Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Biol Macromol ; 254(Pt 3): 127651, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949265

ABSTRACT

Four new nitrogen-containing heterocyclic derivatives (acridine, quinoline, indole, pyridine) were synthesized and their biological properties were evaluated. The compounds showed affinity for DNA and HSA, with CAIC and CAAC displaying higher binding constants (Kb) of 9.54 × 104 and 1.06 × 106, respectively. The fluorescence quenching assay (Ksv) revealed suppression values ranging from 0.34 to 0.64 × 103 M-1 for ethidium bromide (EB) and 0.1 to 0.34 × 103 M-1 for acridine orange (AO). Molecular docking confirmed the competition of the derivatives with intercalation probes at the same binding site. At 10 µM concentrations, the derivatives inhibited topoisomerase IIα activity. In the antiproliferative assays, the compounds demonstrated activity against MCF-7 and T47-D tumor cells and nonhemolytic profile. Regarding toxicity, no acute effects were observed in the embryos. However, some compounds caused enzymatic and cardiac changes, particularly the CAIC, which increased SOD activity and altered heart rate compared to the control. These findings suggest potential antitumor action of the derivatives and indicate that substituting the acridine core with different cores does not interfere with their interaction and topoisomerase inhibition. Further investigations are required to assess possible toxicological effects, including reactive oxygen species generation.


Subject(s)
Antineoplastic Agents , Topoisomerase Inhibitors , Topoisomerase Inhibitors/pharmacology , Topoisomerase Inhibitors/chemistry , Structure-Activity Relationship , Molecular Docking Simulation , Antineoplastic Agents/chemistry , DNA/chemistry , Intercalating Agents/pharmacology , Acridines/pharmacology , Acridines/chemistry , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Structure
2.
Anticancer Res ; 40(9): 5049-5057, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32878793

ABSTRACT

BACKGROUND/AIM: Studies with acridine compounds have reported anticancer effects. Herein, we evaluated the toxicity and antitumor effect of the (E)-1'-((4-chlorobenzylidene)amino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-06), a promising anticancer spiro-acridine compound. MATERIALS AND METHODS: The toxicity of AMTAC-06 was evaluated on zebrafish and mice. Antitumor activity was assessed in Ehrlich ascites carcinoma model. Effects on angiogenesis, cytokine levels and cell cycle were also investigated. RESULTS: AMTAC-06 did not induce toxicity on zebrafish and mice (LD50 approximately 5000 mg/kg, intraperitoneally). No genotoxicity was observed on micronucleus assay. AMTAC-06 significantly reduced the total viable Ehrlich tumor cells and increased sub-G1 peak, suggesting apoptosis was triggered. Moreover, the compound significantly decreased the density of peritumoral microvessels, indicating an anti-angiogenic action, possibly dependent on the cytokine modulation (TNF-α, IL-1ß and IFN-γ). No significant toxicological effects were recorded for AMTAC-06 on tumor transplanted animals. CONCLUSION: AMTAC-06 has low toxicity and a significant antitumor activity.


Subject(s)
Acridines/pharmacology , Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Immunologic Factors/pharmacology , Spiro Compounds/pharmacology , Acridines/chemistry , Angiogenesis Inhibitors/chemistry , Animals , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cytokines/metabolism , Disease Models, Animal , Humans , Immunologic Factors/chemistry , Immunomodulation/drug effects , Mice , Molecular Structure , Spiro Compounds/chemistry , Xenograft Model Antitumor Assays , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL