Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Neurosurg Focus ; 56(4): E7, 2024 04.
Article in English | MEDLINE | ID: mdl-38560942

ABSTRACT

OBJECTIVE: The superior eyelid endoscopic transorbital approach (SETOA) provides a direct and short minimally invasive route to the anterior and middle skull base. Nevertheless, it uses a narrow corridor that limits its angles of attack. The aim of this study was to evaluate the feasibility and potential benefits of an "extended" conservative variant of the "standard" endoscopic transorbital approach-termed "open-door"-to enhance the exposure of lesions affecting the paramedian aspect of the anterior and middle cranial fossae. METHODS: First, the authors described the technical nuances of the open-door extended transorbital approach (ODETA). Next, they documented its morphometric advantages over standard SETOA. Finally, they provided a clinical-anatomical application to demonstrate enhanced exposure and better angles of attack to treat lesions occupying the paramedian anterior and middle cranial fossae. Five adult cadaveric specimens (10 sides) initially underwent standard SETOA and then extended open-door SETOA (ODETA to the paramedian anterior and middle fossae). The adjunct of hinge-orbitotomy, through three surgical steps and straddling the frontozygomatic suture, converted conventional SETOA to its extended open-door variant. CT scans were performed before dissection and uploaded to the neuronavigation system for quantitative analysis. The angles of attack on the axial plane that addressed four key landmarks, namely the tip of the anterior clinoid process (ACP), foramen rotundum (FR), foramen ovale (FO), and trigeminal impression (TI), were calculated for both operative techniques and compared. RESULTS: Hinge-orbitotomy of the extended open-door SETOA resulted in several surgical, functional, and esthetic advantages: it provided wider axial angles of attack for each of the target points, with a gain angle of 26.68° ± 1.31° for addressing the ACP (p < 0.001), 29.50° ± 2.46° for addressing the FR (p < 0.001), 19.86° ± 1.98° for addressing the FO (p < 0.001), and 17.44° ± 2.21° for addressing the lateral aspect of the TI (p < 0.001), while hiding the skin scar, avoiding temporalis muscle dissection, preserving flap vascularization, and decreasing the rate of bone infection and degree of orbital content retraction. CONCLUSIONS: The extended open-door technique may be specifically suited for selected patients affected by paramedian anterior and middle fossae lesions, with prevalent anteromedial extension toward the anterior clinoid, the foremost compartment of the cavernous sinus and FR and not completely controlled with the pure endoscopic transorbital approach.


Subject(s)
Neuroendoscopy , Adult , Humans , Neuroendoscopy/methods , Cadaver , Cranial Fossa, Middle/diagnostic imaging , Cranial Fossa, Middle/surgery , Skull Base/surgery , Neurosurgical Procedures/methods
2.
Acta Neurochir (Wien) ; 166(1): 378, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316122

ABSTRACT

OBJECTIVES: A deep knowledge of the surgical anatomy of the target area is mandatory for a successful operative procedure. For this purpose, over the years, many teaching and learning methods have been described, from the most ancient cadaveric dissection to the most recent virtual reality, each with their respective pros and cons. Photogrammetry, an emergent technique, allows for the creation of three-dimensional (3D) models and reconstructions. Thanks to the spreading of photogrammetry nowadays it is possible to generate these models using professional software or even smartphone apps. This study aims to compare the neuroanatomical photogrammetric models generated by the two most utilized smartphone applications in this domain, Metascan and 3D-Scanner, through quantitative analysis. METHODS: Two human head specimens (four sides) were examined. Anatomical dissection was segmented into five stages to systematically expose well-defined structures. After each stage, a photogrammetric model was generated using two prominent smartphone applications. These models were then subjected to both quantitative and qualitative analysis, with a specific focus on comparing the mesh density as a measure of model resolution and accuracy. Appropriate consent was obtained for the publication of the cadaver's image. RESULTS: The quantitative analysis revealed that the models generated by Metascan app consistently demonstrated superior mesh density compared to those from 3D-Scanner, indicating a higher level of detail and potential for precise anatomical representation. CONCLUSION: Enabling depth perception, capturing high-quality images, offering flexibility in viewpoints: photogrammetry provides researchers with unprecedented opportunities to explore and understand the intricate and magnificent structure of the brain. However, it is of paramount importance to develop and apply rigorous quality control systems to ensure data integrity and reliability of findings in neurological research. This study has demonstrated the superiority of Metascan in processing photogrammetric models for neuroanatomical studies.


Subject(s)
Cadaver , Imaging, Three-Dimensional , Models, Anatomic , Photogrammetry , Smartphone , Humans , Photogrammetry/methods , Imaging, Three-Dimensional/methods , Mobile Applications , Neuroanatomy/education , Neuroanatomy/methods , Head/anatomy & histology , Head/surgery
3.
Acta Neurochir (Wien) ; 165(9): 2407-2419, 2023 09.
Article in English | MEDLINE | ID: mdl-37479917

ABSTRACT

OBJECTIVE: Neurosurgical indications for the superior eyelid transorbital endoscopic approach (SETOA) are rapidly expanding over the last years. Nevertheless, as any new technique, a detailed knowledge of the anatomy of the surgical target area, the operative corridor, and the specific surgical landmark from this different perspective is required for a safest and successful surgery. Therefore, the aim of this study is to provide, through anatomical dissections, a detailed investigation of the surgical anatomy revealed by SETOA via anterolateral triangle of the middle cranial fossa. We also sought to define the relevant surgical landmarks of this operative corridor. METHODS: Eight embalmed and injected adult cadaveric specimens (16 sides) underwent dissection and exposure of the cavernous sinus and middle cranial fossa via superior eyelid endoscopic transorbital approach. The anterolateral triangle was opened and its content exposed. An extended endoscopic endonasal trans-clival approach (EEEA) with exposure of the cavernous sinus content and skeletonization of the paraclival and parasellar segments of the internal carotid artery (ICA) was also performed, and the anterolateral triangle was exposed. Measurements of the surface area of this triangle from both surgical corridors were calculated in three head specimens using coordinates of its borders under image-guide navigation. RESULTS: The drilling of the anterolateral triangle via SETOA unfolds a space that can be divided by the course of the vidian nerve into two windows, a wider "supravidian" and a narrower "infravidian," which reveal different anatomical corridors: a "medial supravidian" and a "lateral supravidian," divided by the lacerum segment of the ICA, leading to the lower clivus, and to the medial aspect of the Meckel's cave and terminal part of the horizontal petrous ICA, respectively. The infravidian corridor leads medially into the sphenoid sinus. The arithmetic means of the accessible surface area of the anterolateral triangle were 45.48 ± 3.31 and 42.32 ± 2.17 mm2 through transorbital approach and endonasal approach, respectively. CONCLUSION: SETOA can be considered a minimally invasive route complementary to the extended endoscopic endonasal approach to the anteromedial aspect of the Meckel's cave and the foramen lacerum. The lateral loop of the trigeminal nerve represents a reliable surgical landmark to localize the lacerum segment of the ICA from this corridor. Nevertheless, as any new technique, a learning curve is needed, and the clinical feasibility should be proven.


Subject(s)
Cavernous Sinus , Adult , Humans , Cavernous Sinus/surgery , Cranial Fossa, Middle/surgery , Cranial Fossa, Posterior , Dissection , Eyelids
4.
Acta Neurochir (Wien) ; 165(7): 1821-1831, 2023 07.
Article in English | MEDLINE | ID: mdl-36752892

ABSTRACT

PURPOSE: The petroclival region represents the "Achille's heel" for the neurosurgeons. Many ventral endoscopic routes to this region, mainly performed as isolated, have been described. The aim of the present study is to verify the feasibility of a modular, combined, multiportal approach to the petroclival region to overcome the limits of a single approach, in terms of exposure and working areas, brain retraction and manipulation of neurovascular structures. METHODS: Four cadaver heads (8 sides) underwent endoscopic endonasal transclival, transorbital superior eyelid and contralateral sublabial transmaxillary-Caldwell-Luc approaches, to the petroclival region. CT scans were obtained before and after each approach to rigorously separate the contribution of each osteotomy and subsequentially to build a comprehensive 3D model of the progressively enlarged working area after each step. RESULTS: The addition of the contralateral transmaxillary and transorbital corridors to the extended endoscopic endonasal transclival in a combined multiportal approach provides complementary paramedian trajectories to overcome the natural barrier represented by the parasellar and paraclival segments of the internal carotid artery, resulting in significantly greater area of exposure than a pure endonasal midline route (8,77 cm2 and 11,14 cm2 vs 4,68 cm2 and 5,83cm2, extradural and intradural, respectively). CONCLUSION: The use of different endoscopic "head-on" trajectories can be combined in a wider multiportal extended approach to improve the ventral route to the most inaccessible petroclival regions. Finally, by combining these approaches and reiterating the importance of multiportal strategy, we quantitatively demonstrate the possibility to reach "far away" paramedian petroclival targets while preserving the neurovascular structures.


Subject(s)
Endoscopy , Nose , Humans , Feasibility Studies , Endoscopy/methods , Brain , Tomography, X-Ray Computed , Cadaver , Neurosurgical Procedures/methods , Skull Base/surgery
5.
Neurosurg Rev ; 46(1): 17, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36513789

ABSTRACT

The pattern of growth of spheno-orbital meningiomas accounts for the main presenting symptoms, such as proptosis, eye motility deficit, visual impairment, diplopia. As these are benign tumors, the postoperative patient's quality of life is an important factor to consider during the preoperative planning. A detailed literature review of superior eyelid transorbital endoscopic approach for spheno-orbital meningiomas, including our own case, was made. A Medline search up to March 2022 in PubMed online electronic database was made using the following key phrases: "superior eyelid endoscopic transorbital approach spheno-orbital meningiomas," "superior eyelid endoscopic transorbital approach," "spheno-orbital meningiomas endoscopic approach." The inclusion criteria were surgical series, reviews, and case reports in English language, as well as papers written in other languages, but including the abstract in English. Cadaveric studies, multiportal combined approaches for SOM, were excluded. The literature review has disclosed five studies for a total of 65 patients, whose demographic, clinical, pathological, surgical, complications, and outcome data were analyzed. Functional and esthetic outcome data after superior eyelid transorbital approach are the following: improvement of proptosis (100%), of visual deficits (66.66%) and of ocular paresis (75%), with only 11 complications (4 trigeminal dysesthesia, 2 CSF leak, 2 wound complications, 1 upper eyelid necrosis, 1 hemorrhage of surgical field, 1 keratitis) reported, but at the expense of extent of resection (gross total resection 33.39%). Based on the outcome data, the superior eyelid transorbital endoscopic approach results in a suitable operative technique for selected spheno-orbital meningiomas.


Subject(s)
Exophthalmos , Meningeal Neoplasms , Meningioma , Humans , Meningioma/surgery , Meningioma/complications , Quality of Life , Eyelids/surgery , Meningeal Neoplasms/surgery , Meningeal Neoplasms/complications
6.
Neurosurg Rev ; 43(2): 473-482, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30051302

ABSTRACT

The course of the internal carotid artery (ICA) and its segment classifications were reviewed by means of a new and freely available 3D interactive model of the artery and the skull base, based on human neuroimages, that can be freely downloaded at the Public Repository of the University of Barcelona (http://diposit.ub.edu/dspace/handle/2445/112442) and runs under Acrobat Reader in Mac and Windows computers and Windows 10 tablets. The 3D-PDF allows zoom, rotation, selective visualization of structures, and a predefined sequence view. Illustrative images of the different classifications were obtained. Fischer (Zentralbl Neurochir 3:300-313, 1938) described five segments in the opposite direction to the blood flow. Gibo-Rothon (J Neurosurg 55:560-574, 1981) follow the blood flow, incorporated the cervical and petrous portions, and divided the subarachnoid course-supraclinoid-in ophthalmic, communicating, and choroidal segments, enhancing transcranial microscopic approaches. Bouthillier (Neurosurgery 38:425-433, 1996) divided the petrous portion describing the lacerum segment (exposed in transfacial procedures and exploration of Meckel's cave) and added the clinoid segment between the proximal and distal dural rings, of interest in cavernous sinus surgery. The Kassam's group (2014), with an endoscopic endonasal perspective, introduces the "paraclival segment," including the "lacerum segment" and part of the intracavernous ICA, and details surgical landmarks to minimize the risk of injury. Other classifications are also analyzed. This review through an interactive 3D tool provides virtual views of the ICA and becomes an innovative perspective to the segment classifications and neuroanatomy of the ICA and surrounding structures.


Subject(s)
Angiography/methods , Carotid Artery, Internal/anatomy & histology , Carotid Artery, Internal/surgery , Carotid Artery, Internal/diagnostic imaging , Computed Tomography Angiography , Humans , Models, Anatomic , Neurosurgical Procedures , Skull Base/anatomy & histology , Skull Base/surgery
7.
Neurosurg Rev ; 42(2): 309-318, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29383601

ABSTRACT

Over the last years, fluorescence-based technology has begun an emergent intraoperative method for diagnostic confirmation of brain tumor tissue in stereotactic needle biopsy. However, the actual level of evidence is quite low, especially about fluorescein sodium (FL) application. This method needs to be further validated and better analyzed about its impact in clinical practice. Retrospective analysis of 11 cases with contrast-enhancing brain tumors, underwent awake stereotactic needle biopsy with intraoperative FL assistance (group 1), was verified under the operative microscope filter. This group was matched with a control group of 18 patients (group 2). In addition, a systematic literature review was performed in PubMed/Medline database according to PRISMA statement. All studies concerning FL or 5-ALA application in stereotactic biopsy as intraoperative confirmation of brain tumor tissue were included. The primary endpoint was the evaluation of diagnostic accuracy. In group 1, all fluorescent specimens were diagnostic. The number of samplings was the useful minimum and non-use of intraoperative neuropathological examination allowed to significantly reduce procedure time (42.09 vs 69.72 min of group 2). No complications occurred, and the average hospitalization time after procedure was 1.09 days (vs 2.33 of group 2). Literature analysis supports the usefulness of photodiagnosis and its high diagnostic yield especially at the core of high-grade/contrast-enhancing tumors. FL assistance during stereotactic biopsy of contrast-enhancing brain tumors may give a real-time confirmation of tumor tissue, maximizing the diagnostic yield, and reducing time of procedure, morbidity, and hospitalization.


Subject(s)
Biopsy, Needle/methods , Brain Neoplasms/pathology , Brain/pathology , Adult , Aged , Aminolevulinic Acid/administration & dosage , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Female , Fluorescein/administration & dosage , Fluorescence , Fluorescent Dyes/administration & dosage , Humans , Intraoperative Period , Male , Microscopy , Middle Aged , Retrospective Studies , Stereotaxic Techniques
8.
Neurosurg Rev ; 41(4): 985-998, 2018 Oct.
Article in English | MEDLINE | ID: mdl-28477043

ABSTRACT

During the last 10 years, microscope-integrated indocyanine green fluorescence (m-ICG) has been widely used for assessing real-time blood flow during aneurysm surgery. More recently, an endoscope-integrated indocyanine green fluorescence (e-ICG) has been adopted as a versatile tool during different endoscopic neurosurgical procedures. The purpose of the present report is to evaluate multimodal applications of e-ICG during different endonasal, intraventricular, aneurysm and brain tumor surgeries and provide technical nuances. In addition, we reviewed the literature and identified and compare several overlapping case series of patients treated via an endoscopic integrated indocyanine green fluorescence technique. A total of 40 patients were retrospectively evaluated. Patients were divided into four main groups: (1) endoscopic endonasal approaches (n = 14); (2) ventricular endoscopic approach including patients undergoing third ventriculostomy (n = 8) and tumor biopsy (n = 1); (3) aneurysms surgery (n = 9); and (4) brain parenchymal tumors (n = 8). All patients were successfully treated using the e-ICG dynamic endoscopic visualization, and there were no perioperative complications. Such unique features open up a promising field of applications beyond the use of m-ICG in different surgical field due to the longer duration of e-ICG fluorescence up to 35 ± 7 min. E-ICG represents a new and effective technique for longer real-time visualization of vascular structures preserving normal tissues and functions during different transcranial and endonasal approaches. As the technology and e-ICG resolution improves, the technique has the potential to become a critical tool for different applications in neurosurgery.


Subject(s)
Coloring Agents , Endoscopy/methods , Indocyanine Green , Multimodal Imaging/methods , Neurosurgical Procedures/methods , Animals , Brain/diagnostic imaging , Brain/surgery , Humans , Third Ventricle/diagnostic imaging , Third Ventricle/surgery
9.
J Med Syst ; 42(4): 72, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29508089

ABSTRACT

We describe a new and freely available 3D interactive model of the intracranial internal carotid artery (ICA) and the skull base that also allows to display and compare its main segment classifications. High-resolution 3D human angiography (isometric voxel's size 0.36 mm) and Computed Tomography angiography images were exported to Virtual Reality Modeling Language (VRML) format for processing in a 3D software platform and embedding in a 3D Portable Document Format (PDF) document that can be freely downloaded at http://diposit.ub.edu/dspace/handle/2445/112442 and runs under Acrobat Reader on Mac and Windows computers and Windows 10 tablets. The 3D-PDF allows for visualisation and interaction through JavaScript-based functions (including zoom, rotation, selective visualization and transparentation of structures or a predefined sequence view of the main segment classifications if desired). The ICA and its main branches and loops, the Gasserian ganglion, the petrolingual ligament and the proximal and distal dural rings within the skull base environment (anterior and posterior clinoid processes, silla turcica, ethmoid and sphenoid bones, orbital fossae) may be visualized from different perspectives. This interactive 3D-PDF provides virtual views of the ICA and becomes an innovative tool to improve the understanding of the neuroanatomy of the ICA and surrounding structures.


Subject(s)
Carotid Artery, Internal/anatomy & histology , Computed Tomography Angiography/methods , Imaging, Three-Dimensional/methods , Models, Anatomic , Computer Simulation , Humans , Skull Base/anatomy & histology
10.
Acta Neurochir (Wien) ; 158(8): 1605-16, 2016 08.
Article in English | MEDLINE | ID: mdl-27278644

ABSTRACT

BACKGROUND: The evolution of skull base surgery over the past decade has been influenced by advancement in visualization technology. Recently, as a result of such improvements, three-dimensional (3-D) scopes have been widely used during endoscopic endonasal approaches. In the present study, we describe the use of 3-D stereoscopic endoscope for the treatment of a variety of skull base lesions. METHODS: From January 2010 to June 2015, a 3-D endoscopic endonasal approach (4 and 4.9 mm, 0°, and 30° rigid endoscopes) was performed in 70 patients with the following lesions: 42 large extrasellar pituitary macroadenomas, seven tuberculum sellae meningiomas, seven clivus chordomas, five craniopharyngiomas, three fibrous dysplasia of the clivus, three sinonasal malignancies, one orbital lymphangioma, one trigeminal neurinoma, one primary suprasellar lymphoma. RESULTS: Total tumor removal was obtained in 50 patients (71.4 %) while in 14 (20 %), subtotal removal was possible in six (8.6 %) only partial removal was achieved. Overall complications included diabetes insipidus in eight patients (11.4 %), hypopituitarism in seven patients (10 %), CSF leak in five patients (7.1 %), cranial nerve injury in two patients (2.8 %), panhypopituitarism in two patients (2.8 %), meningitis in one (1.4 %) and one postoperative central retinal artery occlusion (1.4 %). There was no mortality in the series. The mean follow-up time was 39 months (range, 6-72 months). CONCLUSIONS: In our experience, the 3-D endoscope represents a critical development in visualization, thus enabling improved hand-eye coordination and depth perception, which are mandatory for the management of complex intradural neurovascular structures during tumor removal surgery.


Subject(s)
Craniopharyngioma/surgery , Meningeal Neoplasms/surgery , Meningioma/surgery , Natural Orifice Endoscopic Surgery/methods , Neurosurgical Procedures/methods , Pituitary Neoplasms/surgery , Skull Base Neoplasms/surgery , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Natural Orifice Endoscopic Surgery/adverse effects , Nose/surgery , Postoperative Complications
SELECTION OF CITATIONS
SEARCH DETAIL