition between differentiation states in development occurs swift but the mechanisms leading to epigenetic and transcriptional reprogramming are poorly understood. The pediatric cancer neuroblastoma includes adrenergic (ADRN) and mesenchymal (MES) tumor cell types, which differ in phenotype, super-enhancers (SEs) and core regulatory circuitries. These cell types can spontaneously interconvert, but the mechanism remains largely unknown. Here, we unravel how a NOTCH3 intracellular domain reprogrammed the ADRN transcriptional landscape towards a MES state. A transcriptional feed-forward circuitry of NOTCH-family transcription factors amplifies the NOTCH signaling levels, explaining the swift transition between two semi-stable cellular states. This transition induces genome-wide remodeling of the H3K27ac landscape and a switch from ADRN SEs to MES SEs. Once established, the NOTCH feed-forward loop maintains the induced MES state. In vivo reprogramming of ADRN cells shows that MES and ADRN cells are equally oncogenic. Our results elucidate a swift transdifferentiation between two semi-stable epigenetic cellular states.


Subject(s)
Adrenergic Neurons/pathology , Cellular Reprogramming/genetics , Mesenchymal Stem Cells/pathology , Neuroblastoma/pathology , Receptor, Notch3/physiology , Adrenergic Neurons/metabolism , Cell Line, Tumor , Epigenesis, Genetic , Feedback, Physiological , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mesenchymal Stem Cells/metabolism , Neuroblastoma/metabolism , Receptor, Notch3/genetics , Receptor, Notch3/metabolism
13.
Cancer Res ; 78(21): 6297-6307, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30115695

ABSTRACT

Mutations affecting the RAS-MAPK pathway frequently occur in relapsed neuroblastoma tumors, which suggests that activation of this pathway is associated with a more aggressive phenotype. To explore this hypothesis, we generated several model systems to define a neuroblastoma RAS-MAPK pathway signature. Activation of this pathway in primary tumors indeed correlated with poor survival and was associated with known activating mutations in ALK and other RAS-MAPK pathway genes. Integrative analysis showed that mutations in PHOX2B, CIC, and DMD were also associated with an activated RAS-MAPK pathway. Mutation of PHOX2B and deletion of CIC in neuroblastoma cell lines induced activation of the RAS-MAPK pathway. This activation was independent of phosphorylated ERK in CIC knockout systems. Furthermore, deletion of CIC caused a significant increase in tumor growth in vivo These results show that the RAS-MAPK pathway is involved in tumor progression and establish CIC as a powerful tumor suppressor that functions downstream of this pathway in neuroblastoma.Significance: This work identifies CIC as a powerful tumor suppressor affecting the RAS-MAPK pathway in neuroblastoma and reinforces the importance of mutation-driven activation of this pathway in cancer. Cancer Res; 78(21); 6297-307. ©2018 AACR.


Subject(s)
MAP Kinase Signaling System , Neuroblastoma/genetics , Repressor Proteins/genetics , Animals , Cell Line, Tumor , Cluster Analysis , Disease Progression , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, ras , Genome, Human , Genomics , Homeodomain Proteins/metabolism , Humans , Mice , Mice, Knockout , Mice, Nude , Mutation , Neoplasm Recurrence, Local/genetics , Neoplasm Transplantation , Neuroblastoma/pathology , Phenotype , Phosphorylation , Prognosis , Repressor Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Treatment Outcome
14.
Nat Genet ; 49(8): 1261-1266, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28650485

ABSTRACT

Neuroblastoma and other pediatric tumors show a paucity of gene mutations, which has sparked an interest in their epigenetic regulation. Several tumor types include phenotypically divergent cells, resembling cells from different lineage development stages. It has been proposed that super-enhancer-associated transcription factor (TF) networks underlie lineage identity, but the role of these enhancers in intratumoral heterogeneity is unknown. Here we show that most neuroblastomas include two types of tumor cells with divergent gene expression profiles. Undifferentiated mesenchymal cells and committed adrenergic cells can interconvert and resemble cells from different lineage differentiation stages. ChIP-seq analysis of isogenic pairs of mesenchymal and adrenergic cells identified a distinct super-enhancer landscape and super-enhancer-associated TF network for each cell type. Expression of the mesenchymal TF PRRX1 could reprogram the super-enhancer and mRNA landscapes of adrenergic cells toward a mesenchymal state. Mesenchymal cells were more chemoresistant in vitro and were enriched in post-therapy and relapse tumors. Two super-enhancer-associated TF networks, which probably mediate lineage control in normal development, thus dominate epigenetic control of neuroblastoma and shape intratumoral heterogeneity.


Subject(s)
Cell Differentiation/genetics , Epigenesis, Genetic , Neuroblastoma/genetics , Neuroblastoma/pathology , AC133 Antigen/genetics , Adrenergic Neurons/cytology , Cell Line, Tumor , Cell Lineage , Homeodomain Proteins/genetics , Humans , Mesoderm/cytology , Transcription Factors/metabolism , Transcriptome
15.
FASEB J ; 19(3): 404-6, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15629888

ABSTRACT

Rhabdomyosarcoma (RMS) is the most frequent soft tissue sarcoma in children. Improved treatment strategies have increased overall survival, but the response of approximately one-third of the patients is still poor. To increase the knowledge of RMS pathogenesis, we performed the first full transcriptome analysis of RMS using serial analysis of gene expression (SAGE). With a G-test for the simultaneous comparison of subsets of SAGE libraries of normal skeletal muscle, embryonal (ERMS) and alveolar (ARMS) RMS, we identified 251 differentially expressed genes. A literature-mining procedure demonstrated that 158 of these genes have not previously been associated with RMS or normal muscle. Gene Ontology (GO) analysis assigned 198 of the 251 genes to muscle-specific classes, including those involved in normal myogenic development, as well as tumor-related classes. Prominent GO classes were those associated with proliferation and actin reorganization, which are processes that play roles during early muscle development, muscle function, and tumor progression. Using custom microarrays, we confirmed the (up- or down-) regulation of 80% of 98 differentially expressed genes. Another SAGE library of 19- to 22-week-old fetal skeletal muscle was compared with the RMS and normal muscle transcriptomes. Cluster analysis showed that the RMS and fetal muscle SAGE libraries formed one cluster distinct from normal muscle samples. Moreover, the expression profile of 86% of the differentially expressed genes between normal muscle and RMS was highly similar in fetal muscle and RMS. In conclusion, the G-test is a robust tool for analyzing groups of SAGE libraries and correctly identifies genes marking the difference between fully differentiated skeletal muscle and RMS. This study not only substantiates the close association between embryonic myogenesis and RMS development but also provides a rich source of candidate genes to further elucidate the etiology of RMS or to identify diagnostic and/or prognostic markers.


Subject(s)
Gene Expression Profiling , Gene Library , Muscle, Skeletal/chemistry , Muscle, Skeletal/embryology , Rhabdomyosarcoma/genetics , Cell Adhesion , Gene Expression , Glucose/metabolism , Humans , Likelihood Functions , Oligonucleotide Array Sequence Analysis , RNA/metabolism
16.
BMC Genomics ; 6: 91, 2005 Jun 14.
Article in English | MEDLINE | ID: mdl-15955238

ABSTRACT

BACKGROUND: Serial Analysis of Gene Expression (SAGE) and microarrays have found a widespread application, but much ambiguity exists regarding the evaluation of these technologies. Cross-platform utilization of gene expression data from the SAGE and microarray technology could reduce the need for duplicate experiments and facilitate a more extensive exchange of data within the research community. This requires a measure for the correspondence of the different gene expression platforms. To date, a number of cross-platform evaluations (including a few studies using SAGE and Affymetrix GeneChips) have been conducted showing a variable, but overall low, concordance. This study evaluates these overall measures and introduces the between-ratio difference as a concordance measure pergene. RESULTS: In this study, gene expression measurements of Unigene clusters represented by both Affymetrix GeneChips HG-U133A and SAGE were compared using two independent RNA samples. After matching of the data sets the final comparison contains a small data set of 1094 unique Unigene clusters, which is unbiased with respect to expression level. Different overall correlation approaches, like Up/Down classification, contingency tables and correlation coefficients were used to compare both platforms. In addition, we introduce a novel approach to compare two platforms based on the calculation of differences between expression ratios observed in each platform for each individual transcript. This approach results in a concordance measure per gene (with statistical probability value), as opposed to the commonly used overall concordance measures between platforms. CONCLUSION: We can conclude that intra-platform correlations are generally good, but that overall agreement between the two platforms is modest. This might be due to the binomially distributed sampling variation in SAGE tag counts, SAGE annotation errors and the intensity variation between probe sets of a single gene in Affymetrix GeneChips. We cannot identify or advice which platform performs better since both have their (dis)-advantages. Therefore it is strongly recommended to perform follow-up studies of interesting genes using additional techniques. The newly introduced between-ratio difference is a filtering-independent measure for between-platform concordance. Moreover, the between-ratio difference per gene can be used to detect transcripts with similar regulation on both platforms.


Subject(s)
Gene Expression Regulation , Molecular Probe Techniques , Oligonucleotide Array Sequence Analysis/methods , Cell Line, Tumor , Cluster Analysis , DNA Probes , DNA, Complementary , Gene Expression , Humans , Microarray Analysis , RNA/metabolism , RNA, Complementary/metabolism , RNA, Messenger/metabolism , RNA, Neoplasm/metabolism , Reproducibility of Results , Sensitivity and Specificity
17.
Nat Genet ; 47(12): 1411-4, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26523776

ABSTRACT

Whole-genome sequencing detected structural rearrangements of TERT in 17 of 75 high-stage neuroblastomas, with five cases resulting from chromothripsis. Rearrangements were associated with increased TERT expression and targeted regions immediately up- and downstream of TERT, positioning a super-enhancer close to the breakpoints in seven cases. TERT rearrangements (23%), ATRX deletions (11%) and MYCN amplifications (37%) identify three almost non-overlapping groups of high-stage neuroblastoma, each associated with very poor prognosis.


Subject(s)
Gene Expression Regulation, Neoplastic , Gene Rearrangement , Neuroblastoma/genetics , Neuroblastoma/pathology , Telomerase/genetics , Telomere/genetics , DNA Helicases/genetics , Gene Amplification , Gene Deletion , Genome, Human , High-Throughput Nucleotide Sequencing/methods , Humans , N-Myc Proto-Oncogene Protein , Nuclear Proteins/genetics , Oncogene Proteins/genetics , X-linked Nuclear Protein
18.
Nat Genet ; 47(8): 864-71, 2015 08.
Article in English | MEDLINE | ID: mdl-26121087

ABSTRACT

The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway. Seven of these events were detected only in the relapse tumor, whereas the others showed clonal enrichment. In neuroblastoma cell lines, we also detected a high frequency of activating mutations in the RAS-MAPK pathway (11/18; 61%), and these lesions predicted sensitivity to MEK inhibition in vitro and in vivo. Our findings provide a rationale for genetic characterization of relapse neuroblastomas and show that RAS-MAPK pathway mutations may function as a biomarker for new therapeutic approaches to refractory disease.


Subject(s)
MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinases/genetics , Mutation , Neoplasm Recurrence, Local/genetics , Neuroblastoma/genetics , ras Proteins/genetics , Anaplastic Lymphoma Kinase , Animals , Benzimidazoles/pharmacology , Blotting, Western , Cell Line, Tumor , Child , Child, Preschool , Chromosome Aberrations , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Infant , Male , Mice, SCID , Mitogen-Activated Protein Kinases/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Phosphorylation/drug effects , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Xenograft Model Antitumor Assays , ras Proteins/metabolism
19.
Eur J Cancer ; 50(3): 628-37, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24321263

ABSTRACT

Recently protocols have been devised for the culturing of cell lines from fresh tumours under serum-free conditions in defined neural stem cell medium. These cells, frequently called tumour initiating cells (TICs) closely retained characteristics of the tumours of origin. We report the isolation of eight newly-derived neuroblastoma TICs from six primary neuroblastoma tumours and two bone marrow metastases. The primary tumours from which these TICs were generated have previously been fully typed by whole genome sequencing (WGS). Array comparative genomic hybridisation (aCGH) analysis showed that TIC lines retained essential characteristics of the primary tumours and exhibited typical neuroblastoma chromosomal aberrations such as MYCN amplification, gain of chromosome 17q and deletion of 1p36. Protein analysis showed expression for neuroblastoma markers MYCN, NCAM, CHGA, DBH and TH while haematopoietic markers CD19 and CD11b were absent. We analysed the growth characteristics and confirmed tumour-forming potential using sphere-forming assays, subcutaneous and orthotopic injection of these cells into immune-compromised mice. Affymetrix mRNA expression profiling of TIC line xenografts showed an expression pattern more closely mimicking primary tumours compared to xenografts from classical cell lines. This establishes that these neuroblastoma TICs cultured under serum-free conditions are relevant and useful neuroblastoma tumour models.


Subject(s)
Cell Line, Tumor , Neuroblastoma/genetics , Neuroblastoma/pathology , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Child , Child, Preschool , Culture Media, Serum-Free , Genotype , Humans , Infant , Mice , Mice, Nude , Neuroblastoma/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
PLoS One ; 6(10): e26058, 2011.
Article in English | MEDLINE | ID: mdl-22016811

ABSTRACT

Both OTX2 and MYC are important oncogenes in medulloblastoma, the most common malignant brain tumor in childhood. Much is known about MYC binding to promoter regions, but OTX2 binding is hardly investigated. We used ChIP-on-chip data to analyze the binding patterns of both transcription factors in D425 medulloblastoma cells. When combining the data for all promoter regions in the genome, OTX2 binding showed a remarkable bi-modal distribution pattern with peaks around -250 bp upstream and +650 bp downstream of the transcription start sites (TSSs). Indeed, 40.2% of all OTX2-bound TSSs had more than one significant OTX2-binding peak. This OTX2-binding pattern was very different from the TSS-centered single peak binding pattern observed for MYC and other known transcription factors. However, in individual promoter regions, OTX2 and MYC have a strong tendency to bind in proximity of each other. OTX2-binding sequences are depleted near TSSs in the genome, providing an explanation for the observed bi-modal distribution of OTX2 binding. This contrasts to the enrichment of E-box sequences at TSSs. Both OTX2 and MYC binding independently correlated with higher gene expression. Interestingly, genes of promoter regions with multiple OTX2 binding as well as MYC binding showed the highest expression levels in D425 cells and in primary medulloblastomas. Genes within this class of promoter regions were enriched for medulloblastoma and stem cell specific genes. Our data suggest an important functional interaction between OTX2 and MYC in regulating gene expression in medulloblastoma.


Subject(s)
Cerebellar Neoplasms/pathology , Gene Expression Regulation, Neoplastic/genetics , Medulloblastoma/pathology , Otx Transcription Factors/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Line, Tumor , Cerebellar Neoplasms/genetics , DNA/genetics , DNA/metabolism , Humans , Medulloblastoma/genetics , Nucleotide Motifs/genetics , Protein Binding , Stem Cells/metabolism , Substrate Specificity , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL