Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Chemistry ; 28(13): e202104151, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35072296

ABSTRACT

Phase transitions in molecular crystals are often determined by intermolecular interactions. The cage complex of [Co(C12 H30 N8 )]3+ ⋅ 3 NO3 - is reported to undergo a disorder-order phase transition at Tc1 ≈133 K upon cooling. Temperature-dependent neutron and synchrotron diffraction experiments revealed satellite reflections in addition to main reflections in the diffraction patterns below Tc1 . The modulation wave vector varies as function of temperature and locks in at Tc3 ≈98 K. Here, we demonstrate that the crystal symmetry lowers from hexagonal to monoclinic in the incommensurately modulated phases in Tc1

2.
Inorg Chem ; 59(18): 13295-13300, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32881492

ABSTRACT

A single crystal of the boron subhydride B104.67(4)H3 was serendipitously obtained while attempting to synthesize ß-boron. An accurate crystal structure analysis revealed a distorted ß-boron framework with the noncentrosymmetric space group R3m. We have found one interstitial site occupied by boron. The site related by inversion remains empty. The distortions of the framework result in ideal environments for the interstitial boron atom, and for the three hydrogen atoms at bridging positions between icosahedral B12 groups, they result in ideal B-H distances of 1.33 Å. B104.67(4)H3 is a borane with the lowest amount of hydrogen recorded to date, and it is the first compound with a noncentrosymmetrically distorted ß-boron framework.

3.
Phys Chem Chem Phys ; 20(37): 24465-24476, 2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30221645

ABSTRACT

High-pressure single-crystal X-ray diffraction at ambient temperature and high-pressure SQUID measurements down to 2 K were performed up to ∼2.5 GPa on ammonium metal formates, [NH4][M(HCOO)3] where M = Mn2+, Fe2+, and Ni2+, in order to correlate structural variations to magnetic behaviour. Similar structural distortions and phase transitions were observed for all compounds, although the transition pressures varied with the size of the metal cation. The antiferromagnetic ordering in [NH4][M(HCOO)3] compounds was maintained as a function of pressure, and the magnetic ordering transition temperature changed within a few kelvins depending on the structural distortion and the metal cation involved. These compounds, in particular [NH4][Fe(HCOO)3], showed greatest sensitivity to the degree of spin canting upon compression, clearly visible from the twenty-fold increase in the low-temperature magnetisation for [NH4][Fe(HCOO)3] at 1.4 GPa, and the change from purely antiferromagnetic to weakly ferromagnetic ordering in [NH4][Mn(HCOO)3] at 1 GPa. The variation in the exchange couplings and spin canting was checked with density-functional calculations that reproduce well the increase in canted moment within [NH4][Fe(HCOO)3] upon compression, and suggest that the Dzyaloshinskii-Moriya (DM) interaction is evolving as a function of pressure. The pressure dependence of spin canting is found to be highly dependent on the metal cation, as magnetisation magnitudes did not change significantly for when M = Ni2+ or Mn2+. These results demonstrate that the overall magnetic behaviour of each phase upon compression was not only dependent on the structural distortions but also on the electronic configuration of the metal cation.

4.
Rep Prog Phys ; 80(11): 116501, 2017 11.
Article in English | MEDLINE | ID: mdl-28675142

ABSTRACT

Rare earth compounds of the type [Formula: see text] (R = rare earth; T = Rh, Ir, and X = Si, Ge, Sn) display a variety of phase transitions towards exotic states, including charge density waves (CDW), local moment magnetism, antiferromagnetism in the heavy fermion state, superconductivity and giant positive magnetoresistance. They support strongly correlated electron systems. In particular, R 5Ir4 [Formula: see text] (R = Dy-Lu) exhibit strong coupling CDWs with high transition temperatures, and superconductivity or magnetic ordering at lower temperatures. [Formula: see text] [Formula: see text] (R = Gd-Tm; T = Co, Rh, Ir) show multiple magnetic transitions with large magnetoresistance below the magnetic transitions. Finally, the light rare earth series [Formula: see text] [Formula: see text] (R = Ce, Pr, Nd; T = Rh, Ir) display heavy fermion behaviour (for Ce and Pr) or possess giant positive magnetoresistance (for Nd) at low temperatures. This review provides a comprehensive overview of compounds, crystal structures and phase transitions. This is followed by an in-depth discussion of the mechanisms of the phase transitions and the properties of the ordered states.

5.
Phys Chem Chem Phys ; 20(1): 605-614, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29227490

ABSTRACT

We report a systematic investigation on the role of excess PbI2 content in CH3NH3PbI3 perovskite film properties, solar cell parameters and device storage stability. We used the CH3NH3I vapor assisted method for the preparation of PbI2-free CH3NH3PbI3 films under a N2 atmosphere. These pristine CH3NH3PbI3 films were annealed at 165 °C for different time intervals in a N2 atmosphere to generate additional PbI2 in these films. From XRD measurements, the excess of PbI2 was quantified. Detailed characterization using scanning electron microscopy, X-ray diffraction, UV-Visible and photoluminescence for continuous aging of CH3NH3PbI3 films under ambient condition (50% humidity) is carried out for understanding the influence of different PbI2 contents on degradation of the CH3NH3PbI3 films. We find that the rate of degradation of CH3NH3PbI3 is accelerated due to the amount of PbI2 present in the film. A comparison of solar cell parameters of devices prepared using CH3NH3PbI3 samples having different PbI2 contents reveals a strong influence on the current density-voltage hysteresis as well as storage stability. We demonstrate that CH3NH3PbI3 devices do not require any residual PbI2 for a high performance. Moreover, a small amount of excess PbI2, which improves the initial performance of the devices slightly, has undesirable effects on the CH3NH3PbI3 film stability as well as on device hysteresis and stability.

6.
Angew Chem Int Ed Engl ; 55(48): 15053-15057, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27798821

ABSTRACT

Titanium(III) phosphate, TiPO4 , is a typical example of an oxyphosphorus compound containing covalent P-O bonds. Single-crystal X-ray diffraction studies of TiPO4 reveal complex and unexpected structural and chemical behavior as a function of pressure at room temperature. A series of phase transitions lead to the high-pressure phase V, which is stable above 46 GPa and features an unusual oxygen coordination of the phosphorus atoms. TiPO4 -V is the first inorganic phosphorus-containing compound that exhibits fivefold coordination with oxygen. Up to the highest studied pressure of 56 GPa, TiPO4 -V coexists with TiPO4 -IV, which is less dense and might be kinetically stabilized. Above a pressure of about 6 GPa, TiPO4 -II is found to be an incommensurately modulated phase whereas a lock-in transition at about 7 GPa leads to TiPO4 -III with a fourfold superstructure compared to the structure of TiPO4 -I at ambient conditions. TiPO4 -II and TiPO4 -III are similar to the corresponding low-temperature incommensurate and commensurate magnetic phases and reflect the strong pressure dependence of the spin-Peierls interactions.

7.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1136-46, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24699657

ABSTRACT

Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader's quantum theory of atoms in molecules [QTAIM; Bader (1994), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) of HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254-1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337-351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C-H...O hydrogen bonds are identified by means of the existence of bond critical points (BCPs) in the multipole electron density. It is proposed that these weak interactions might be important for defining the tertiary structure and activity of HEWL. The deprotonated state of Glu35 prevents a distinction between the Phillips and Koshland mechanisms.


Subject(s)
Catalytic Domain , Chickens , Muramidase/chemistry , Animals , Hydrogen Bonding , Models, Molecular
8.
IUCrJ ; 9(Pt 3): 378-385, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35546799

ABSTRACT

EuAl4 possesses the BaAl4 crystal structure type with tetragonal symmetry I4/mmm. It undergoes a charge density wave (CDW) transition at T CDW = 145 K and features four consecutive antiferromagnetic phase transitions below 16 K. Here we use single-crystal X-ray diffraction to determine the incommensurately modulated crystal structure of EuAl4 in its CDW state. The CDW is shown to be incommensurate with modulation wave vector q = (0,0,0.1781 (3)) at 70 K. The symmetry of the incommensurately modulated crystal structure is orthorhombic with superspace group Fmmm(00σ)s00, where Fmmm is a subgroup of I4/mmm of index 2. Both the lattice and the atomic coordinates of the basic structure remain tetragonal. Symmetry breaking is entirely due to the modulation wave, where atoms Eu and Al1 have displacements exclusively along a, while the fourfold rotation would require equal displacement amplitudes along a and b. The calculated band structure of the basic structure and interatomic distances in the modulated crystal structure both indicate the Al atoms as the location of the CDW. The tem-per-ature dependence of the specific heat reveals an anomaly at T CDW = 145 K of a magnitude similar to canonical CDW systems. The present discovery of orthorhombic symmetry for the CDW state of EuAl4 leads to the suggestion of monoclinic instead of orthorhombic symmetry for the third AFM state.

9.
Adv Mater ; 34(6): e2108550, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34871466

ABSTRACT

Intercalation and stacking-order modulation are two active ways in manipulating the interlayer interaction of transition metal dichalcogenides (TMDCs), which lead to a variety of emergent phases and allow for engineering material properties. Herein, the growth of Pb-intercalated TMDCs-Pb(Ta1+x Se2 )2 , the first 124-phase, is reported. Pb(Ta1+x Se2 )2 exhibits a unique two-step first-order structural phase transition at around 230 K. The transitions are solely associated with the stacking degree of freedom, evolving from a high-temperature (high-T) phase with ABC stacking and R3m symmetry to an intermediate phase with AB stacking and P3m1, and finally to a low-temperature (low-T) phase again with R3msymmetry, but with ACB stacking. Each step involves a rigid slide of building blocks by a vector [1/3, 2/3, 0]. Intriguingly, gigantic lattice contractions occur at the transitions on warming. At low-T, bulk superconductivity with Tc  ≈ 1.8 K is observed. The underlying physics of the structural phase transitions are discussed from first-principle calculations. The symmetry analysis reveals topological nodal lines in the band structure. The results demonstrate the possibility of realizing higher-order metal-intercalated phases of TMDCs and advance the knowledge of polymorphic transitions, and may inspire stacking-order engineering in TMDCs and beyond.

10.
Phys Rev Lett ; 106(21): 215502, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21699313

ABSTRACT

The peculiar bonding situation in γ boron is characterized on the basis of an experimental electron-density distribution which is obtained by multipole refinement against low-temperature single-crystal x-ray diffraction data. A topological analysis of the electron-density distribution reveals one-electron-two-center bonds connecting neighboring icosahedral B(12) clusters. A unique polar-covalent two-electron-three-center bond between a pair of atoms of an icosahedral cluster and one atom of the interstitial B(12) dumbbell explains the observed charge separation in this high-pressure high-temperature polymorph of boron.

11.
Acta Crystallogr B ; 67(Pt 1): 18-29, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21245538

ABSTRACT

The incommensurately modulated structure of a natural nepheline of composition K(0.54)Na(3.24)Ca(0.03)Al(3.84)Si(4.16)O(16) has been determined in superspace. The compound crystallizes in the trigonal centered superspace group X3(00γ)0 with γ = 0.2048 (10), X = (0, 0, 0, 0), (1/3, 2/3, 0, 2/3), (2/3, 1/3, 0, 1/3), a = 17.2889 (8) and c = 8.3622 (10) Å. The structure is characterized by a framework of corner-connected (Al,Si)O(4) tetrahedra. The additional cations are incorporated in two different types of channels of the framework. All atoms in the structure are displacively modulated with amplitudes below 0.1 Å. The modulation can be well described taking into account harmonics of first order only. Atomic positions in the smaller channels of the framework are fully occupied by Na(+). Cationic positions in the larger channel are occupationally modulated, yet the variation of electron density as a function of the internal coordinate t is very small and indicates that the incorporation of different types of cations (K(+), Na(+), Ca(2+)) and vacancies is realised in a highly disordered way. Average T-O distances indicate a nearly complete Al/Si ordering in the tetrahedral framework. A large part of the O atoms are approximated by split-atom positions, which are additionally affected by occupational modulation resulting in a high degree of disorder in the modulated structure. Occupational probabilities for the split-atom positions are complementary. Occupational modulations of the cations in the larger channels and the O atoms of the tetrahedral framework are coupled and correlations between occupational and displacive modulations exist.

12.
Acta Crystallogr B ; 67(Pt 3): 205-17, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21586828

ABSTRACT

A combination of structure refinements, analysis of the superspace MEM density and interpretation of difference-Fourier maps has been used to characterize the incommensurate modulation of rubidium tetrachlorozincate, Rb(2)ZnCl(4), at a temperature of T = 196 K, close to the lock-in transition at T(lock-in) = 192 K. The modulation is found to consist of a combination of displacement modulation functions, modulated atomic displacement parameters (ADPs) and modulated third-order anharmonic ADPs. Up to fifth-order Fourier coefficients could be refined against diffraction data containing up to fifth-order satellite reflections. The center-of-charge of the atomic basins of the MEM density and the displacive modulation functions of the structure model provide equivalent descriptions of the displacive modulation. Modulations of the ADPs and anharmonic ADPs are visible in the MEM density, but extracting quantitative information about these modulations appears to be difficult. In the structure refinements the modulation parameters of the ADPs form a dependent set, and ad hoc restrictions had to be introduced in the refinements. It is suggested that modulated harmonic ADPs and modulated third-order anharmonic ADPs form an intrinsic part, however small, of incommensurately modulated structures in general. Refinements of alternate models with and without parameters for modulated ADPs lead to significant differences between the parameters of the displacement modulation in these two types of models, thus showing the modulation of ADPs to be important for a correct description of the displacive modulation. The resulting functions do not provide evidence for an interpretation of the modulation by a soliton model.


Subject(s)
Chlorides/chemistry , Rubidium/chemistry , Zinc/chemistry , Crystallization , Crystallography, X-Ray , Models, Molecular , Thermodynamics
13.
IUCrJ ; 8(Pt 1): 139-147, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33520250

ABSTRACT

This work reports reversible, single-crystal-to-single-crystal phase transitions of commensurately modulated sodium saccharinate 1.875-hydrate [Na(sac)(15/8)H2O]. The phases were studied in the temperature range 298 to 20 K. They exhibit complex disordered states. An unusual reentrant disorder has been discovered upon cooling through a phase transition at 120 K. The disordered region involves three sodium cations, four water molecules and one saccharinate anion. At room temperature, the structure is an eightfold superstructure that can be described by the superspace group C2/c(0σ20)s0 with q = (0, 3/4, 0). It demonstrates maximum disorder with the disordered chemical entities having slightly different but close to 0.50:0.50 disorder component ratios. Upon cooling, the crystal tends to an ordered state, smoothly reaching a unified disorder component ratio of around 0.90:0.10 for each of the entities. Between 130 and 120 K a phase transition occurs involving a sudden increase of the disorder towards the disorder component ratio 0.65:0.35. Meanwhile, the space group and general organization of the structure are retained. Between 60 and 40 K there is another phase transition leading to a twinned triclinic phase. After heating the crystal back to room temperature its structure is the same as before cooling, indicating a complete reversibility of the phase transitions.

14.
Acta Crystallogr B ; 66(Pt 2): 130-40, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20305346

ABSTRACT

The maximum entropy method (MEM) has been used to determine electron density in superspace of incommensurately modulated chromium pyrophosphate from X-ray diffraction data measured by Palatinus et al. [(2006), Acta Cryst. B62, 556-566]. Chromium pyrophosphate, Cr(2)P(2)O(7), contains ordered regions (83% of the volume) and regions with disorder. Analysis of the MEM density has allowed the determination of the displacive modulation functions within ordered regions. The disordered regions can be described as the alternate occupation of two conformations of the pyrophosphate group and two positions of the chromium atom, with occupational probabilities that depend continuously on the phase of modulation t. A structure model based on the interpretation of the MEM density provides a fit to the diffraction data of the same quality as the model given by Palatinus et al. (2006). The failure to find a model that better fits the data is attributed to the intrinsic inaccuracy of approximately 0.01 A for positions derived from the MEM and to the difficulties in constructing an appropriate model for the anharmonic ADPs and their modulation functions from electron densities.

15.
Acta Crystallogr B ; 66(Pt 1): 27-33, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20101080

ABSTRACT

Rb(1.3711)MnO(2) (Rb(11)Mn(8)O(16)) has been synthesized via the azide/nitrate route from a stoichiometric mixture of the precursors Mn(2)O(3), RbNO(3) and RbN(3). The structure of this extremely air- and moisture-sensitive compound can best be described in terms of an incommensurate composite structure, built up by a honeycomb-like framework of Rb ions, as one subsystem and by a second subsystem of chains, consisting of edge-sharing MnO(4/2) tetrahedra. These two composite substructures interpenetrate in such a way that the manganate chain polyanions centre the channels of the Rb-honeycomb framework. Crystals transform by an aging process into Rb(1.3636)MnO(2) (Rb(15)Mn(11)O(22)), which has a similar structure but a different commensurate modulation. Two reasons can be established for the origin of the modulations: the charge ordering of Mn(2+)/Mn(3+) on one hand, and the incompatibility of the Mn-Mn and Rb-Rb separations on the other.

16.
Acta Crystallogr B ; 66(Pt 2): 184-95, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20305352

ABSTRACT

In a systematic approach, the ability of the Maximum Entropy Method (MEM) to reconstruct the most probable electron density of highly disordered crystal structures from X-ray powder diffraction data was evaluated. As a case study, the ambient temperature crystal structures of disordered alpha-Rb(2)[C(2)O(4)] and alpha-Rb(2)[CO(3)] and ordered delta-K(2)[C(2)O(4)] were investigated in detail with the aim of revealing the ;true' nature of the apparent disorder. Different combinations of F (based on phased structure factors) and G constraints (based on structure-factor amplitudes) from different sources were applied in MEM calculations. In particular, a new combination of the MEM with the recently developed charge-flipping algorithm with histogram matching for powder diffraction data (pCF) was successfully introduced to avoid the inevitable bias of the phases of the structure-factor amplitudes by the Rietveld model. Completely ab initio electron-density distributions have been obtained with the MEM applied to a combination of structure-factor amplitudes from Le Bail fits with phases derived from pCF. All features of the crystal structures, in particular the disorder of the oxalate and carbonate anions, and the displacements of the cations, are clearly obtained. This approach bears the potential of a fast method of electron-density determination, even for highly disordered materials. All the MEM maps obtained in this work were compared with the MEM map derived from the best Rietveld refined model. In general, the phased observed structure factors obtained from Rietveld refinement (applying F and G constraints) were found to give the closest description of the experimental data and thus lead to the most accurate image of the actual disorder.

17.
Acta Crystallogr C ; 66(Pt 4): m107-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20354290

ABSTRACT

The crystal structure of Lambda-(1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]eicosane)cobalt(III) trinitrate, [Co(C(12)H(30)N(8))](NO(3))(3), consists of a sepulchrate moiety that serves as a macrobicyclic nitrogen cage for the Co(3+) cation, which is six-coordinated by N atoms, and three nitrate anions. The Co-sepulchrate group lies on a threefold axis (site symmetry 32), as do two symmetry-related and ordered nitrate groups (site symmetry 3), with which it is connected via N-H...O hydrogen bonds [Co-N = 5.1452 (12) A]. The third nitrate group is disordered as a result of symmetry requirements around the origin (site symmetry 32), and is further away from the Co-sepulchrate cage [Co-N = 6.3160 (8) A]. The structure is described by applying orientational disorder over six equivalent orientations for the disordered nitrate group, which is considered as an ideal planar molecule of regular trigonal geometry with its molecular plane rotated out of the ab plane and the molecular centre of gravity slightly shifted away from the origin. This new model for disorder clearly improves a previous crystal structure determination.

18.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 1): 18-27, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32831236

ABSTRACT

The structure of sodium saccharinate 1.875-hydrate is presented in three- and (3+1)-dimensional space. The present model is more accurate than previously published superstructures, due to an excellent data set collected up to a high resolution of 0.89 Å-1. The present study confirms the unusual complexity of the structure comprising a very large primitive unit cell with Z' = 16. A much smaller degree of correlated disorder of parts of the unit cell is found than is present in the previously published models. As a result of pseudo-symmetry, the structure can be described in a higher-dimensional space. The X-ray diffraction data clearly indicate a (3+1)-dimensional periodic structure with stronger main reflections and weaker superstructure reflections. Furthermore, the structure is established as being commensurate. The structure description in superspace results in a four times smaller unit cell with an additional base centring of the lattice, resulting in an eightfold substructure (Z' = 2) of the 3D superstructure. Therefore, such a superspace approach is desirable to work out this high-Z' structure. The displacement and occupational modulation of the saccharinate anions have been studied, as well as their conformational variation along the fourth dimension.

19.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 3): 450-468, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32831263

ABSTRACT

The structure of 4-methyl-3-[(tetrahydro-2H-pyran-2-yl)oxy]thiazole-2(3H)-thione (MTTOTHP) was investigated using X-ray diffraction and computational chemistry methods for determining properties of the nitrogen-oxygen bond, which is the least stable entity upon photochemical excitation. Experimentally measured structure factors have been used to determine and characterize charge density via the multipole model (MM) and the maximum entropy method (MEM). Theoretical investigation of the electron density and the electronic structure has been performed in the finite basis set density functional theory (DFT) framework. Quantum Theory of Atoms In Molecules (QTAIM), deformation densities and Laplacians maps have been used to compare theoretical and experimental results. MM experimental results and predictions from theory differ with respect to the sign and/or magnitude of the Laplacian at the N-O bond critical point (BCP), depending on the treatment of n values of the MM radial functions. Such Laplacian differences in the N-O bond case are discussed with respect to a lack of flexibility in the MM radial functions also reported by Rykounov et al. [Acta Cryst. (2011), B67, 425-436]. BCP Hessian eigenvalues show qualitatively matching results between MM and DFT. In addition, the theoretical analysis used domain-averaged fermi holes (DAFH), natural bond orbital (NBO) analysis and localized (LOC) orbitals to characterize the N-O bond as a single σ bond with marginal π character. Hirshfeld atom refinement (HAR) has been employed to compare to the MM refinement results and/or neutron dataset C-H bond lengths and to crystal or single molecule geometry optimizations, including considerations of anisotropy of H atoms. Our findings help to understand properties of molecules like MTTOTHP as progenitors of free oxygen radicals.

20.
Acta Crystallogr B ; 65(Pt 5): 624-38, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19767685

ABSTRACT

Charge densities have been determined by the Maximum Entropy Method (MEM) from the high-resolution, low-temperature (T approximately 20 K) X-ray diffraction data of six different crystals of amino acids and peptides. A comparison of dynamic deformation densities of the MEM with static and dynamic deformation densities of multipole models shows that the MEM may lead to a better description of the electron density in hydrogen bonds in cases where the multipole model has been restricted to isotropic displacement parameters and low-order multipoles (l(max) = 1) for the H atoms. Topological properties at bond critical points (BCPs) are found to depend systematically on the bond length, but with different functions for covalent C-C, C-N and C-O bonds, and for hydrogen bonds together with covalent C-H and N-H bonds. Similar dependencies are known for AIM properties derived from static multipole densities. The ratio of potential and kinetic energy densities |V(BCP)|/G(BCP) is successfully used for a classification of hydrogen bonds according to their distance d(H...O) between the H atom and the acceptor atom. The classification based on MEM densities coincides with the usual classification of hydrogen bonds as strong, intermediate and weak [Jeffrey (1997). An Introduction to Hydrogen Bonding. Oxford University Press]. MEM and procrystal densities lead to similar values of the densities at the BCPs of hydrogen bonds, but differences are shown to prevail, such that it is found that only the true charge density, represented by MEM densities, the multipole model or some other method can lead to the correct characterization of chemical bonding. Our results do not confirm suggestions in the literature that the promolecule density might be sufficient for a characterization of hydrogen bonds.


Subject(s)
Amino Acids/chemistry , Crystallography, X-Ray , Electrochemistry , Entropy , Hydrogen Bonding , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL