Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Virol ; 94(4)2020 01 31.
Article in English | MEDLINE | ID: mdl-31748390

ABSTRACT

Measles virus (MeV), like all viruses of the order Mononegavirales, utilizes a complex consisting of genomic RNA, nucleoprotein, the RNA-dependent RNA polymerase, and a polymerase cofactor, the phosphoprotein (P), for transcription and replication. We previously showed that a recombinant MeV that does not express another viral protein, C, has severe transcription and replication deficiencies, including a steeper transcription gradient than the parental virus and generation of defective interfering RNA. This virus is attenuated in vitro and in vivo However, how the C protein operates and whether it is a component of the replication complex remained unclear. Here, we show that C associates with the ribonucleocapsid and forms a complex that can be purified by immunoprecipitation or ultracentrifugation. In the presence of detergent, the C protein is retained on purified ribonucleocapsids less efficiently than the P protein and the polymerase. The C protein is recruited to the ribonucleocapsid through its interaction with the P protein, as shown by immunofluorescence microscopy of cells expressing different combinations of viral proteins and by split luciferase complementation assays. Forty amino-terminal C protein residues are dispensable for the interaction with P, and the carboxyl-terminal half of P is sufficient for the interaction with C. Thus, the C protein, rather than being an "accessory" protein as qualified in textbooks so far, is a ribonucleocapsid-associated protein that interacts with P, thereby increasing replication accuracy and processivity of the polymerase complex.IMPORTANCE Replication of negative-strand RNA viruses relies on two components: a helical ribonucleocapsid and an RNA-dependent RNA polymerase composed of a catalytic subunit, the L protein, and a cofactor, the P protein. We show that the measles virus (MeV) C protein is an additional component of the replication complex. We provide evidence that the C protein is recruited to the ribonucleocapsid by the P protein and map the interacting segments of both C and P proteins. We conclude that the primary function of MeV C is to improve polymerase processivity and accuracy, rather than uniquely to antagonize the type I interferon response. Since most viruses of the Paramyxoviridae family express C proteins, their primary function may be conserved.


Subject(s)
Measles virus/metabolism , Nucleoproteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Proteins/genetics , Animals , Carrier Proteins , Cell Line , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Measles/virology , Measles virus/genetics , Nucleocapsid Proteins , Nucleoproteins/metabolism , Phosphoproteins/metabolism , Protein Binding , RNA-Dependent RNA Polymerase/metabolism , Vero Cells , Viral Nonstructural Proteins/physiology , Viral Proteins/metabolism , Virus Activation/genetics , Virus Replication/genetics
2.
PLoS One ; 18(11): e0294262, 2023.
Article in English | MEDLINE | ID: mdl-38033116

ABSTRACT

Quantifying neutralising capacity of circulating SARS-COV-2 antibodies is critical in evaluating protective humoral immune responses generated post-infection/post-vaccination. Here we describe a novel medium-throughput flow cytometry-based micro-neutralisation test to evaluate Neutralising Antibody (NAb) responses against live SARS-CoV-2 Wild Type and Variants of Concern (VOC) in convalescent/vaccinated populations. Flow Cytometry-Based Micro-Neutralisation Test (Micro-NT) was performed in 96-well plates using clinical isolates WT-B, WT-B.1.177.18 and/or VOCs Beta and Omicron. Plasma samples (All Ireland Infectious Diseases (AIID) Cohort) were serially diluted (8 points, half-log) from 1:20 and pre-incubated with SARS-CoV-2 (1h, 37°C). Virus-plasma mixture were added onto Vero E6 or Vero E6/TMPRSS2 cells for 18h. Percentage infected cells was analysed by automated flow cytometry following trypsinisation, fixation and SARS-CoV-2 Nucleoprotein intracellular staining. Half-maximal Neutralisation Titres (NT50) were determined using non-linear regression. Our assay was compared to Plaque Reduction Neutralisation Test (PRNT) and validated against the First WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Both Micro-NT and PRNT achieved comparable NT50 values. Further validation showed adequate correlation with PRNT using a panel of secondary standards of clinical convalescent and vaccinated plasma samples. We found the assay to be reproducible through measuring both repeatability and intermediate precision. Screening 190 convalescent samples and 11 COVID-19 naive controls (AIID cohort) we demonstrated that Micro-NT has broad dynamic range differentiating NT50s <1/20 to >1/5000. We could also characterise immune-escape VOC Beta and Omicron BA.5, achieving fold-reductions in neutralising capacity similar to those published. Our flow cytometry-based Micro-NT is a robust and reliable assay to quantify NAb titres, and has been selected as an endpoint in clinical trials.


Subject(s)
COVID-19 , Vaccines , Humans , Flow Cytometry , SARS-CoV-2 , Neutralization Tests , Antibodies, Neutralizing , Antibodies, Viral
3.
Sci Rep ; 9(1): 6243, 2019 04 18.
Article in English | MEDLINE | ID: mdl-31000788

ABSTRACT

Hepatitis E Virus (HEV) genome encodes three proteins including the ORF2 capsid protein. Recently, we demonstrated that HEV produces three different forms of ORF2: (i) the ORF2i form (infectious ORF2) which is the component of infectious particles, (ii) the secreted ORF2g (glycosylated ORF2) and ORF2c (cleaved ORF2) forms that are not associated with infectious particles, but are the major antigens in HEV-infected patient sera. The ORF2 protein sequence contains three highly conserved potential N-glycosylation sites (N1, N2 and N3). The status and biological relevance of ORF2 N-glycosylation in HEV lifecycle remain to be elucidated. Here, we generated and extensively characterized a series of ORF2 mutants in which the three N-glycosylation sites were mutated individually or in combination. We demonstrated that the ORF2g/c protein is N-glycosylated on N1 and N3 sites but not on the N2 site. We showed that N-glycosylation of ORF2 protein does not play any role in replication and assembly of infectious HEV particles. We found that glycosylated ORF2g/c forms are very stable proteins which are targeted by patient antibodies. We also demonstrated that the ORF2i protein is translocated into the nucleus of infected cells. Hence, our study led to new insights into the molecular mechanisms of ORF2 expression.


Subject(s)
Hepatitis E virus/pathogenicity , Viral Proteins/chemistry , Viral Proteins/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Cell Nucleus/metabolism , Cell Nucleus/virology , Glycosylation , Hepatitis E virus/genetics , Hepatitis E virus/physiology , Host-Pathogen Interactions , Humans , Mutation , Protein Sorting Signals , Protein Stability , Viral Proteins/genetics , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL