Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35197278

ABSTRACT

Evasion from drug-induced apoptosis is a crucial mechanism of cancer treatment resistance. The proapoptotic protein NOXA marks an aggressive pancreatic ductal adenocarcinoma (PDAC) subtype. To identify drugs that unleash the death-inducing potential of NOXA, we performed an unbiased drug screening experiment. In NOXA-deficient isogenic cellular models, we identified an inhibitor of the transcription factor heterodimer CBFß/RUNX1. By genetic gain and loss of function experiments, we validated that the mode of action depends on RUNX1 and NOXA. Of note is that RUNX1 expression is significantly higher in PDACs compared to normal pancreas. We show that pharmacological RUNX1 inhibition significantly blocks tumor growth in vivo and in primary patient-derived PDAC organoids. Through genome-wide analysis, we detected that RUNX1-loss reshapes the epigenetic landscape, which gains H3K27ac enrichment at the NOXA promoter. Our study demonstrates a previously unknown mechanism of NOXA-dependent cell death, which can be triggered pharmaceutically. Therefore, our data show a way to target a therapy-resistant PDAC, an unmet clinical need.


Subject(s)
Apoptosis/genetics , Carcinoma, Pancreatic Ductal/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Synthetic Lethal Mutations , Carcinoma, Pancreatic Ductal/pathology , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Humans , Pancreatic Neoplasms/pathology , Promoter Regions, Genetic , Up-Regulation
2.
BMC Genomics ; 25(1): 361, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609853

ABSTRACT

BACKGROUND: Single-cell sequencing techniques are revolutionizing every field of biology by providing the ability to measure the abundance of biological molecules at a single-cell resolution. Although single-cell sequencing approaches have been developed for several molecular modalities, single-cell transcriptome sequencing is the most prevalent and widely applied technique. SPLiT-seq (split-pool ligation-based transcriptome sequencing) is one of these single-cell transcriptome techniques that applies a unique combinatorial-barcoding approach by splitting and pooling cells into multi-well plates containing barcodes. This unique approach required the development of dedicated computational tools to preprocess the data and extract the count matrices. Here we compare eight bioinformatic pipelines (alevin-fry splitp, LR-splitpipe, SCSit, splitpipe, splitpipeline, SPLiTseq-demultiplex, STARsolo and zUMI) that have been developed to process SPLiT-seq data. We provide an overview of the tools, their computational performance, functionality and impact on downstream processing of the single-cell data, which vary greatly depending on the tool used. RESULTS: We show that STARsolo, splitpipe and alevin-fry splitp can all handle large amount of data within reasonable time. In contrast, the other five pipelines are slow when handling large datasets. When using smaller dataset, cell barcode results are similar with the exception of SPLiTseq-demultiplex and splitpipeline. LR-splitpipe that is originally designed for processing long-read sequencing data is the slowest of all pipelines. Alevin-fry produced different down-stream results that are difficult to interpret. STARsolo functions nearly identical to splitpipe and produce results that are highly similar to each other. However, STARsolo lacks the function to collapse random hexamer reads for which some additional coding is required. CONCLUSION: Our comprehensive comparative analysis aids users in selecting the most suitable analysis tool for efficient SPLiT-seq data processing, while also detailing the specific prerequisites for each of these pipelines. From the available pipelines, we recommend splitpipe or STARSolo for SPLiT-seq data analysis.


Subject(s)
Computational Biology , Transcriptome , Data Analysis
3.
Eur Respir J ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38901884

ABSTRACT

BACKGROUND: Individual differences in susceptibility to develop asthma, a heterogeneous chronic inflammatory lung disease, are poorly understood. It remains debated whether genetics can predict asthma risk and how genetic variants modulate the complex pathophysiology of asthma. AIM: To build polygenic risk scores (PRSs) for asthma risk prediction and epigenomically link predictive genetic variants to pathophysiological mechanisms. METHODS: Restricted PRSs were constructed using single nucleotide variants derived from genome-wide association studies and validated using data generated in the Rotterdam Study, a Dutch prospective cohort of 14 926 individuals. Outcomes used were asthma, childhood-onset asthma (COA), adulthood-onset asthma (AOA), eosinophilic asthma, and asthma exacerbations. Genome-wide chromatin analysis data from 19 disease-relevant cell types were used for epigenomic PRS partitioning. RESULTS: PRSs obtained predicted asthma and related outcomes, with the strongest associations observed for COA (2.55 odds ratios per PRS standard deviation, area under the curve of 0.760). PRSs allowed for the classification of individuals into high and low-risk groups. PRS partitioning using epigenomic profiles identified 5 clusters of variants within putative gene regulatory regions linked to specific asthma-relevant cells, genes, and biological pathways. CONCLUSIONS: PRSs were associated with asthma(-related traits) in a Dutch prospective cohort, with substantially higher predictive power observed for COA than for AOA. Importantly, PRS variants could be epigenomically partitioned into clusters of regulatory variants with different pathophysiological association patterns and effect estimates, which likely represent distinct genetically driven disease pathways. Our findings have potential implications for personalized risk mitigation and treatment strategies.

4.
Haematologica ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961746

ABSTRACT

Differentiation of induced pluripotent stem cells (iPSCs) into hematopoietic lineages offers great therapeutic potential. During embryogenesis, hemogenic endothelium (HE) gives rise to hematopoietic stem and progenitor cells through the endothelial-to-hematopoietic transition (EHT). Understanding this process using iPSCs is key to generating functional hematopoietic stem cells (HSCs), a currently unmet challenge. In this study, we examined the role of the transcriptional factor GFI1B and its co-factor LSD1/KDM1A in EHT. To this end, we employed patient-derived iPSC lines with a dominant negative dysfunctional GFI1BQ287* and irreversible pharmacological LSD1/KDM1A inhibition in healthy iPSC lines. The formation of HE remained unaffected; however, hematopoietic output was severely reduced in both conditions. Single-cell RNA sequencing (scRNAseq) performed on the CD144+/CD31+ population derived from healthy iPSCs revealed similar expression dynamics of genes associated with in vivo EHT. Interestingly, LSD1/KDM1A inhibition in healthy lines before EHT resulted in a complete absence of hematopoietic output. However, uncommitted HE cells did not display GFI1B expression, suggesting a timed transcriptional program. To test this hypothesis, we ectopically expressed GFI1B in uncommitted HE cells, leading to downregulation of endothelial genes and upregulation of hematopoietic genes, including GATA2, KIT, RUNX1, and SPI1. Thus, we demonstrate that LSD1/KDM1A and GFI1B can function at distinct temporal points in different cellular subsets during EHT. Although GFI1B is not detected in uncommitted HE cells, its ectopic expression allows for partial hematopoietic specification. These data indicate that precisely timed expression of specific transcriptional regulators during EHT is crucial to the eventual outcome of EHT.

5.
Hum Genomics ; 17(1): 37, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37098643

ABSTRACT

Myelodysplastic syndromes (MDS) consist of a group of hematological malignancies characterized by ineffective hematopoiesis, cytogenetic abnormalities, and often a high risk of transformation to acute myeloid leukemia (AML). So far, there have been only a very limited number of studies assessing the epigenetics component contributing to the pathophysiology of these disorders, but not a single study assessing this at a genome-wide level. Here, we implemented a generic high throughput epigenomics approach, using methylated DNA sequencing (MeD-seq) of LpnPI digested fragments to identify potential epigenomic targets associated with MDS subtypes. Our results highlighted that PCDHG and ZNF gene families harbor potential epigenomic targets, which have been shown to be differentially methylated in a variety of comparisons between different MDS subtypes. Specifically, CpG islands, transcription start sites and post-transcriptional start sites within ZNF124, ZNF497 and PCDHG family are differentially methylated with fold change above 3,5. Overall, these findings highlight important aspects of the epigenomic component of MDS syndromes pathogenesis and the pharmacoepigenomic basis to the hypomethylating agents drug treatment response, while this generic high throughput whole epigenome sequencing approach could be readily implemented to other genetic diseases with a strong epigenetic component.


Subject(s)
DNA Methylation , Myelodysplastic Syndromes , Humans , DNA Methylation/genetics , Epigenomics , Epigenesis, Genetic , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Disease Progression , CpG Islands/genetics , DNA-Binding Proteins/genetics
6.
Genome Res ; 30(4): 515-527, 2020 04.
Article in English | MEDLINE | ID: mdl-32253279

ABSTRACT

Cohesin is a ring-shaped multiprotein complex that is crucial for 3D genome organization and transcriptional regulation during differentiation and development. It also confers sister chromatid cohesion and facilitates DNA damage repair. Besides its core subunits SMC3, SMC1A, and RAD21, cohesin in somatic cells contains one of two orthologous STAG subunits, STAG1 or STAG2. How these variable subunits affect the function of the cohesin complex is still unclear. STAG1- and STAG2-cohesin were initially proposed to organize cohesion at telomeres and centromeres, respectively. Here, we uncover redundant and specific roles of STAG1 and STAG2 in gene regulation and chromatin looping using HCT116 cells with an auxin-inducible degron (AID) tag fused to either STAG1 or STAG2. Following rapid depletion of either subunit, we perform high-resolution Hi-C, gene expression, and sequential ChIP studies to show that STAG1 and STAG2 do not co-occupy individual binding sites and have distinct ways by which they affect looping and gene expression. These findings are further supported by single-molecule localizations via direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging. Since somatic and congenital mutations of the STAG subunits are associated with cancer (STAG2) and intellectual disability syndromes with congenital abnormalities (STAG1 and STAG2), we verified STAG1-/STAG2-dependencies using human neural stem cells, hence highlighting their importance in particular disease contexts.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation , Nuclear Proteins/metabolism , Binding Sites , Cell Cycle Proteins/chemistry , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Diploidy , Humans , Nuclear Proteins/chemistry , Protein Binding , Protein Conformation , Proteolysis , Structure-Activity Relationship , Cohesins
7.
Development ; 147(10)2020 05 26.
Article in English | MEDLINE | ID: mdl-32253238

ABSTRACT

The transcription factor Zeb2 controls fate specification and subsequent differentiation and maturation of multiple cell types in various embryonic tissues. It binds many protein partners, including activated Smad proteins and the NuRD co-repressor complex. How Zeb2 subdomains support cell differentiation in various contexts has remained elusive. Here, we studied the role of Zeb2 and its domains in neurogenesis and neural differentiation in the young postnatal ventricular-subventricular zone (V-SVZ), in which neural stem cells generate olfactory bulb-destined interneurons. Conditional Zeb2 knockouts and separate acute loss- and gain-of-function approaches indicated that Zeb2 is essential for controlling apoptosis and neuronal differentiation of V-SVZ progenitors before and after birth, and we identified Sox6 as a potential downstream target gene of Zeb2. Zeb2 genetic inactivation impaired the differentiation potential of the V-SVZ niche in a cell-autonomous fashion. We also provide evidence that its normal function in the V-SVZ also involves non-autonomous mechanisms. Additionally, we demonstrate distinct roles for Zeb2 protein-binding domains, suggesting that Zeb2 partners co-determine neuronal output from the mouse V-SVZ in both quantitative and qualitative ways in early postnatal life.


Subject(s)
Lateral Ventricles/embryology , Lateral Ventricles/growth & development , Neurogenesis/genetics , Olfactory Bulb/embryology , Olfactory Bulb/growth & development , Zinc Finger E-box Binding Homeobox 2/metabolism , Animals , Apoptosis/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Gene Knockout Techniques , Interneurons/metabolism , Lateral Ventricles/metabolism , Mice , Mice, Knockout , Neural Stem Cells/metabolism , Olfactory Bulb/metabolism , SOXD Transcription Factors/metabolism , Signal Transduction/immunology , Zinc Finger E-box Binding Homeobox 2/genetics
8.
Stem Cells ; 40(6): 577-591, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35524742

ABSTRACT

Induced pluripotent stem cell (iPSC)-derived kidney organoids are a potential tool for the regeneration of kidney tissue. They represent an early stage of nephrogenesis and have been shown to successfsully vascularize and mature further in vivo. However, there are concerns regarding the long-term safety and stability of iPSC derivatives. Specifically, the potential for tumorigenesis may impede the road to clinical application. To study safety and stability of kidney organoids, we analyzed their potential for malignant transformation in a teratoma assay and following long-term subcutaneous implantation in an immune-deficient mouse model. We did not detect fully functional residual iPSCs in the kidney organoids as analyzed by gene expression analysis, single-cell sequencing and immunohistochemistry. Accordingly, kidney organoids failed to form teratoma. Upon long-term subcutaneous implantation of whole organoids in immunodeficient IL2Ry-/-RAG2-/- mice, we observed tumor formation in 5 out of 103 implanted kidney organoids. These tumors were composed of WT1+CD56+ immature blastemal cells and showed histological resemblance with Wilms tumor. No genetic changes were identified that contributed to the occurrence of tumorigenic cells within the kidney organoids. However, assessment of epigenetic changes revealed a unique cluster of differentially methylated genes that were also present in undifferentiated iPSCs. We discovered that kidney organoids have the capacity to form tumors upon long-term implantation. The presence of epigenetic modifications combined with the lack of environmental cues may have caused an arrest in terminal differentiation. Our results indicate that the safe implementation of kidney organoids should exclude the presence of pro-tumorigenic methylation in kidney organoids.


Subject(s)
Induced Pluripotent Stem Cells , Teratoma , Animals , Cell Differentiation , Induced Pluripotent Stem Cells/metabolism , Kidney/pathology , Mice , Organogenesis , Organoids/metabolism , Teratoma/pathology
9.
Int J Mol Sci ; 24(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37833911

ABSTRACT

After kidney transplantation (KT), donor-specific hyporesponsiveness (DSH) of recipient T cells develops over time. Recently, apoptosis was identified as a possible underlying mechanism. In this study, both transcriptomic profiles and complete V(D)J variable regions of TR transcripts from individual alloreactive T cells of kidney transplant recipients were determined with single-cell RNA sequencing. Alloreactive T cells were identified by CD137 expression after stimulation of peripheral blood mononuclear cells obtained from KT recipients (N = 7) prior to and 3-5 years after transplantation with cells of their donor or a third party control. The alloreactive T cells were sorted, sequenced and the transcriptome and T cell receptor profiles were analyzed using unsupervised clustering. Alloreactive T cells retain a highly polyclonal T Cell Receptor Alpha/Beta repertoire over time. Post transplantation, donor-reactive CD4+ T cells had a specific downregulation of genes involved in T cell cytokine-mediated pathways and apoptosis. The CD8+ donor-reactive T cell profile did not change significantly over time. Single-cell expression profiling shows that activated and pro-apoptotic donor-reactive CD4+ T cell clones are preferentially lost after transplantation in stable kidney transplant recipients.


Subject(s)
Kidney Transplantation , Kidney Transplantation/adverse effects , Leukocytes, Mononuclear , Receptors, Antigen, T-Cell , Apoptosis , Sequence Analysis, RNA
10.
Hum Mol Genet ; 29(15): 2535-2550, 2020 08 29.
Article in English | MEDLINE | ID: mdl-32628253

ABSTRACT

The transcription factor zinc finger E-box binding protein 2 (ZEB2) controls embryonic and adult cell fate decisions and cellular maturation in many stem/progenitor cell types. Defects in these processes in specific cell types underlie several aspects of Mowat-Wilson syndrome (MOWS), which is caused by ZEB2 haplo-insufficiency. Human ZEB2, like mouse Zeb2, is located on chromosome 2 downstream of a ±3.5 Mb-long gene-desert, lacking any protein-coding gene. Using temporal targeted chromatin capture (T2C), we show major chromatin structural changes based on mapping in-cis proximities between the ZEB2 promoter and this gene desert during neural differentiation of human-induced pluripotent stem cells, including at early neuroprogenitor cell (NPC)/rosette state, where ZEB2 mRNA levels increase significantly. Combining T2C with histone-3 acetylation mapping, we identified three novel candidate enhancers about 500 kb upstream of the ZEB2 transcription start site. Functional luciferase-based assays in heterologous cells and NPCs reveal co-operation between these three enhancers. This study is the first to document in-cis Regulatory Elements located in ZEB2's gene desert. The results further show the usability of T2C for future studies of ZEB2 REs in differentiation and maturation of multiple cell types and the molecular characterization of newly identified MOWS patients that lack mutations in ZEB2 protein-coding exons.


Subject(s)
Chromatin/ultrastructure , Enhancer Elements, Genetic/genetics , Hirschsprung Disease/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Zinc Finger E-box Binding Homeobox 2/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Chromatin/genetics , Facies , Gene Expression Regulation/genetics , Hirschsprung Disease/pathology , Homeodomain Proteins/genetics , Humans , Intellectual Disability/pathology , Mice , Microcephaly/pathology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/ultrastructure , Regulatory Sequences, Nucleic Acid
11.
PLoS Pathog ; 16(6): e1008555, 2020 06.
Article in English | MEDLINE | ID: mdl-32579593

ABSTRACT

Exhaustion is a dysfunctional state of cytotoxic CD8+ T cells (CTL) observed in chronic infection and cancer. Current in vivo models of CTL exhaustion using chronic viral infections or cancer yield very few exhausted CTL, limiting the analysis that can be done on these cells. Establishing an in vitro system that rapidly induces CTL exhaustion would therefore greatly facilitate the study of this phenotype, identify the truly exhaustion-associated changes and allow the testing of novel approaches to reverse or prevent exhaustion. Here we show that repeat stimulation of purified TCR transgenic OT-I CTL with their specific peptide induces all the functional (reduced cytokine production and polyfunctionality, decreased in vivo expansion capacity) and phenotypic (increased inhibitory receptors expression and transcription factor changes) characteristics of exhaustion. Importantly, in vitro exhausted cells shared the transcriptomic characteristics of the gold standard of exhaustion, CTL from LCMV cl13 infections. Gene expression of both in vitro and in vivo exhausted CTL was distinct from T cell anergy. Using this system, we show that Tcf7 promoter DNA methylation contributes to TCF1 downregulation in exhausted CTL. Thus this novel in vitro system can be used to identify genes and signaling pathways involved in exhaustion and will facilitate the screening of reagents that prevent/reverse CTL exhaustion.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , DNA Methylation/immunology , Hepatocyte Nuclear Factor 1-alpha/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Promoter Regions, Genetic/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Hepatocyte Nuclear Factor 1-alpha/genetics , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/pathology , Lymphocytic choriomeningitis virus/genetics , Mice , Mice, Transgenic , Signal Transduction/genetics , Signal Transduction/immunology
12.
Acta Neuropathol ; 144(2): 211-239, 2022 08.
Article in English | MEDLINE | ID: mdl-35713703

ABSTRACT

Tissue-resident macrophages of the brain, including microglia, are implicated in the pathogenesis of various CNS disorders and are possible therapeutic targets by their chemical depletion or replenishment by hematopoietic stem cell therapy. Nevertheless, a comprehensive understanding of microglial function and the consequences of microglial depletion in the human brain is lacking. In human disease, heterozygous variants in CSF1R, encoding the Colony-stimulating factor 1 receptor, can lead to adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) possibly caused by microglial depletion. Here, we investigate the effects of ALSP-causing CSF1R variants on microglia and explore the consequences of microglial depletion in the brain. In intermediate- and late-stage ALSP post-mortem brain, we establish that there is an overall loss of homeostatic microglia and that this is predominantly seen in the white matter. By introducing ALSP-causing missense variants into the zebrafish genomic csf1ra locus, we show that these variants act dominant negatively on the number of microglia in vertebrate brain development. Transcriptomics and proteomics on relatively spared ALSP brain tissue validated a downregulation of microglia-associated genes and revealed elevated astrocytic proteins, possibly suggesting involvement of astrocytes in early pathogenesis. Indeed, neuropathological analysis and in vivo imaging of csf1r zebrafish models showed an astrocytic phenotype associated with enhanced, possibly compensatory, endocytosis. Together, our findings indicate that microglial depletion in zebrafish and human disease, likely as a consequence of dominant-acting pathogenic CSF1R variants, correlates with altered astrocytes. These findings underscore the unique opportunity CSF1R variants provide to gain insight into the roles of microglia in the human brain, and the need to further investigate how microglia, astrocytes, and their interactions contribute to white matter homeostasis.


Subject(s)
Demyelinating Diseases , Leukoencephalopathies , Lysosomal Storage Diseases , Neurodegenerative Diseases , Receptor Protein-Tyrosine Kinases/metabolism , Zebrafish Proteins/metabolism , Adult , Animals , Astrocytes/pathology , Demyelinating Diseases/pathology , Humans , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , Lysosomal Storage Diseases/metabolism , Microglia/pathology , Neurodegenerative Diseases/pathology , Phenotype , Receptor Protein-Tyrosine Kinases/genetics , Zebrafish
13.
Nature ; 523(7558): 53-8, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26106861

ABSTRACT

In response to DNA damage, tissue homoeostasis is ensured by protein networks promoting DNA repair, cell cycle arrest or apoptosis. DNA damage response signalling pathways coordinate these processes, partly by propagating gene-expression-modulating signals. DNA damage influences not only the abundance of messenger RNAs, but also their coding information through alternative splicing. Here we show that transcription-blocking DNA lesions promote chromatin displacement of late-stage spliceosomes and initiate a positive feedback loop centred on the signalling kinase ATM. We propose that initial spliceosome displacement and subsequent R-loop formation is triggered by pausing of RNA polymerase at DNA lesions. In turn, R-loops activate ATM, which signals to impede spliceosome organization further and augment ultraviolet-irradiation-triggered alternative splicing at the genome-wide level. Our findings define R-loop-dependent ATM activation by transcription-blocking lesions as an important event in the DNA damage response of non-replicating cells, and highlight a key role for spliceosome displacement in this process.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage/physiology , Signal Transduction , Spliceosomes/metabolism , Alternative Splicing/physiology , Cell Line , Chromatin/metabolism , DNA-Directed RNA Polymerases/metabolism , Enzyme Activation , Humans , Ultraviolet Rays
14.
Int J Mol Sci ; 22(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34830235

ABSTRACT

Patients with Hirschsprung disease (HSCR) do not always receive a genetic diagnosis after routine screening in clinical practice. One of the reasons for this could be that the causal mutation is not present in the cell types that are usually tested-whole blood, dermal fibroblasts or saliva-but is only in the affected tissue. Such mutations are called somatic, and can occur in a given cell at any stage of development after conception. They will then be present in all subsequent daughter cells. Here, we investigated the presence of somatic mutations in HSCR patients. For this, whole-exome sequencing and copy number analysis were performed in DNA isolated from purified enteric neural crest cells (ENCCs) and blood or fibroblasts of the same patient. Variants identified were subsequently validated by Sanger sequencing. Several somatic variants were identified in all patients, but causative mutations for HSCR were not specifically identified in the ENCCs of these patients. Larger copy number variants were also not found to be specific to ENCCs. Therefore, we believe that somatic mutations are unlikely to be identified, if causative for HSCR. Here, we postulate various modes of development following the occurrence of a somatic mutation, to describe the challenges in detecting such mutations, and hypothesize how somatic mutations may contribute to 'missing heritability' in developmental defects.


Subject(s)
DNA Copy Number Variations , Enteric Nervous System/metabolism , Hirschsprung Disease/genetics , Mutation , Neural Crest/metabolism , Child , Child, Preschool , Enteric Nervous System/pathology , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Hirschsprung Disease/diagnosis , Hirschsprung Disease/pathology , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Male , Neural Crest/pathology , Sequence Analysis, DNA
15.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35008861

ABSTRACT

Thoracic aortic aneurysm is a potentially life-threatening disease with a strong genetic contribution. Despite identification of multiple genes involved in aneurysm formation, little is known about the specific underlying mechanisms that drive the pathological changes in the aortic wall. The aim of our study was to unravel the molecular mechanisms underlying aneurysm formation in Marfan syndrome (MFS). We collected aortic wall samples from FBN1 variant-positive MFS patients (n = 6) and healthy donor hearts (n = 5). Messenger RNA (mRNA) expression levels were measured by RNA sequencing and compared between MFS patients and controls, and between haploinsufficient (HI) and dominant negative (DN) FBN1 variants. Immunohistochemical staining, proteomics and cellular respiration experiments were used to confirm our findings. FBN1 mRNA expression levels were highly variable in MFS patients and did not significantly differ from controls. Moreover, we did not identify a distinctive TGF-ß gene expression signature in MFS patients. On the contrary, differential gene and protein expression analysis, as well as vascular smooth muscle cell respiration measurements, pointed toward inflammation and mitochondrial dysfunction. Our findings confirm that inflammatory and mitochondrial pathways play important roles in the pathophysiological processes underlying MFS-related aortic disease, providing new therapeutic options.


Subject(s)
Aortic Diseases/genetics , Genomics , Marfan Syndrome/genetics , Adult , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/pathology , Cell Respiration , Female , Fibrillin-1/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , Marfan Syndrome/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Signal Transduction , Transforming Growth Factor beta/metabolism
16.
Am J Hum Genet ; 101(1): 123-129, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28602422

ABSTRACT

Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital disorder characterized by loss of smooth muscle contraction in the bladder and intestine. To date, three genes are known to be involved in MMIHS pathogenesis: ACTG2, MYH11, and LMOD1. However, for approximately 10% of affected individuals, the genetic cause of the disease is unknown, suggesting that other loci are most likely involved. Here, we report on three MMIHS-affected subjects from two consanguineous families with no variants in the known MMIHS-associated genes. By performing homozygosity mapping and whole-exome sequencing, we found homozygous variants in myosin light chain kinase (MYLK) in both families. We identified a 7 bp duplication (c.3838_3844dupGAAAGCG [p.Glu1282_Glyfs∗51]) in one family and a putative splice-site variant (c.3985+5C>A) in the other. Expression studies and splicing assays indicated that both variants affect normal MYLK expression. Because MYLK encodes an important kinase required for myosin activation and subsequent interaction with actin filaments, it is likely that in its absence, contraction of smooth muscle cells is impaired. The existence of a conditional-Mylk-knockout mouse model with severe gut dysmotility and abnormal function of the bladder supports the involvement of this gene in MMIHS pathogenesis. In aggregate, our findings implicate MYLK as a gene involved in the recessive form of MMIHS, confirming that this disease of the visceral organs is heterogeneous with a myopathic origin.


Subject(s)
Abnormalities, Multiple/enzymology , Abnormalities, Multiple/genetics , Colon/abnormalities , Genes, Recessive , Intestinal Pseudo-Obstruction/enzymology , Intestinal Pseudo-Obstruction/genetics , Mutation/genetics , Myosin-Light-Chain Kinase/genetics , Urinary Bladder/abnormalities , Base Sequence , Colon/enzymology , Female , Homozygote , Humans , Male , Pedigree , Urinary Bladder/enzymology
17.
Immunogenetics ; 72(1-2): 101-108, 2020 02.
Article in English | MEDLINE | ID: mdl-31797007

ABSTRACT

The domestic ferret, Mustela putorius furo, is an important mammalian animal model to study human respiratory infection. However, insufficient genomic annotation hampers detailed studies of ferret T cell responses. In this study, we analyzed the published T cell receptor beta (TRB) locus and performed high-throughput sequencing (HTS) of peripheral blood of four healthy adult ferrets to identify expressed V, D, J, and C genes. The HTS data is used as a guide to manually curate the expressed V, D, J, and C genes. The ferret locus appears to be most similar to that of the dog. Like other mammalian TRB loci, the ferret TRB locus contains a library of variable genes located upstream of two D-J-C gene clusters, followed by a (in the ferret non-functional) V gene with an inverted transcriptional orientation. All TRB genes (expressed or not) reported here have been approved by the IMGT/WHO-IUIS nomenclature committee.


Subject(s)
Gene Expression Regulation , Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Animals , Ferrets , High-Throughput Nucleotide Sequencing
18.
Acta Neuropathol ; 139(3): 415-442, 2020 03.
Article in English | MEDLINE | ID: mdl-31820119

ABSTRACT

Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.


Subject(s)
Brain Diseases/genetics , Epileptic Syndromes/genetics , Genes, Essential/genetics , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Animals , Child, Preschool , Female , Humans , Infant , Male , Mutation , Pedigree , Zebrafish
19.
Allergy ; 75(8): 1966-1978, 2020 08.
Article in English | MEDLINE | ID: mdl-32112426

ABSTRACT

BACKGROUND: Short-chain fatty acids (SCFAs) are fermented dietary components that regulate immune responses, promote colonic health, and suppress mast cell-mediated diseases. However, the effects of SCFAs on human mast cell function, including the underlying mechanisms, remain unclear. Here, we investigated the effects of the SCFAs (acetate, propionate, and butyrate) on mast cell-mediated pathology and human mast cell activation, including the molecular mechanisms involved. METHOD: Precision-cut lung slices (PCLS) of allergen-exposed guinea pigs were used to assess the effects of butyrate on allergic airway contraction. Human and mouse mast cells were co-cultured with SCFAs and assessed for degranulation after IgE- or non-IgE-mediated stimulation. The underlying mechanisms involved were investigated using knockout mice, small molecule inhibitors/agonists, and genomics assays. RESULTS: Butyrate treatment inhibited allergen-induced histamine release and airway contraction in guinea pig PCLS. Propionate and butyrate, but not acetate, inhibited IgE- and non-IgE-mediated human or mouse mast cell degranulation in a concentration-dependent manner. Notably, these effects were independent of the stimulation of SCFA receptors GPR41, GPR43, or PPAR, but instead were associated with inhibition of histone deacetylases. Transcriptome analyses revealed butyrate-induced downregulation of the tyrosine kinases BTK, SYK, and LAT, critical transducers of FcεRI-mediated signals that are essential for mast cell activation. Epigenome analyses indicated that butyrate redistributed global histone acetylation in human mast cells, including significantly decreased acetylation at the BTK, SYK, and LAT promoter regions. CONCLUSION: Known health benefits of SCFAs in allergic disease can, at least in part, be explained by epigenetic suppression of human mast cell activation.


Subject(s)
Butyrates , Mast Cells , Animals , Butyrates/pharmacology , Cell Degranulation , Epigenesis, Genetic , Guinea Pigs , Humans , Mast Cells/metabolism , Mice , Protein-Tyrosine Kinases/metabolism , Receptors, IgE/genetics
20.
Nature ; 507(7492): 381-385, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24531765

ABSTRACT

A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs and recruits general transcription factors to initiate transcription. The nature and causative relationship of the DNA sequence and chromatin signals that govern the selection of most TSSs by RNA polymerase II remain unresolved. Maternal to zygotic transition represents the most marked change of the transcriptome repertoire in the vertebrate life cycle. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the tenth cell cycle, marking the mid-blastula transition. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression, and determined the positions of H3K4me3-marked promoter-associated nucleosomes. Here we show that the transition from the maternal to zygotic transcriptome is characterized by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleotide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveal their DNA-sequence-associated positioning at promoters before zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of the zygotic TSS. The two TSS-defining grammars coexist, often physically overlapping, in core promoters of constitutively expressed genes to enable their expression in the two regulatory environments. The dissection of overlapping core promoter determinants represents a framework for future studies of promoter structure and function across different regulatory contexts.


Subject(s)
Promoter Regions, Genetic/genetics , Transcription Initiation Site , Zebrafish/genetics , Animals , Base Sequence , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Female , Gene Expression Regulation, Developmental/genetics , Histones/metabolism , Methylation , Mothers , Nucleosomes/genetics , Transcription Initiation, Genetic , Transcriptome/genetics , Zebrafish/embryology , Zygote/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL