ABSTRACT
Breast cancer (BC) comprises multiple distinct subtypes that differ genetically, pathologically, and clinically. Here, we describe a robust protocol for long-term culturing of human mammary epithelial organoids. Using this protocol, >100 primary and metastatic BC organoid lines were generated, broadly recapitulating the diversity of the disease. BC organoid morphologies typically matched the histopathology, hormone receptor status, and HER2 status of the original tumor. DNA copy number variations as well as sequence changes were consistent within tumor-organoid pairs and largely retained even after extended passaging. BC organoids furthermore populated all major gene-expression-based classification groups and allowed in vitro drug screens that were consistent with in vivo xeno-transplantations and patient response. This study describes a representative collection of well-characterized BC organoids available for cancer research and drug development, as well as a strategy to assess in vitro drug response in a personalized fashion.
Subject(s)
Breast Neoplasms/pathology , Genetic Heterogeneity , Organoids/pathology , Tissue Banks , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/genetics , Cells, Cultured , Drug Screening Assays, Antitumor/methods , Female , Humans , Mice , Mice, Nude , Organoids/drug effects , Precision Medicine/methodsABSTRACT
Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy.
Subject(s)
Liver/cytology , Organ Culture Techniques , Animals , Genomic Instability , Hepatocytes/cytology , Humans , Mice , Organoids/cytologyABSTRACT
Invertebrate model systems are powerful tools for studying human disease owing to their genetic tractability and ease of screening. We conducted a mosaic genetic screen of lethal mutations on the Drosophila X chromosome to identify genes required for the development, function, and maintenance of the nervous system. We identified 165 genes, most of whose function has not been studied in vivo. In parallel, we investigated rare variant alleles in 1,929 human exomes from families with unsolved Mendelian disease. Genes that are essential in flies and have multiple human homologs were found to be likely to be associated with human diseases. Merging the human data sets with the fly genes allowed us to identify disease-associated mutations in six families and to provide insights into microcephaly associated with brain dysgenesis. This bidirectional synergism between fly genetics and human genomics facilitates the functional annotation of evolutionarily conserved genes involved in human health.
Subject(s)
Disease/genetics , Drosophila melanogaster/genetics , Genetic Testing , Inheritance Patterns , RNA Interference , Animals , Disease Models, Animal , Humans , X ChromosomeABSTRACT
Pangenome graphs can represent all variation between multiple reference genomes, but current approaches to build them exclude complex sequences or are based upon a single reference. In response, we developed the PanGenome Graph Builder, a pipeline for constructing pangenome graphs without bias or exclusion. The PanGenome Graph Builder uses all-to-all alignments to build a variation graph in which we can identify variation, measure conservation, detect recombination events and infer phylogenetic relationships.
ABSTRACT
Organoids are self-organizing 3D structures grown from stem cells that recapitulate essential aspects of organ structure and function. Here, we describe a method to establish long-term-expanding human airway organoids from broncho-alveolar resections or lavage material. The pseudostratified airway organoids consist of basal cells, functional multi-ciliated cells, mucus-producing secretory cells, and CC10-secreting club cells. Airway organoids derived from cystic fibrosis (CF) patients allow assessment of CFTR function in an organoid swelling assay. Organoids established from lung cancer resections and metastasis biopsies retain tumor histopathology as well as cancer gene mutations and are amenable to drug screening. Respiratory syncytial virus (RSV) infection recapitulates central disease features, dramatically increases organoid cell motility via the non-structural viral NS2 protein, and preferentially recruits neutrophils upon co-culturing. We conclude that human airway organoids represent versatile models for the in vitro study of hereditary, malignant, and infectious pulmonary disease.
Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cystic Fibrosis/pathology , Epithelial Cells/pathology , Organ Culture Techniques/methods , Organoids/pathology , Respiratory Syncytial Virus Infections/pathology , Respiratory System/pathology , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cells, Cultured , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Drug Screening Assays, Antitumor , Epithelial Cells/metabolism , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Organoids/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/isolation & purification , Respiratory System/metabolism , Xenograft Model Antitumor AssaysABSTRACT
BACKGROUND: Genomic technologies have become routine in the surveillance and monitoring of the coronavirus disease 2019 (COVID-19) pandemic, as evidenced by the millions of SARS-CoV-2 sequences uploaded to international databases. Yet the ways in which these technologies have been applied to manage the pandemic are varied. MAIN TEXT: Aotearoa New Zealand was one of a small number of countries to adopt an elimination strategy for COVID-19, establishing a managed isolation and quarantine system for all international arrivals. To aid our response, we rapidly set up and scaled our use of genomic technologies to help identify community cases of COVID-19, to understand how they had arisen, and to determine the appropriate action to maintain elimination. Once New Zealand pivoted from elimination to suppression in late 2021, our genomic response changed to focusing on identifying new variants arriving at the border, tracking their incidence around the country, and examining any links between specific variants and increased disease severity. Wastewater detection, quantitation and variant detection were also phased into the response. Here, we explore New Zealand's genomic journey through the pandemic and provide a high-level overview of the lessons learned and potential future capabilities to better prepare for future pandemics. CONCLUSIONS: Our commentary is aimed at health professionals and decision-makers who might not be familiar with genetic technologies, how they can be used, and why this is an area with great potential to assist in disease detection and tracking now and in the future.
Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Genomics , New Zealand/epidemiology , Pandemics , SARS-CoV-2/geneticsABSTRACT
Canonical Wnt signaling plays a key role during organ development, homeostasis and regeneration and these processes are conserved between invertebrates and vertebrates. Mutations in Wnt pathway components are commonly found in various types of cancer. Upon activation of canonical Wnt signaling, ß-catenin binds in the nucleus to members of the TCF-LEF family and activates the transcription of target genes. Multiple Wnt target genes, including Lgr5/LGR5 and Axin2/AXIN2, have been identified in mouse models and human cancer cell lines. Here we set out to identify the transcriptional targets of Wnt signaling in five human tissues using organoid technology. Organoids are derived from adult stem cells and recapitulate the functionality as well as the structure of the original tissue. Since the Wnt pathway is critical to maintain the organoids from the human intestine, colon, liver, pancreas and stomach, organoid technology allows us to assess Wnt target gene expression in a human wildtype situation. We performed bulk mRNA sequencing of organoids immediately after inhibition of Wnt pathway and identified 41 genes as commonly regulated genes in these tissues. We also identified large numbers of target genes specific to each tissue. One of the shared target genes is TEAD4, a transcription factor driving expression of YAP/TAZ signaling target genes. In addition to TEAD4, we identified a variety of genes which encode for proteins that are involved in Wnt-independent pathways, implicating the possibility of direct crosstalk between Wnt signaling and other pathways. Collectively, this study identified tissue-specific and common Wnt target gene signatures and provides evidence for a conserved role for these Wnt targets in different tissues.
Subject(s)
Digestive System/cytology , Gene Expression Regulation, Developmental , Organoids/metabolism , Wnt Signaling Pathway , Adult , Digestive System/embryology , Digestive System/metabolism , Endoderm , Gene Expression Profiling , Humans , Organ SpecificityABSTRACT
In New Zealand, international arrivals are quarantined and undergo severe acute respiratory syndrome coronavirus 2 screening; those who test positive are transferred to a managed isolation facility (MIF). Solo traveler A and person E from a 5-person travel group (BCDEF) tested positive. After transfer to the MIF, person A and group BCDEF occupied rooms >2 meters apart across a corridor. Persons B, C, and D subsequently tested positive; viral sequences matched A and were distinct from E. The MIF was the only shared location of persons A and B, C, and D, and they had no direct contact. Security camera footage revealed 4 brief episodes of simultaneous door opening during person A's infectious period. This public health investigation demonstrates transmission from A to B, C, and D while in the MIF, with airborne transmission the most plausible explanation. These findings are of global importance for coronavirus disease public health interventions and infection control practices.
Subject(s)
Air Microbiology , COVID-19 , SARS-CoV-2 , COVID-19/transmission , Humans , New Zealand/epidemiology , QuarantineABSTRACT
Recent data showed that cancer cells from different tumor subtypes with distinct metastatic potential influence each other's metastatic behavior by exchanging biomolecules through extracellular vesicles (EVs). However, it is debated how small amounts of cargo can mediate this effect, especially in tumors where all cells are from one subtype, and only subtle molecular differences drive metastatic heterogeneity. To study this, we have characterized the content of EVs shed in vivo by two clones of melanoma (B16) tumors with distinct metastatic potential. Using the Cre-LoxP system and intravital microscopy, we show that cells from these distinct clones phenocopy their migratory behavior through EV exchange. By tandem mass spectrometry and RNA sequencing, we show that EVs shed by these clones into the tumor microenvironment contain thousands of different proteins and RNAs, and many of these biomolecules are from interconnected signaling networks involved in cellular processes such as migration. Thus, EVs contain numerous proteins and RNAs and act on recipient cells by invoking a multi-faceted biological response including cell migration.
Subject(s)
Cell Movement/physiology , Extracellular Vesicles/metabolism , Melanoma, Experimental/pathology , Animals , Cell Line, Tumor , Mice , Neoplasm Metastasis/pathology , RNA, Messenger/genetics , Signal Transduction/physiology , Tumor Microenvironment/physiologyABSTRACT
Nucleotide excision repair (NER) is one of the main DNA repair pathways that protect cells against genomic damage. Disruption of this pathway can contribute to the development of cancer and accelerate aging. Mutational characteristics of NER-deficiency may reveal important diagnostic opportunities, as tumors deficient in NER are more sensitive to certain treatments. Here, we analyzed the genome-wide somatic mutational profiles of adult stem cells (ASCs) from NER-deficient Ercc1 -/Δ mice. Our results indicate that NER-deficiency increases the base substitution load twofold in liver but not in small intestinal ASCs, which coincides with the tissue-specific aging pathology observed in these mice. Moreover, NER-deficient ASCs of both tissues show an increased contribution of Signature 8 mutations, which is a mutational pattern with unknown etiology that is recurrently observed in various cancer types. The scattered genomic distribution of the base substitutions indicates that deficiency of global-genome NER (GG-NER) underlies the observed mutational consequences. In line with this, we observe increased Signature 8 mutations in a GG-NER-deficient human organoid culture, in which XPC was deleted using CRISPR-Cas9 gene-editing. Furthermore, genomes of NER-deficient breast tumors show an increased contribution of Signature 8 mutations compared with NER-proficient tumors. Elevated levels of Signature 8 mutations could therefore contribute to a predictor of NER-deficiency based on a patient's mutational profile.
Subject(s)
DNA Repair/genetics , Mutation , Neoplasms/genetics , Adult Stem Cells , Animals , Breast Neoplasms/genetics , Cohort Studies , DNA Mutational Analysis , DNA, Neoplasm , DNA-Binding Proteins/genetics , Endonucleases/genetics , Female , Humans , Mice , Organoids , Tissue Culture Techniques , Whole Genome SequencingABSTRACT
The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.
Subject(s)
Adult Stem Cells/metabolism , Aging/genetics , Mutation Accumulation , Mutation Rate , Organ Specificity , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Colon/metabolism , DNA Mutational Analysis , Female , Genes, Neoplasm/genetics , Humans , Incidence , Intestine, Small/metabolism , Liver/metabolism , Male , Mice , Middle Aged , Multipotent Stem Cells/metabolism , Neoplasms/epidemiology , Neoplasms/genetics , Organoids/metabolism , Point Mutation/genetics , Young AdultABSTRACT
Since severe acute respiratory syndrome coronavirus 2 was first eliminated in New Zealand in May 2020, a total of 13 known coronavirus disease (COVID-19) community outbreaks have occurred, 2 of which led health officials to issue stay-at-home orders. These outbreaks originated at the border via isolating returnees, airline workers, and cargo vessels. Because a public health system was informed by real-time viral genomic sequencing and complete genomes typically were available within 12 hours of community-based positive COVID-19 test results, every outbreak was well-contained. A total of 225 community cases resulted in 3 deaths. Real-time genomics were essential for establishing links between cases when epidemiologic data could not do so and for identifying when concurrent outbreaks had different origins.
Subject(s)
COVID-19 , Viruses , Genomics , Humans , New Zealand/epidemiology , SARS-CoV-2ABSTRACT
The strategy in New Zealand (Aotearoa) to eliminate coronavirus disease requires that international arrivals undergo managed isolation and quarantine and mandatory testing for severe acute respiratory syndrome coronavirus 2. Combining genomic and epidemiologic data, we investigated the origin of an acute case of coronavirus disease identified in the community after the patient had spent 14 days in managed isolation and quarantine and had 2 negative test results. By combining genomic sequence analysis and epidemiologic investigations, we identified a multibranched chain of transmission of this virus, including on international and domestic flights, as well as a probable case of aerosol transmission without direct person-to-person contact. These findings show the power of integrating genomic and epidemiologic data to inform outbreak investigations.
Subject(s)
Air Travel , COVID-19 , Humans , New Zealand/epidemiology , Quarantine , SARS-CoV-2 , TravelABSTRACT
Real-time genomic sequencing has played a major role in tracking the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), contributing greatly to disease mitigation strategies. In August 2020, after having eliminated the virus, New Zealand experienced a second outbreak. During that outbreak, New Zealand used genomic sequencing in a primary role, leading to a second elimination of the virus. We generated genomes from 78% of the laboratory-confirmed samples of SARS-CoV-2 from the second outbreak and compared them with the available global genomic data. Genomic sequencing rapidly identified that virus causing the second outbreak in New Zealand belonged to a single cluster, thus resulting from a single introduction. However, successful identification of the origin of this outbreak was impeded by substantial biases and gaps in global sequencing data. Access to a broader and more heterogenous sample of global genomic data would strengthen efforts to locate the source of any new outbreaks.
Subject(s)
COVID-19 , SARS-CoV-2 , Disease Outbreaks , Genomics , Humans , New Zealand/epidemiologyABSTRACT
Since the first wave of coronavirus disease in March 2020, citizens and permanent residents returning to New Zealand have been required to undergo managed isolation and quarantine (MIQ) for 14 days and mandatory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of October 20, 2020, of 62,698 arrivals, testing of persons in MIQ had identified 215 cases of SARS-CoV-2 infection. Among 86 passengers on a flight from Dubai, United Arab Emirates, that arrived in New Zealand on September 29, test results were positive for 7 persons in MIQ. These passengers originated from 5 different countries before a layover in Dubai; 5 had negative predeparture SARS-CoV-2 test results. To assess possible points of infection, we analyzed information about their journeys, disease progression, and virus genomic data. All 7 SARS-CoV-2 genomes were genetically identical, except for a single mutation in 1 sample. Despite predeparture testing, multiple instances of in-flight SARS-CoV-2 transmission are likely.
Subject(s)
Aircraft , COVID-19 , Quarantine , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/transmission , Humans , Masks , New Zealand , Physical Distancing , SARS-CoV-2/classification , United Arab EmiratesABSTRACT
Intrinsic and/or acquired resistance represents one of the great challenges in targeted cancer therapy. A deeper understanding of the molecular biology of cancer has resulted in more efficient strategies, where one or multiple drugs are adopted in novel therapies to tackle resistance. This beneficial effect of using combination treatments has also been observed in colorectal cancer patients harboring the BRAF(V600E) mutation, whereby dual inhibition of BRAF(V600E) and EGFR increases antitumor activity. Notwithstanding this success, it is not clear whether this combination treatment is the only or most effective treatment to block intrinsic resistance to BRAF inhibitors. Here, we investigate molecular responses upon single and multi-target treatments, over time, using BRAF(V600E) mutant colorectal cancer cells as a model system. Through integration of transcriptomic, proteomic and phosphoproteomics data we obtain a comprehensive overview, revealing both known and novel responses. We primarily observe widespread up-regulation of receptor tyrosine kinases and metabolic pathways upon BRAF inhibition. These findings point to mechanisms by which the drug-treated cells switch energy sources and enter a quiescent-like state as a defensive response, while additionally compensating for the MAPK pathway inhibition.
Subject(s)
Colorectal Neoplasms/pathology , ErbB Receptors/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Systems Biology/methods , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Down-Regulation/drug effects , Drug Synergism , ErbB Receptors/metabolism , Feedback, Physiological , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockout Techniques , Humans , MAP Kinase Signaling System/drug effects , Models, Biological , Mutation/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-akt/metabolismABSTRACT
In the adenoma-carcinoma sequence, it is proposed that intestinal polyps evolve through a set of defined mutations toward metastatic colorectal cancer (CRC). Here, we dissect this adenoma-carcinoma sequence in vivo by using an orthotopic organoid transplantation model of human colon organoids engineered to harbor different CRC mutation combinations. We demonstrate that sequential accumulation of oncogenic mutations in Wnt, EGFR, P53, and TGF-ß signaling pathways facilitates efficient tumor growth, migration, and metastatic colonization. We show that reconstitution of specific niche signals can restore metastatic growth potential of tumor cells lacking one of the oncogenic mutations. Our findings imply that the ability to metastasize-i.e., to colonize distant sites-is the direct consequence of the loss of dependency on specific niche signals.
Subject(s)
Colorectal Neoplasms/genetics , Organoids/transplantation , Adult , Animals , Cell Movement , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/physiopathology , Disease Models, Animal , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic , Genetic Engineering , Humans , Male , Mice , Mice, Inbred NOD , Middle Aged , Mutation , Neoplasm Metastasis/genetics , Neoplastic Processes , Organoids/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolismABSTRACT
Linkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncating mutation, c.286_303delinsT (p.Ser96Ter), in KITLG. This mutation co-segregated with NS-UHL/AHL as a dominant trait with reduced penetrance. By screening a panel of probands with NS-UHL/AHL, we found an additional mutation, c.200_202del (p.His67_Cys68delinsArg). In vitro studies revealed that the p.His67_Cys68delinsArg transmembrane isoform of KITLG is not detectable at the cell membrane, supporting pathogenicity. KITLG encodes a ligand for the KIT receptor. Also, KITLG-KIT signaling and MITF are suggested to mutually interact in melanocyte development. Because mutations in MITF are causative of Waardenburg syndrome type 2 (WS2), we screened KITLG in suspected WS2-affected probands. A heterozygous missense mutation, c.310C>G (p.Leu104Val), that segregated with WS2 was identified in a small family. In vitro studies revealed that the p.Leu104Val transmembrane isoform of KITLG is located at the cell membrane, as is wild-type KITLG. However, in culture media of transfected cells, the p.Leu104Val soluble isoform of KITLG was reduced, and no soluble p.His67_Cys68delinsArg and p.Ser96Ter KITLG could be detected. These data suggest that mutations in KITLG associated with NS-UHL/AHL have a loss-of-function effect. We speculate that the mechanism of the mutation underlying WS2 and leading to membrane incorporation and reduced secretion of KITLG occurs via a dominant-negative or gain-of-function effect. Our study unveils different phenotypes associated with KITLG, previously associated with pigmentation abnormalities, and will thereby improve the genetic counseling given to individuals with KITLG variants.
Subject(s)
Genetic Linkage , Hearing Loss, Unilateral/genetics , Mutation/genetics , Stem Cell Factor/genetics , Waardenburg Syndrome/genetics , Alleles , Animals , Female , Fluorescent Antibody Technique , Hearing Loss, Unilateral/metabolism , Hearing Loss, Unilateral/pathology , Humans , Male , Mice , NIH 3T3 Cells , Pedigree , Phenotype , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Waardenburg Syndrome/metabolism , Waardenburg Syndrome/pathologyABSTRACT
Optic nerve atrophy and hypoplasia can be primary disorders or can result from trans-synaptic degeneration arising from cerebral visual impairment (CVI). Here we report six individuals with CVI and/or optic nerve abnormalities, born after an uneventful pregnancy and delivery, who have either de novo heterozygous missense mutations in NR2F1, also known as COUP-TFI, or deletions encompassing NR2F1. All affected individuals show mild to moderate intellectual impairment. NR2F1 encodes a nuclear receptor protein that regulates transcription. A reporter assay showed that missense mutations in the zinc-finger DNA-binding domain and the putative ligand-binding domain decrease NR2F1 transcriptional activity. These findings indicate that NR2F1 plays an important role in the neurodevelopment of the visual system and that its disruption can lead to optic atrophy with intellectual disability.
Subject(s)
COUP Transcription Factor I/genetics , Intellectual Disability/genetics , Optic Atrophy/genetics , Adolescent , Adult , Amino Acid Sequence , COUP Transcription Factor I/metabolism , Child , Child, Preschool , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Genotype , Humans , Intellectual Disability/pathology , Male , Molecular Sequence Data , Mutation, Missense , Optic Atrophy/pathology , Phenotype , Young Adult , Zinc Fingers/geneticsABSTRACT
Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1.