Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Clin Oral Investig ; 28(2): 149, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355823

ABSTRACT

OBJECTIVE: The study aims to evaluate the shear bond and flexural strength fatigue behavior of yttrium-stabilized zirconia (4YSZ) repaired using different resin composites. MATERIALS AND METHODS: Cylindric specimens of 4YSZ were obtained for the bond strength (Ø = 6 mm, 1.5 mm of thickness) and biaxial flexural strength (Ø = 15 mm, 1 mm of thickness) fatigue tests and divided into 3 groups according to the repair resin composite: EVO (nanohybrid), BULK (bulk-fill), and FLOW (flowable). The zirconia surface was air-abraded with alumina particles, a 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) primer was applied, and the resin composite was build-up over the zirconia. Fatigue shear bond strength and flexural fatigue strength tests were performed (n = 15). One-way ANOVA and Tukey post hoc tests were carried out for both outcomes, besides scanning electron microscopy and finite element analysis. RESULTS: The repair material affected the fatigue shear bond strength of zirconia ceramic. The BULK group (18.9 MPa) depicted higher bond strength values than FLOW (14.8 MPa) (p = 0.04), while EVO (18.0 MPa) showed similar results to both groups. No effect was observed for the mechanical behavior (p = 0.53). The stress distribution was similar for all groups. CONCLUSION: The repair of yttrium-stabilized zirconia (4YSZ) ceramics with bulk-fill resin composites was the best option for high fatigue bond strength. However, the fatigue mechanical performance was similar regardless of the applied repair material. CLINICAL RELEVANCE: The repair of yttrium-stabilized zirconia (4YSZ) monolithic restorations may be performed with nanohybrid and bulk-fill resin composites in order to promote longevity in the treatment.


Subject(s)
Dental Bonding , Methacrylates , Dental Bonding/methods , Surface Properties , Materials Testing , Composite Resins/chemistry , Zirconium/chemistry , Ceramics/chemistry , Shear Strength , Yttrium/chemistry , Resin Cements/chemistry , Dental Stress Analysis
2.
PeerJ ; 12: e16942, 2024.
Article in English | MEDLINE | ID: mdl-38406292

ABSTRACT

Despite the advancements in indirect monolithic restorations, technical complications may occur during function. To overcome this issues, intraoral repair using resin composite is a practical and low-cost procedure, being able to increase the restoration's longevity. This review aimed to evaluate the need for repair and suggest a standardized repair protocol to the main indirect restorative materials. For this, studies were surveyed from PubMed with no language or date restriction, to investigate the scientific evidence of indirect monolithic restoration repair with direct resin composite. A classification to guide clinical decisions was made based on the FDI World Dental Federation criteria about defective indirect restorations considering esthetic and functional standards, along with the patient's view, to decide when polishing, repairing or replacing a defective restoration. Based on 38 surveyed studies, different resin composite intraoral repair protocols, that included mechanical and chemical aspects, were defined depending on the substrate considering resin-based, glass-ceramic or zirconia restorations. The presented criteria and protocols were developed to guide the clinician's decision-making process regarding defective indirect monolithic restorations, prolonging longevity and increasing clinical success.


Subject(s)
Composite Resins , Computer-Aided Design , Humans , Composite Resins/therapeutic use , Resins, Plant , Surveys and Questionnaires
3.
Int J Biol Macromol ; 265(Pt 1): 130864, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493820

ABSTRACT

Ketoprofen (KET), commonly used for inflammation in clinical settings, leads to systemic adverse effects with prolonged use, mitigated by topical administration. Nanotechnology-based cutaneous forms, like films, may enhance KET efficacy. Therefore, this study aimed to prepare and characterize films containing KET nanoemulsions (F-NK) regarding mechanical properties, chemical composition and interactions, occlusive potential, bioadhesion, drug permeation in human skin, and safety. The films were prepared using a κ-carrageenan and xanthan gum blend (2 % w/w, ratio 3: 1) plasticized with glycerol through the solvent casting method. Non-nanoemulsioned KET films (F-K) were prepared for comparative purposes. F-NK was flexible and hydrophilic, exhibited higher drug content and better uniformity (94.40 ± 3.61 %), maintained the NK droplet size (157 ± 12 nm), and was thinner and lighter than the F-K. This film also showed increased tensile strength and Young's modulus values, enhanced bioadhesion and occlusive potential, and resulted in more of the drug in the human skin layers. Data also suggested that nano-based formulations are homogeneous and more stable than F-KET. Hemolysis and chorioallantoic membrane tests suggested the formulations' safety. Thus, the nano-based film is suitable for cutaneous KET delivery, which may improve the drug's efficacy in managing inflammatory conditions.


Subject(s)
Ketoprofen , Nanocomposites , Polysaccharides, Bacterial , Humans , Ketoprofen/pharmacology , Ketoprofen/chemistry , Carrageenan/chemistry , Skin , Nanocomposites/chemistry
4.
Heliyon ; 10(1): e23709, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187296

ABSTRACT

Objective: To evaluate the effect of different surface treatments on the morphology, shear bond, and flexural fatigue strength of a repaired translucent zirconia. Methods: Monolithic disc-shaped specimens of translucent zirconia were prepared and ground to simulate repair areas. Four groups underwent different treatments: Air-MDP (air-abrasion with alumina particles and 10-MDP primer), Si-Sil (silica-coated alumina particles with MDP-containing silane), Si-MDP (silica coating with 10-MDP primer), and Uni adhe (universal adhesive). After roughness measurements and treatments, repairs were done using resin composite. Shear bond and flexural (n = 15) fatigue tests were performed. Surface topography, interfacial analysis, fractographic, and finite element analysis were conducted. Results: The zirconia roughness was similar between the groups, however, the surface topography was modified according to the surface treatments. Si-Sil generated higher and more stable bond strength values (20.69 MPa) between translucent zirconia and resin composite when compared to Uni adhe (15.75 MPa) considering the fatigue bond strength scenario, while it was similar to Si-MDP (17.70 MPa) and Air-MDP (18.97 MPa). Regarding the mechanical behavior, Si-Sil (680.83 MPa) also showed higher and significantly different fatigue strength when compared to Uni adhe (584.55 MPa), while both were similar to Si-MDP (634.22 MPa) and Air-MDP (641.86 MPa). Conclusion: The association of mechanical and chemical approaches is essential for long-term bond strength and optimized mechanical behavior, being air-abrasion protocols and the use of silane and/or MDP-based primers suitable for zirconia repair protocols. It was found that relying solely on a universal adhesive was not as effective as other options available. Clinical significance: The surface treatment of repair protocols affects translucent zirconia's morphology. To enhance fatigue behavior in repaired monolithic zirconia, air abrasion is crucial. Exclusive use of a universal adhesive is less effective than other choices. A primer containing silane/MDP holds the potential for stable bond strength and optimized mechanical performance.

5.
J Mech Behav Biomed Mater ; 155: 106557, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657286

ABSTRACT

The aim of this in vitro study was to evaluate the effect of the combinations of two different intraoral scanners (IOS), two milling machines, and two restorative materials on the marginal/internal fit and fatigue behavior of endocrowns produced by CAD-CAM. Eight groups (n= 10) were considered through the combination of TRIOS 3 (TR) or Primescan (PS) IOS; 4-axes (CR; CEREC MC XL) or 5-axes (PM; PrograMill PM7) milling machines; and lithium disilicate (LD; IPS e.max CAD) or resin composite (RC; Tetric CAD) restorative materials. Specific surface treatments were applied to each material, and the bonding to its corresponding Endocrown-shaped fiberglass-reinforced epoxy resin preparations was performed (Variolink Esthetic DC). Computed microtomography (µCT) was performed to assess the marginal/internal fit, as well as a mechanical fatigue test (20 Hz, initial load = 100 N/5000 cycles; step-size = 50 N/10,000 cycles until a threshold of 1500 N, then, the step-size was increased if needed to 100 N/10,000 cycles until failure or a threshold of 2800 N) to evaluate the restorations long-term behavior. Complementary analysis of the fracture features and surface topography in scanning electron microscopy was performed. Three-way ANOVA and Kaplan-Meier test (α = 0.05) were performed for marginal/internal fit, and fatigue behavior data, respectively. PS scanner, CR milling machine, and RC endocrowns resulted in a better marginal fit compared to their counterparts. Still, the PM machine resulted in a better pulpal space fit compared to the CR milling machine. Regardless of the scanner and milling machine, RC endocrowns exhibited superior fatigue behavior than LD ones. LD endocrowns presented margin chipping regardless of the milling machine used. Despite minor differences in terms of fit, the 'IOS' and 'milling machine' factors did not impair the fatigue behavior of endocrowns. Resin-composite restorations resulted in a higher survival rate compared to glass-ceramic ones, independently of the digital devices used in the workflow.


Subject(s)
Composite Resins , Computer-Aided Design , Dental Porcelain , Materials Testing , Composite Resins/chemistry , Dental Porcelain/chemistry , Mechanical Phenomena , Surface Properties , Mechanical Tests , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL