Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BioTech (Basel) ; 13(2)2024 May 25.
Article in English | MEDLINE | ID: mdl-38921048

ABSTRACT

Candida species are frequently implicated in the development of both superficial and invasive fungal infections, which can impact vital organs. In the quest for novel strategies to combat fungal infections, there has been growing interest in exploring synthetic and semi-synthetic products, particularly chromone derivatives, renowned for their antimicrobial properties. In the analysis of the antifungal activity of the compound (E)-benzylidene-chroman-4-one against Candida, in silico and laboratory tests were performed to predict possible mechanisms of action pathways, and in vitro tests were performed to determine antifungal activity (MIC and MFC), to verify potential modes of action on the fungal cell membrane and wall, and to assess cytotoxicity in human keratinocytes. The tested compound exhibited predicted affinity for all fungal targets, with the highest predicted affinity observed for thymidylate synthase (-102.589 kJ/mol). MIC and CFM values ranged from 264.52 µM (62.5 µg/mL) to 4232.44 µM (1000 µg/mL). The antifungal effect likely occurs due to the action of the compound on the plasma membrane. Therefore, (E)-benzylidene-chroman-4-one showed fungicidal-like activity against Candida spp., possibly targeting the plasma membrane.

2.
ChemMedChem ; 19(15): e202400135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38687623

ABSTRACT

Tetrahydrolinalool (THL) is an acyclic monoterpene alcohol, produced during linalol metabolism and also a constituent of essential oils. As described in the literature, many monoterpenes present anticonvulsant properties, and thus we became interested in evaluating the anticonvulsant activity of Tetrahydrolinalool using in mice model as well as in silico approaches. Our results demonstrated that THL increased latency to seizure onset and also reduced the mortality, in picrotoxin induced seizure tests. The results may be related to GABAergic regulation, which was also suggested in seizure testing induced by 3-mercapto-propionic acid. In the strychnine-induced seizure testing, none of the groups pretreated with THL modulated the parameters indicative of anticonvulsant effect. The electrophysiological results revealed that THL treatment reduces seizures induced by pentylenetetrazole. The in silico molecular docking studies showed that the interaction between THL and a GABAA receptor model formed a stable complex, in comparison to the crystaligraphic structure of diazepam, a structurally related ligand. In conclusion, all the evidences showed that THL presents effective anticonvulsant activity related to the GABAergic pathway, being a candidate for treatment of epileptic syndromes.


Subject(s)
Acyclic Monoterpenes , Anticonvulsants , Molecular Docking Simulation , Monoterpenes , Pentylenetetrazole , Seizures , Anticonvulsants/pharmacology , Anticonvulsants/chemistry , Anticonvulsants/chemical synthesis , Animals , Mice , Seizures/drug therapy , Monoterpenes/pharmacology , Monoterpenes/chemistry , Monoterpenes/chemical synthesis , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/chemical synthesis , Male , Receptors, GABA-A/metabolism , Receptors, GABA-A/chemistry , Structure-Activity Relationship , Behavior, Animal/drug effects , Picrotoxin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL