ABSTRACT
AIM: Neuronal ceroid lipofuscinosis type 2 (CLN2) disease is an autosomal recessive inherited neurodegenerative lysosomal storage disorder caused by deficient tripeptidyl peptidase 1 (TPP1) enzyme, leading to progressive deterioration of neurological functions commonly occurring in children aged 2-4 years and culminating in early death. Atypical cases associated with earlier or later symptom onset, or even protracted course, have already been reported. Such variable manifestations may constitute an additional challenge to early diagnosis and initiation of appropriate treatment. The present work aimed to analyse clinical data from a cohort of Latin American CLN2 patients with atypical phenotypes. METHODS: Experts in inborn errors of metabolism from Latin America selected patients from their centres who were deemed by the clinicians to have atypical forms of CLN2, according to the current literature on this topic and their practical experience. Clinical and genetic data from the medical records were retrospectively revised. All cases were presented and analysed by these experts at an Advisory Board Meeting in São Paulo, Brazil, in October 2018. RESULTS: Seizures, language abnormalities and behavioural disorders were found as the first manifestations, appearing at the median age of 6 years, an older age than classically described for the late infantile form. Three novel mutations were also identified. CONCLUSION: Our findings reinforce the inclusion of CLN2 in the differential diagnosis of children presenting with seizures, behavioural disorders and language abnormalities. Early diagnosis will allow early initiation of specific therapy.
Subject(s)
Neuronal Ceroid-Lipofuscinoses , Aged , Brazil , Child , Child, Preschool , Humans , Neuronal Ceroid-Lipofuscinoses/diagnosis , Neuronal Ceroid-Lipofuscinoses/genetics , Phenotype , Retrospective Studies , Tripeptidyl-Peptidase 1ABSTRACT
The aim of this study was to evaluate the oral, dental, and craniofacial features of individuals affected by the chronic forms of acid sphingomyelinase deficiency (ASMD). This study comprised a sample of adult and pediatric patients (n = 8) with chronic ASMD. The individuals underwent oral examinations to evaluate the occurrence of caries, as well as full-mouth periodontal examinations, to assess the occurrence and severity of periodontal diseases. Panoramic and profile radiographs were obtained to analyze dental conditions and craniofacial parameters. Participants also answered questionnaires to identify systemic impairment, parafunctional habits, and bruxism. Dental anomalies of size, shape, and number were found, with agenesis and microdontia being the predominant findings. The average of caries experience was 11.75 (±8.1). Only one patient had periodontal health and all adult individuals had periodontitis at different stages and degrees. Bruxism was found in 87.5% of the sample. The convex profile and maxillary and mandibular retrusion were the most relevant findings in the cephalometric analysis. It is concluded that individuals with chronic ASMD, in addition to several systemic manifestations, present significant modifications in their oral health, from a greater occurrence of dental anomalies, caries, periodontal disease, in addition to skeletal changes.
Subject(s)
Bruxism/pathology , Craniofacial Abnormalities/pathology , Mouth Diseases/pathology , Niemann-Pick Disease, Type B/complications , Periodontal Diseases/pathology , Sphingomyelin Phosphodiesterase/deficiency , Tooth Abnormalities/pathology , Adolescent , Adult , Bruxism/etiology , Child , Craniofacial Abnormalities/etiology , Female , Humans , Male , Middle Aged , Mouth Diseases/etiology , Niemann-Pick Disease, Type B/enzymology , Periodontal Diseases/etiology , Prognosis , Tooth Abnormalities/etiology , Young AdultABSTRACT
BACKGROUND: Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder caused by α-L-iduronidase deficiency, resulting in accumulation of glycosaminoglycans (GAG). Ophthalmological manifestations are common in MPS I patients and often lead to visual impairment. Accumulation of GAG in corneal or retinal tissues reduces vision causing corneal opacity and neurosensory complications. One available treatment for MPS I patients is enzyme replacement therapy (ERT), but the results of such treatment on eye disease are still debatable. Therefore, we aimed to determine the progression of ocular manifestations as well as the effectiveness of intravenous ERT in MPS I. METHODS: Corneal and retinal analyses were perform in eyes from 2- to 8-month normal and MPS I mice. Some MPS I mice received ERT (1.2 mg/kg of laronidase) every 2 weeks from 6 to 8 months and histological findings were compared with controls. Additionally, cornea from two MPS I patients under ERT were evaluated. RESULTS: Mouse corneal tissues had GAG accumulation early in life. In the retina, we found a progressive loss of photoreceptor cells, starting at 6 months. ERT did not improve or stabilize the histological abnormalities. MPS I patients, despite being on ERT for over a decade, presented GAG accumulation in the cornea, corneal thickening, visual loss and needed corneal transplantation. CONCLUSION: We provide data on the time course of ocular alteration in MPS I mice. Our results also suggest that ERT is not effective in treating the progressive ocular manifestations in MPS I mice and fails to prevent corneal abnormalities in patients.
Subject(s)
Corneal Diseases , Mucopolysaccharidosis I , Animals , Corneal Diseases/complications , Enzyme Replacement Therapy , Glycosaminoglycans/therapeutic use , Humans , Iduronidase/therapeutic use , Mice , Mucopolysaccharidosis I/complications , Mucopolysaccharidosis I/drug therapyABSTRACT
The mucopolysaccharidoses (MPS) are rare genetic disorders marked by severe somatic and neurological symptoms. Development of treatments for the neurological manifestations of MPS has been hindered by the lack of objective measures of central nervous system disease burden. Identification of biomarkers for central nervous system disease in MPS patients would facilitate the evaluation of new agents in clinical trials. High throughput metabolite screening of cerebrospinal fluid (CSF) samples from a canine model of MPS I revealed a marked elevation of the polyamine, spermine, in affected animals, and gene therapy studies demonstrated that reduction of CSF spermine reflects correction of brain lesions in these animals. In humans, CSF spermine was elevated in neuropathic subtypes of MPS (MPS I, II, IIIA, IIIB), but not in subtypes in which cognitive function is preserved (MPS IVA, VI). In MPS I patients, elevated CSF spermine was restricted to patients with genotypes associated with CNS disease and was reduced following hematopoietic stem cell transplantation, which is the only therapy currently capable of improving cognitive outcomes. Additional studies in cultured neurons from MPS I mice showed that elevated spermine was essential for the abnormal neurite overgrowth exhibited by MPS neurons. These findings offer new insights into the pathogenesis of CNS disease in MPS patients, and support the use of spermine as a new biomarker to facilitate the development of next generation therapeutics for MPS.
Subject(s)
Mucopolysaccharidoses/metabolism , Polyamines/metabolism , Adolescent , Animals , Biomarkers/cerebrospinal fluid , Central Nervous System Diseases/diagnosis , Child , Disease Models, Animal , Dogs , Enzyme Replacement Therapy/methods , Female , Genetic Therapy/methods , Humans , Male , Mice , Mucopolysaccharidoses/cerebrospinal fluid , Mucopolysaccharidosis I/cerebrospinal fluid , Mucopolysaccharidosis I/diagnosis , Mucopolysaccharidosis I/metabolism , Spermine/analysis , Spermine/cerebrospinal fluid , Spermine/chemistryABSTRACT
Pathogenic variants in GNB5 cause an autosomal recessive neurodevelopmental disorder with neonatal sinus bradycardia. Seizures or epilepsy occurred in 10 of 22 previously reported cases, including 6 children from one family. We delineate the epileptology of GNB5 encephalopathy. Our nine patients, including five new patients, were from seven families. Epileptic spasms were the most frequent seizure type, occurring in eight of nine patients, and began at a median age of 3 months (2 months to 3 years). Focal seizures preceded spasms in three children, with onset at 7 days, 11 days, and 4 months. One child presented with convulsive status epilepticus at 6 months. Three children had burst suppression on electroencephalography (EEG), three had hypsarrhythmia, and one evolved from burst suppression to hypsarrhythmia. Background slowing was present in all after age 3 years. Magnetic resonance imaging (MRI) showed cerebral atrophy in one child and cerebellar atrophy in another. All nine had abnormal development prior to seizure onset and ultimately had profound impairment without regression. Hypotonia was present in all, with contractures developing in two older patients. All individuals had biallelic pathogenic variants in GNB5, predicted by in silico tools to result in protein truncation and loss-of-function. GNB5 developmental and epileptic encephalopathy is characterized by epileptic spasms, focal seizures, and profound impairment.
Subject(s)
Brain Diseases/diagnosis , Brain Diseases/genetics , Epilepsy/diagnosis , Epilepsy/genetics , GTP-Binding Protein beta Subunits/genetics , Adolescent , Child , Child, Preschool , Female , Humans , Male , Pedigree , Young AdultABSTRACT
PURPOSE: Early treatment is critical for mucopolysaccharidosis type I (MPS I), justifying its incorporation into newborn screening. Enzyme replacement therapy (ERT) treats MPS I, yet presumptions that ERT cannot penetrate the blood-brain barrier (BBB) support recommendations that hematopoietic cell transplantation (HCT) treat the severe, neurodegenerative form (Hurler syndrome). Ethics precludes randomized comparison of ERT with HCT, but insight into this comparison is presented with an international cohort of patients with Hurler syndrome who received long-term ERT from a young age. METHODS: Long-term survival and neurologic outcomes were compared among three groups of patients with Hurler syndrome: 18 treated with ERT monotherapy (ERT group), 54 who underwent HCT (HCT group), and 23 who received no therapy (Untreated). All were followed starting before age 5 years. A sensitivity analysis restricted age of treatment below 3 years. RESULTS: Survival was worse when comparing ERT versus HCT, and Untreated versus ERT. The cumulative incidences of hydrocephalus and cervical spinal cord compression were greater in ERT versus HCT. Findings persisted in the sensitivity analysis. CONCLUSION: As newborn screening widens treatment opportunity for Hurler syndrome, this examination of early treatment quantifies some ERT benefit, supports presumptions about BBB impenetrability, and aligns with current guidelines to treat with HCT.
Subject(s)
Enzyme Replacement Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , Mucopolysaccharidosis I/therapy , Neonatal Screening/methods , Blood-Brain Barrier , Child, Preschool , Enzyme Replacement Therapy/adverse effects , Female , Genetic Testing , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Infant , Infant, Newborn , Male , Mucopolysaccharidosis I/diagnosis , Mucopolysaccharidosis I/physiopathologyABSTRACT
INTRODUCTION: Hepatic glycogen storage diseases (GSDs) are a group of inherited disorders of carbohydrate metabolism for which dietary management is the cornerstone. Safety and acute complications associated with dietary management have been poorly documented. We hypothesized that safety issues and complications associated with dietary management are prevalent amongst patients with these ultra-rare disorders. METHODS: A questionnaire was developed consisting of 40 questions and was distributed via eight GSD patient organizations from multiple countries. Respondents were (caregivers of) patients with self-reported hepatic GSD. RESULTS: 249 GSD patients from 26 countries responded with a median age of 14.8â¯years (range: 0.5-66.1). Although management was considered safe by 71% of patients, 51% reported at least one acute complication associated with dietary management, with a total number of 425 reported complications. Most frequently reported causes were: not waking up by an alarm clock (nâ¯=â¯70), forgetting a meal (nâ¯=â¯57) and infections (nâ¯=â¯43). Most frequently reported complications were: hypoglycemia (nâ¯=â¯112), hospital admissions (nâ¯=â¯79) and drowsiness (nâ¯=â¯74). Most complications occurred before the age of 12â¯years (82%; 637/774 total number of reported events) and during night time (63%; 340/536). Only 61% (152/249) of the GSD patients reported using a written emergency protocol. CONCLUSIONS: Safety issues and complications associated with dietary management are prevalently reported by (caregivers of) 249 GSD patients. A discrepancy has been observed between the patient's perspective on safety of dietary management and occurrence of complications as a result of dietary management.
Subject(s)
Diet/adverse effects , Glycogen Storage Disease/diet therapy , Glycogen Storage Disease/epidemiology , Liver/physiopathology , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Glycogen Storage Disease/physiopathology , Humans , Infant , Male , Middle Aged , Surveys and Questionnaires , Young AdultABSTRACT
Maple syrup urine disease (MSUD) is an autosomal recessive inherited disorder that affects branched-chain amino acid (BCAA) catabolism and is associated with acute and chronic brain dysfunction. Recent studies have shown that inflammation may be involved in the neuropathology of MSUD. However, these studies have mainly focused on single or small subsets of proteins or molecules. Here we performed a case-control study, including 12 treated-MSUD patients, in order to investigate the plasmatic biomarkers of inflammation, to help to establish a possible relationship between these biomarkers and the disease. Our results showed that MSUD patients in treatment with restricted protein diets have high levels of pro-inflammatory cytokines [IFN-γ, TNF-α, IL-1ß and IL-6] and cell adhesion molecules [sICAM-1 and sVCAM-1] compared to the control group. However, no significant alterations were found in the levels of IL-2, IL-4, IL-5, IL-7, IL-8, and IL-10 between healthy controls and MSUD patients. Moreover, we found a positive correlation between number of metabolic crisis and IL-1ß levels and sICAM-1 in MSUD patients. In conclusion, our findings in plasma of patients with MSUD suggest that inflammation may play an important role in the pathogenesis of MSUD, although this process is not directly associated with BCAA blood levels. Overall, data reported here are consistent with the working hypothesis that inflammation may be involved in the pathophysiological mechanism underlying the brain damage observed in MSUD patients.
ABSTRACT
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a deficient activity of iduronate-2-sulfatase, leading to abnormal accumulation of glycosaminoglycans (GAG). The main treatment for MPS II is enzyme replacement therapy (ERT). Previous studies described potential benefits of six months of ERT against oxidative stress in patients. Thus, the aim of this study was to investigate oxidative, nitrative and inflammatory biomarkers in MPS II patients submitted to long term ERT. It were analyzed urine and blood samples from patients on ERT (mean time: 5.2years) and healthy controls. Patients presented increased levels of lipid peroxidation, assessed by urinary 15-F2t-isoprostane and plasmatic thiobarbituric acid-reactive substances. Concerning to protein damage, urinary di-tyrosine (di-Tyr) was increased in patients; however, sulfhydryl and carbonyl groups in plasma were not altered. It were also verified increased levels of urinary nitrate+nitrite and plasmatic nitric oxide (NO) in MPS II patients. Pro-inflammatory cytokines IL-1ß and TNF-α were increased in treated patients. GAG levels were correlated to di-Tyr and nitrate+nitrite. Furthermore, IL-1ß was positively correlated with TNF-α and NO. Contrastingly, we did not observed alterations in erythrocyte superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities, in reduced glutathione content and in the plasmatic antioxidant capacity. Although some parameters were still altered in MPS II patients, these results may suggest a protective role of long-term ERT against oxidative stress, especially upon oxidative damage to protein and enzymatic and non-enzymatic defenses. Moreover, the redox imbalance observed in treated patients seems to be GAG- and pro-inflammatory cytokine-related.
Subject(s)
Cytokines/metabolism , Enzyme Replacement Therapy , Glycosaminoglycans/metabolism , Mucopolysaccharidosis II/drug therapy , Mucopolysaccharidosis II/metabolism , Adolescent , Adult , Case-Control Studies , Child , Humans , Iduronate Sulfatase/therapeutic use , Interleukin-1beta/metabolism , Male , Mucopolysaccharidosis II/immunology , Nitrosative Stress/drug effects , Oxidative Stress/drug effects , Tumor Necrosis Factor-alpha/metabolism , Young AdultABSTRACT
INTRODUCTION: The precise incidence of hydrocephalus in patients with mucopolysaccharidoses (MPS) is hard to determine, because the condition lacks a formal, consensus-based definition. The diagnosis of hydrocephalus depends on symptom profile, presence of neuroimaging features, and the outcome of diagnostic tests. Although numerous techniques are used to identify MPS patients who are most likely to have hydrocephalus and respond to treatment, no definitive method exists to prove diagnosis. PURPOSE: The authors propose an algorithm to aid in the diagnosis and management of hydrocephalus in MPS patients. CONCLUSIONS: The theory of venous hypertension associated with the morphological changes in the skull base and craniocervical junction indicate the need for future neuroimaging studies including cerebrospinal fluid (CSF) and venous flow measurements to monitor hydrocephalus progression and select therapeutic interventions in MPS patients. Preoperative planning should also be based on the increased risk of intraoperative and postoperative hemorrhagic complications.
Subject(s)
Hydrocephalus/complications , Mucopolysaccharidoses/complications , Algorithms , Brain/diagnostic imaging , Humans , Hydrocephalus/cerebrospinal fluid , Hydrocephalus/diagnosis , Hydrocephalus/surgery , Mucopolysaccharidoses/cerebrospinal fluid , Mucopolysaccharidoses/diagnosis , Mucopolysaccharidoses/surgery , VentriculostomyABSTRACT
Uncooked cornstarch (UCCS) is a widely used treatment strategy for patients with hepatic glycogen storage disease (GSD). It has been observed that GSD-patients display different metabolic responses to different cornstarches. The objective was to characterize starch fractions and analyze the digestion of different starches in a dynamic gastrointestinal in vitro model. The following brands of UCCS were studied: Argo and Great Value from the United States of America; Brazilian Maizena Duryea and Yoki from Brazil; Dutch Maizena Duryea from the Netherlands. Glycosade, a modified starch, and sweet polvilho, a Brazilian starch extracted from cassava, were also studied. The starch fractions were analyzed by glycemic TNO index method and digestion analyses were determined by the TIM-1 system, a dynamic, computer-controlled, in vitro gastrointestinal model, which simulates the stomach and small intestine. The final digested amounts were between 84 and 86% for the UCCS and Glycosade, but was 75.5% for sweet povilho. At 180 min of the experiment, an important time-point for GSD patients, the digested amount of the starches corresponded to 67.9-71.5 for the UCCS and Glycosade, while it was 55.5% for sweet povilho. In an experiment with a mixture of sweet polvilho and Brazilian Maizena Duryea, a final digested amount of 78.4% was found, while the value at 180 min was 61.7%. Sweet polvilho seems to have a slower and extended release of glucose and looks like an interesting product to be further studied as it might lead to extended normoglycemia in GSD-patients.
Subject(s)
Digestion/physiology , Glucose/metabolism , Glycogen Storage Disease Type I/diet therapy , Starch/analysis , Starch/classification , Humans , Models, Biological , Starch/therapeutic useABSTRACT
INTRODUCTION: No published clinical trial data are available to inform the use of enzyme replacement therapy (ERT) in patients with the severe (neuropathic) phenotype of mucopolysaccharidosis II (MPS II). Current guidelines recommend ERT administered intravenously be used on a trial basis in this population. AIMS/METHODS: A retrospective chart review was conducted at five international centers for this case series of 22 patients with neuropathic MPS II who received intravenous idursulfase 0.5 mg/kg weekly for at least 2 consecutive years. We collected data about urinary glycosaminoglycan levels, adverse events, and the following somatic signs/symptoms: skeletal disease, joint range of motion, liver/spleen size, respiratory infections, cardiac disease, diarrhea, skin/hair texture, and hospitalizations. RESULTS: The age at diagnosis was 2 months to 5 years, and the age at idursulfase initiation was between 18 months and 21 years. One of 22 patients experienced improvements in seven somatic signs/symptoms; 17/22 experienced improvements in five to six somatic signs/symptoms; and 4/22 experienced improvements in four somatic signs/symptoms. None experienced fewer than four improvements. No new safety concerns arose. Infusion-related reactions were experienced by 4/22 patients but were successfully managed using accepted strategies. CONCLUSIONS: Long-term treatment with idursulfase was associated with improvements in somatic manifestations in this case series of patients with neuropathic MPS II. The family and medical team should maintain open lines of communication to make treatment decisions that take into consideration the benefits and limitations of ERT in this population.
Subject(s)
Enzyme Replacement Therapy/methods , Iduronate Sulfatase/therapeutic use , Mucopolysaccharidosis II/drug therapy , Adolescent , Age of Onset , Child , Child, Preschool , Cognition Disorders/etiology , Cognition Disorders/psychology , Enzyme Replacement Therapy/adverse effects , Female , Glycosaminoglycans/urine , Humans , Infant , Male , Mucopolysaccharidosis II/pathology , Mucopolysaccharidosis II/psychology , Organ Size , Retrospective Studies , Treatment Outcome , Young AdultABSTRACT
BACKGROUND: Glycogen storage disease type Ia (GSD-Ia) is one of the most common hepatic GSD. Its treatment mainly consists of a diet including a high intake of slow-digestion carbohydrates such as raw cornstarch and the restriction of simple sugars. This enables the maintenance of euglycemia and prevents secondary metabolic disorders. Starch is a glucose polymer formed by amylose and amylopectin, which can be obtained from distinct sources. Although uncooked cornstarch has been successfully used in the treatment of GSD-Ia, it can lead to hyperglycemia and weight gain. in vitro andin vivo tests indicated that sweet manioc starch can be potentially used in the treatment of GSD-Ia. RESULTS: The moisture analysis revealed a variation from 10.3 to 12.8% in the sweet manioc starch samples, whereas the moisture content of uncooked cornstarch ranged from 7.3 to 11.1%. Quantifiable sugar was detected in 3/5 samples of sweet manioc starch and 1/3 samples of uncooked cornstarch. Notably, this uncooked cornstarch brand is widely employed in GSD-Ia treatment in Brazil. Products B and E had higher values of amylopectin and undetectable levels of sugars. A clinical trial is warranted to compare samples F and G and determine the impact of sugar trace in the same dietary source of starch. CONCLUSIONS: Collectively, the results demonstrated possible therapeutic alternatives for GSD-Ia in addition to traditional uncooked cornstarch.
Subject(s)
Glycogen Storage Disease Type I , Starch , Glycogen Storage Disease Type I/metabolism , Glycogen Storage Disease Type I/diet therapy , Humans , Amylopectin , AnimalsABSTRACT
Mucopolysaccharidosis type II (MPS II) is a disorder caused by a deficient activity of iduronate-2-sulfatase, a lysosomal enzyme responsible for degrading glycosaminoglycans (GAGs). The abnormal storage of GAGs within lysosomes disrupts cellular homeostasis and leads to a severe symptomatology. Patients present neuropsychiatric impairment characterized by mental retardation and impaired cognition. The aim of this study was to quantify four neurodegeneration biomarkers in plasma: brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF-AA), neural cell adhesion molecule (NCAM) and cathepsin-D, as well as to identify possible correlations with urinary GAGs in seven patients undergoing treatment with ERT (Elaprase® 0.5 mg/kg of body weight). Patients with both severe and attenuated forms of MPS II showed signs of neurodegeneration in neuroimaging exams. Patients have a decrease in BDNF and PDGF-AA concentrations, and an increase in NCAM level compared to controls. No alterations in cathepsin-D concentration were seen. GAGs levels were higher in patients than in controls, but no significant correlations between GAGs and biomarkers were observed. These results evidence that patients have neurodegeneration and that monitoring these biomarkers might be useful for assessing this process. To this date, this is the first work to analyze these plasmatic markers of neurodegeneration in patients.
Subject(s)
Mucopolysaccharidosis II , Humans , Mucopolysaccharidosis II/complications , Mucopolysaccharidosis II/drug therapy , Mucopolysaccharidosis II/diagnosis , Brain-Derived Neurotrophic Factor/therapeutic use , Enzyme Replacement Therapy , Glycosaminoglycans/metabolism , Glycosaminoglycans/therapeutic use , Biomarkers , Neural Cell Adhesion Molecules/therapeutic useABSTRACT
OBJECTIVES: The present study aimed to evaluate the body composition of hepatic glycogen storage disorders (GSDs) through dual energy x-ray absorptiometry. METHODS: This was an exploratory, observational, cross-sectional study. Twenty-four patients with GSD (type Ia: n = 13, Ib: n = 5, III: n = 2, and IX-α/ß/γ: n = 4; female sex: n = 13; age <8 y: n = 3, 8-19 y: n = 14, and >19 y: n = 7) were included. Three-day dietary records were collected in the week preceding dual energy x-ray absorptiometry. Body composition findings were correlated with clinical parameters, uncooked cornstarch (UCCS) regimen, dietary intake, and markers of treatment adherence. RESULTS: An elevated fat mass (FM) index was found in 16 of 21 patients (age 8-19 y: n = 10 and >19 y: n = 6; GSD type Ia: n = 12, Ib: n = 2, III: n = 1, and IX-γ: n = 1). A lean mass (LM) index evaluation showed no LM deficits in relation to corresponding reference populations. Relative skeletal muscle index values were decreased in 2 of 7 adult patients (type Ib: n = 1 and IX-α: n = 1). UCCS (g/d) correlated positively with the FM index (rs = 0.7; P ≤ 0.01). In contrast, relative UCCS intake (g/kg body weight) was negatively associated with LM/kg (rs = -0.8; P ≤ 0.01). CONCLUSIONS: These findings suggest a high frequency of elevated FM in patients with hepatic GSDs. We also suggest that treatment with UCCS is associated with excess weight in these patients. Additionally, the treatment strategy can impair protein intake, and lead to a decrease in LM.
Subject(s)
Body Composition , Glycogen Storage Disease , Adult , Humans , Female , Child , Adolescent , Young Adult , Cross-Sectional Studies , Absorptiometry, Photon , StarchABSTRACT
BACKGROUND: Mucopolysaccharidoses (MPS) is a group of hereditary multisystemic lysosomal disorders. Most neuroimaging studies in MPS have focused on the supratentorial compartment and craniocervical junction abnormalities, and data regarding posterior fossa findings are scarce in the literature. Thus, our purpose is to describe posterior fossa findings on magnetic resonance imaging (MRI) of MPS patients. METHODS: We reviewed routine MRI scans of MPS patients being followed up at our institution (types I, II, III, IV, and VI), focusing on posterior fossa structures. RESULTS: Forty-seven MPS patients were included. MRI-visible perivascular spaces were commonly found in the midbrain and adjacent to the dentate nuclei (85% and 55% of patients, respectively). White-matter lesion was not identified in most cases. Its most frequent localizations were in the pons and cerebellum (34% and 30% of patients, respectively). Enlargement of cerebrospinal fluid (CSF) spaces in the posterior fossa was present in 55% of individuals and was more frequent in neuronopathic patients (73% vs 40%; P = .02). Cerebellar volume was classified as normal, apparent macrocerebellum, atrophic, and hypoplastic in 38%, 38%, 21%, and 3% of patients, respectively. A depression of the posterior fossa floor in the midline sagittal plane was found in 22 patients (47%), which was statistical significantly associated with enlargement of CSF spaces (P = .02) and with apparent macrocerebellum (P = .03). CONCLUSION: The present study compiled the main posterior fossa findings in MPS patients. Classically described in the supratentorial compartment, MRI-visible perivascular spaces, white matter lesions, and enlarged perivascular spaces were also found in the posterior fossa. However, atrophy, which commonly affects cerebral hemispheres, was not the most frequent cerebellar morphology found in our study. Moreover, potential findings for future research were described.
ABSTRACT
BACKGROUND: Glycogen storage disease type 1a (GSD Ia) is characterized by severe fasting hypoglycemia. The clinical management includes the administration of uncooked cornstarch (UCCS). Although such a diet approach is effective in achieving euglycemia, its impact on the quality of life of patients should be considered. In vitro analyses suggest a longer release of glucose when using sweet manioc starch (SMS). METHODS: We compared the efficacy and safety of the administration of SMS and UCCS during a short-fasting challenge in patients with GSD Ia in a randomized, triple-blind, phase I/II, cross-over study. GSD Ia patients aged ≥ 16 years and treated with UCCS were enrolled. Participants were hospitalized for two consecutive nights, receiving UCCS or SMS in each night. After the administration of the starches, glucose, lactate and insulin levels were measured in 1-h interval throughout the hospitalization period. The procedures were interrupted after 10 h of fasting or in a hypoglycemic episode (< 3.88 mmol/L). RESULTS: Eleven individuals (mean age: 21.6 ± 4.3 years; all presenting body mass index > 25 kg/m2) participated in the study. The average fasting period was 8.2 ± 2.0 h for SMS and 7.7 ± 2.3 h for UCCS (p = 0.04). SMS maintained euglycemia for a greater period over UCCS. Increased lactate concentrations were detected even in absence of hypoglycemia, not being influenced by the different starches investigated (p = 0.17). No significant difference was found in total cholesterol, HDL, triglycerides and uric acid levels in both arms. None of the patients showed severe adverse events. CONCLUSIONS: SMS appears to be non-inferior to UCCS in the maintenance of euglycemia, thus emerging as a promising alternative to the treatment of GSD Ia.
Subject(s)
Glycogen Storage Disease Type I , Manihot , Starch/therapeutic use , Adolescent , Adult , Cross-Over Studies , Glycogen Storage Disease Type I/drug therapy , Humans , Quality of Life , Young AdultABSTRACT
The purpose of this review is to describe neurological phenotypes associated with lysosomal storage diseases (LSDs), focusing on features arising from primary neuronal involvement. Clinical presentation, progression and genetic data, are discussed in detail in Part 2, the electronic material. Main features are summarized in Part 1. Insights gained from several observational studies are discussed. Prospective studies of the natural history of most neuronopathic LSDs have been hampered by the rarity of these conditions and the short survival of affected patients. Increasingly, longitudinal observations relating to neurological manifestations are being reported. Better clinical studies are necessary, including repeated measurements of disease progression to facilitate the development of sensitive scoring systems and appropriate counseling of affected individuals and their families. Ideally, clinical studies should involve a large cohort. As treatment becomes available, knowledge of disease expression and factors that influence the phenotype may enable critical assessment of therapeutic outcomes. It is hoped that increased familiarity with the clinical expression of individual LSDs will allow early diagnosis, so families at risk are given options to consider during future pregnancies. Early diagnosis also permits the introduction of timely intervention, to favoring improved outcome in cases that are potentially treatable.