Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 390(7): 623-629, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38354141

ABSTRACT

Wolman's disease, a severe form of lysosomal acid lipase deficiency, leads to pathologic lipid accumulation in the liver and gut that, without treatment, is fatal in infancy. Although continued enzyme-replacement therapy (ERT) in combination with dietary fat restriction prolongs life, its therapeutic effect may wane over time. Allogeneic hematopoietic stem-cell transplantation (HSCT) offers a more definitive solution but carries a high risk of death. Here we describe an infant with Wolman's disease who received high-dose ERT, together with dietary fat restriction and rituximab-based B-cell depletion, as a bridge to early HSCT. At 32 months, the infant was independent of ERT and disease-free, with 100% donor chimerism in the peripheral blood.


Subject(s)
Dietary Fats , Enzyme Replacement Therapy , Hematopoietic Stem Cell Transplantation , Immunologic Factors , Rituximab , Wolman Disease , Humans , Infant , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Chimerism , Dietary Fats/adverse effects , Enzyme Replacement Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , Immunologic Factors/therapeutic use , Rituximab/therapeutic use , Transplantation, Homologous , Wolman Disease/diet therapy , Wolman Disease/drug therapy , Wolman Disease/immunology , Wolman Disease/therapy
2.
Mol Genet Metab ; 142(1): 108361, 2024 May.
Article in English | MEDLINE | ID: mdl-38442492

ABSTRACT

INTRODUCTION: Phenylketonuria (PKU) requires regular phenylalanine monitoring to ensure optimal outcome. However, home sampling methods used for monitoring suffer high pre-analytical variability, inter-laboratory variability and turn-around-times, highlighting the need for alternative methods of home sampling or monitoring. METHODS: A survey was distributed through email and social media to (parents of) PKU patients and professionals working in inherited metabolic diseases in Denmark, The Netherlands, and United Kingdom regarding satisfaction with current home sampling methods and expectations for future point-of-care testing (POCT). RESULTS: 210 parents, 156 patients and 95 professionals completed the survey. Countries, and parents and patients were analysed together, in absence of significant group differences for most questions. Important results are: 1) Many patients take less home samples than advised. 2) The majority of (parents of) PKU patients are (somewhat) dissatisfied with their home sampling method, especially with turn-around-times (3-5 days). 3) 37% of professionals are dissatisfied with their home sampling method and 45% with the turn-around-times. 4) All responders are positive towards developments for POCT: 97% (n = 332) of (parents of) patients is willing to use a POC-device and 76% (n = 61) of professionals would recommend their patients to use a POC-device. 5) Concerns from all participants for future POC-devices are costs/reimbursements and accuracy, and to professionals specifically, accessibility to results, over-testing, patient anxiety, and patients adjusting their diet without consultation. CONCLUSION: The PKU community is (somewhat) dissatisfied with current home sampling methods, highlighting the need for alternatives of Phe monitoring. POCT might be such an alternative and the community is eager for its arrival.


Subject(s)
Parents , Phenylketonurias , Point-of-Care Testing , Humans , Phenylketonurias/diagnosis , Phenylketonurias/blood , Male , Female , Surveys and Questionnaires , Parents/psychology , Blood Specimen Collection , United Kingdom , Netherlands , Adult , Patient Satisfaction , Phenylalanine/blood , Denmark , Child , Adolescent
3.
J Inherit Metab Dis ; 47(4): 636-650, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38433424

ABSTRACT

Infants born to mothers with phenylketonuria (PKU) may develop congenital abnormalities because of elevated phenylalanine (Phe) levels in the mother during pregnancy. Maintenance of blood Phe levels between 120 and 360 µmol/L reduces risks of birth defects. Sapropterin dihydrochloride helps maintain blood Phe control, but there is limited evidence on its risk-benefit ratio when used during pregnancy. Data from the maternal sub-registries-KAMPER (NCT01016392) and PKUDOS (NCT00778206; PKU-MOMs sub-registry)-were collected to assess the long-term safety and efficacy of sapropterin in pregnant women in a real-life setting. Pregnancy and infant outcomes, and the safety of sapropterin were assessed. Final data from 79 pregnancies in 57 women with PKU are reported. Sapropterin dose was fairly constant before and during pregnancy, with blood Phe levels maintained in the recommended target range during the majority (82%) of pregnancies. Most pregnancies were carried to term, and the majority of liveborn infants were reported as 'normal' at birth. Few adverse and serious adverse events were considered related to sapropterin, with these occurring in participants with high blood Phe levels. This report represents the largest population of pregnant women with PKU exposed to sapropterin. Results demonstrate that exposure to sapropterin during pregnancy was well-tolerated and facilitated maintenance of blood Phe levels within the target range, resulting in normal delivery. This critical real-world data may facilitate physicians and patients to make informed treatment decisions about using sapropterin in pregnant women with PKU and in women of childbearing age with PKU who are responsive to sapropterin.


Subject(s)
Biopterins , Phenylalanine , Phenylketonurias , Pregnancy Outcome , Registries , Humans , Pregnancy , Female , Adult , Phenylalanine/blood , Biopterins/analogs & derivatives , Biopterins/therapeutic use , Biopterins/adverse effects , Infant, Newborn , Phenylketonurias/drug therapy , Phenylketonurias/blood , Phenylketonuria, Maternal/drug therapy , Young Adult , Europe , Pregnancy Complications/drug therapy , Pregnancy Complications/blood
4.
J Inherit Metab Dis ; 47(4): 598-623, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38627985

ABSTRACT

Sulfite intoxication is the hallmark of four ultrarare disorders that are caused by impaired sulfite oxidase activity due to genetic defects in the synthesis of the molybdenum cofactor or of the apoenzyme sulfite oxidase. Delays on the diagnosis of these disorders are common and have been caused by their unspecific presentation of acute neonatal encephalopathy with high early mortality, followed by the evolution of dystonic cerebral palsy and also by the lack of easily available and reliable diagnostic tests. There is significant variation in survival and in the quality of symptomatic management of affected children. One of the four disorders, molybdenum cofactor deficiency type A (MoCD-A) has recently become amenable to causal treatment with synthetic cPMP (fosdenopterin). The evidence base for the rational use of cPMP is very limited. This prompted the formulation of these clinical guidelines to facilitate diagnosis and support the management of patients. The guidelines were developed by experts in diagnosis and treatment of sulfite intoxication disorders. It reflects expert consensus opinion and evidence from a systematic literature search.


Subject(s)
Metal Metabolism, Inborn Errors , Sulfite Oxidase , Humans , Infant, Newborn , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/genetics , Coenzymes/deficiency , Consensus , Metal Metabolism, Inborn Errors/diagnosis , Metal Metabolism, Inborn Errors/therapy , Metalloproteins/deficiency , Molybdenum Cofactors , Pteridines , Sulfite Oxidase/deficiency , Sulfite Oxidase/genetics
5.
J Inherit Metab Dis ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237321

ABSTRACT

Phenylketonuria is a rare inherited disorder that disrupts the metabolism of phenylalanine (Phe) to tyrosine by phenylalanine hydroxylase (PAH). Sapropterin dihydrochloride (Kuvan®) is approved for use in Europe to reduce blood Phe levels and improve Phe tolerance in sapropterin-responsive individuals. KAMPER (NCT01016392) is an observational, multinational registry assessing long-term safety and efficacy of sapropterin. Five hundred and seventy-six participants with PAH deficiency were enrolled from nine European countries (69 sites; December 2009-May 2016). Participants were aged <4 years (n = 11), 4 to <12 years (n = 329), 12 to <18 years (n = 141), and ≥18 years (n = 95) at enrolment. Overall, 401 (69.6%) participants experienced a total of 1960 adverse events; 61 events in 42 participants were serious, and two were considered sapropterin-related by the investigator. Mean (standard deviation) actual dietary Phe intake increased from baseline across all age groups: 957 (799) mg/day to a maximum of 1959 (1121) mg/day over a total study period of 11 years. Most participants exhibited an increase in Phe tolerance while blood Phe levels remained in the target range for their age (120-360 µmol/L for <12 years; 120-600 µmol/L for ≥12 years). Most participants exhibited normal growth for height, weight, and body mass index. No additional safety concerns were identified. As an observational study, limitations include variability in routine care practices and inconsistent availability of data. Long-term sapropterin use demonstrates a favourable safety profile in real-world settings and increases Phe tolerance in participants with PAH deficiency while maintaining blood Phe levels in the target ranges.

6.
J Med Genet ; 60(12): 1177-1185, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37487700

ABSTRACT

BACKGROUND: Newborn screening (NBS) programmes identify a wide range of disease phenotypes, which raises the question whether early identification and treatment is beneficial for all. This study aims to answer this question for primary carnitine deficiency (PCD) taking into account that NBS for PCD identifies newborns with PCD and also until then undiagnosed mothers. METHODS: We investigated clinical, genetic (variants in SLC22A5 gene) and functional (carnitine transport activity in fibroblasts) characteristics of all referred individuals through NBS (newborns and mothers) and clinically diagnosed patients with PCD (not through NBS). Disease phenotype in newborns was predicted using data from PCD mothers and cases published in literature with identical SLC22A5 variants. RESULTS: PCD was confirmed in 19/131 referred newborns, 37/82 referred mothers and 5 clinically diagnosed patients. Severe symptoms were observed in all clinically diagnosed patients, 1 newborn and none of the mothers identified by NBS. PCD was classified as severe in all 5 clinically diagnosed patients, 3/19 newborns and 1/37 mothers; as benign in 8/19 newborns and 36/37 mothers and as unknown in 8/19 newborns. Carnitine transport activity completely separated severe phenotype from benign phenotype (median (range): 4.0% (3.5-5.0)] vs 26% (9.5-42.5), respectively). CONCLUSION: The majority of mothers and a significant proportion of newborns with PCD identified through NBS are likely to remain asymptomatic without early treatment. Conversely, a small proportion of newborns with predicted severe PCD could greatly benefit from early treatment. Genetic variants and carnitine transport activity can be used to distinguish between these groups.


Subject(s)
Carnitine , Neonatal Screening , Female , Humans , Infant, Newborn , Retrospective Studies , Solute Carrier Family 22 Member 5/genetics , Mutation , Carnitine/genetics
7.
Am J Hum Genet ; 107(2): 234-250, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32668217

ABSTRACT

Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.


Subject(s)
Genetic Predisposition to Disease/genetics , Phenylketonurias/epidemiology , Phenylketonurias/genetics , Alleles , Biopterins/analogs & derivatives , Biopterins/genetics , Europe , Gene Frequency/genetics , Genetic Association Studies/methods , Genotype , Homozygote , Humans , Mutation/genetics , Phenotype , Phenylalanine/blood , Phenylalanine Hydroxylase/genetics , Phenylketonurias/blood
8.
Blood ; 136(9): 1033-1043, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32294159

ABSTRACT

Neutropenia and neutrophil dysfunction cause serious infections and inflammatory bowel disease in glycogen storage disease type Ib (GSD-Ib). Our discovery that accumulating 1,5-anhydroglucitol-6-phosphate (1,5AG6P) caused neutropenia in a glucose-6-phosphatase 3 (G6PC3)-deficient mouse model and in 2 rare diseases (GSD-Ib and G6PC3 deficiency) led us to repurpose the widely used antidiabetic drug empagliflozin, an inhibitor of the renal glucose cotransporter sodium glucose cotransporter 2 (SGLT2). Off-label use of empagliflozin in 4 GSD-Ib patients with incomplete response to granulocyte colony-stimulating factor (GCSF) treatment decreased serum 1,5AG and neutrophil 1,5AG6P levels within 1 month. Clinically, symptoms of frequent infections, mucosal lesions, and inflammatory bowel disease resolved, and no symptomatic hypoglycemia was observed. GCSF could be discontinued in 2 patients and tapered by 57% and 81%, respectively, in the other 2. The fluctuating neutrophil numbers in all patients were increased and stabilized. We further demonstrated improved neutrophil function: normal oxidative burst (in 3 of 3 patients tested), corrected protein glycosylation (2 of 2), and normal neutrophil chemotaxis (1 of 1), and bactericidal activity (1 of 1) under treatment. In summary, the glucose-lowering SGLT2 inhibitor empagliflozin, used for type 2 diabetes, was successfully repurposed for treating neutropenia and neutrophil dysfunction in the rare inherited metabolic disorder GSD-Ib without causing symptomatic hypoglycemia. We ascribe this to an improvement in neutrophil function resulting from the reduction of the intracellular concentration of 1,5AG6P.


Subject(s)
Benzhydryl Compounds/therapeutic use , Glucosides/therapeutic use , Glycogen Storage Disease Type I/complications , Hexosephosphates/blood , Neutropenia/drug therapy , Neutrophils/pathology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Benzhydryl Compounds/adverse effects , Blood Glucose/analysis , Chemotaxis, Leukocyte/drug effects , Child, Preschool , Drug Repositioning , Drug Resistance , Female , Glucosides/adverse effects , Glycogen Storage Disease Type I/blood , Glycogen Storage Disease Type I/immunology , Granulocyte Colony-Stimulating Factor/therapeutic use , Granulocytes/chemistry , Humans , Infant, Newborn , Lysosomal-Associated Membrane Protein 2/blood , Male , Neutropenia/blood , Off-Label Use , Respiratory Burst/drug effects , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Young Adult
9.
Pediatr Res ; 91(4): 874-878, 2022 03.
Article in English | MEDLINE | ID: mdl-34497359

ABSTRACT

BACKGROUND: In phenylketonuria, treatment and subsequent lowering of phenylalanine levels usually occur within the first month of life. This study investigated whether different indicators of metabolic control during the neonatal period were associated with IQ during late childhood/early adolescence. METHODS: Overall phenylalanine concentration during the first month of life (total "area under the curve"), proportion of phenylalanine concentrations above upper target level (360 µmol/L) and proportion below lower target level (120 µmol/L) during this period, diagnostic phenylalanine levels, number of days until phenylalanine levels were <360 µmol/L, and lifetime and concurrent phenylalanine levels were correlated with IQ scores of 64 PKU patients (mean age 10.8 years, SD 2.9). RESULTS: Overall phenylalanine concentration and proportion of phenylalanine concentrations >360 µmol/L during the first month of life negatively correlated with IQ in late childhood/early adolescence. Separately, phenylalanine concentrations during different periods within the first month of life (0-10 days, 11-20 days, 21-30 days) were negatively correlated with later IQ as well, but correlation strengths did not differ significantly. No further significant associations were found. CONCLUSIONS: In phenylketonuria, achievement of target-range phenylalanine levels during the neonatal period is important for cognition later in life, also when compared to other indicators of metabolic control. IMPACT: In phenylketonuria, it remains unclear during which age periods or developmental stages metabolic control is most important for later cognitive outcomes. Phenylalanine levels during the neonatal period were clearly and negatively related to later IQ, whereas no significant associations were observed for other indices of metabolic control. This emphasizes the relative importance of this period for cognitive development in phenylketonuria. No further distinctions were observed in strength of associations with later IQ between different indicators of metabolic control during the neonatal period. Thus, achievement of good metabolic control within 1 month after birth appears "safe" with respect to later cognitive outcomes.


Subject(s)
Phenylketonurias , Adolescent , Attention , Child , Cognition , Humans , Infant, Newborn , Phenylalanine , Phenylketonurias/psychology
10.
J Inherit Metab Dis ; 45(5): 952-962, 2022 09.
Article in English | MEDLINE | ID: mdl-35722880

ABSTRACT

Tyrosinemia type 1 (TT1) and phenylketonuria (PKU) are both inborn errors of phenylalanine-tyrosine metabolism. Neurocognitive and behavioral outcomes have always featured in PKU research but received less attention in TT1 research. This study aimed to investigate and compare neurocognitive, behavioral, and social outcomes of treated TT1 and PKU patients. We included 33 TT1 patients (mean age 11.24 years; 16 male), 31 PKU patients (mean age 10.84; 14 male), and 58 age- and gender-matched healthy controls (mean age 10.82 years; 29 male). IQ (Wechsler-subtests), executive functioning (the Behavioral Rating Inventory of Executive Functioning), mental health (the Achenbach-scales), and social functioning (the Social Skills Rating System) were assessed. Results of TT1 patients, PKU patients, and healthy controls were compared using Kruskal-Wallis tests with post-hoc Mann-Whitney U tests. TT1 patients showed a lower IQ and poorer executive functioning, mental health, and social functioning compared to healthy controls and PKU patients. PKU patients did not differ from healthy controls regarding these outcome measures. Relatively poor outcomes for TT1 patients were particularly evident for verbal IQ, BRIEF dimensions "working memory", "plan and organize" and "monitor", ASEBA dimensions "social problems" and "attention problems", and for the SSRS "assertiveness" scale (all p values <0.001). To conclude, TT1 patients showed cognitive impairments on all domains studied, and appeared to be significantly more affected than PKU patients. More attention should be paid to investigating and monitoring neurocognitive outcome in TT1 and research should focus on explaining the underlying pathophysiological mechanism.


Subject(s)
Phenylketonurias , Tyrosinemias , Child , Humans , Male , Mental Health , Metabolic Networks and Pathways , Neuropsychological Tests , Tyrosinemias/genetics
11.
Mol Genet Metab ; 134(3): 250-256, 2021 11.
Article in English | MEDLINE | ID: mdl-34656426

ABSTRACT

BACKGROUND: In phenylketonuria (PKU), treatment monitoring is based on frequent blood phenylalanine (Phe) measurements, as this is the predictor of neurocognitive and behavioural outcome by reflecting brain Phe concentrations and brain biochemical changes. Despite clinical studies describing the relevance of blood Phe to outcome in PKU patients, blood Phe does not explain the variance in neurocognitive and behavioural outcome completely. METHODS: In a PKU mouse model we investigated 1) the relationship between plasma Phe and brain biochemistry (Brain Phe and monoaminergic neurotransmitter concentrations), and 2) whether blood non-Phe Large Neutral Amino Acids (LNAA) would be of additional value to blood Phe concentrations to explain brain biochemistry. To this purpose, we assessed blood amino acid concentrations and brain Phe as well as monoaminergic neurotransmitter levels in in 114 Pah-Enu2 mice on both B6 and BTBR backgrounds using (multiple) linear regression analyses. RESULTS: Plasma Phe concentrations were strongly correlated to brain Phe concentrations, significantly negatively correlated to brain serotonin and norepinephrine concentrations and only weakly correlated to brain dopamine concentrations. From all blood markers, Phe showed the strongest correlation to brain biochemistry in PKU mice. Including non-Phe LNAA concentrations to the multiple regression model, in addition to plasma Phe, did not help explain brain biochemistry. CONCLUSION: This study showed that blood Phe is still the best amino acid predictor of brain biochemistry in PKU. Nevertheless, neurocognitive and behavioural outcome cannot fully be explained by blood or brain Phe concentrations, necessitating a search for other additional parameters. TAKE-HOME MESSAGE: Blood Phe is still the best amino acid predictor of brain biochemistry in PKU. Nevertheless, neurocognitive and behavioural outcome cannot fully be explained by blood or brain Phe concentrations, necessitating a search for other additional parameters.


Subject(s)
Brain Chemistry , Brain/physiopathology , Phenylketonurias/blood , Phenylketonurias/physiopathology , Amino Acids/blood , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Neurotransmitter Agents/analysis , Phenylalanine/analysis
12.
J Pediatr ; 239: 231-234.e2, 2021 12.
Article in English | MEDLINE | ID: mdl-34474089

ABSTRACT

Many countries do not have a newborn screening (NBS) program, and immigrants from such countries are at risk for late diagnosis of phenylketonuria (PKU). In this international survey, 52 of 259 patients (20%) with late diagnosed PKU were immigrants, and 145 of the 259 (55%) were born before NBS or in a location without NBS.


Subject(s)
Delayed Diagnosis/statistics & numerical data , Emigrants and Immigrants , Health Services Accessibility/statistics & numerical data , Neonatal Screening/trends , Phenylketonurias/diagnosis , Adolescent , Adult , Child , Child, Preschool , Female , Global Health , Health Care Surveys , Health Policy , Health Services Accessibility/organization & administration , Humans , Infant , Infant, Newborn , Male , Neonatal Screening/organization & administration , Young Adult
13.
Pediatr Res ; 90(5): 1058-1064, 2021 11.
Article in English | MEDLINE | ID: mdl-33574561

ABSTRACT

BACKGROUND: Vitamin B12 deficiency in children may be associated with (severe) neurological manifestations, therefore recognition is important. Diagnosing vitamin B12 deficiency in children is challenging. This study aimed to investigate plasma methylmalonic acid, holotranscobalamin, and total cobalamin in children 0-18 years of age and to estimate age-dependent reference intervals. METHODS: Plasma vitamin B12 markers were measured in collected plasma samples of 170 children 0-18 years visiting a local primary care laboratory. All had within-reference hemoglobin and MCV values. Pediatric plasma vitamin B12 biomarkers were measured and reference values were derived thereof. RESULTS: Plasma methylmalonic acid was higher in young children, in particular between 1 and 6 months of age; total cobalamin and holotranscobalamin were highest from 0.5 to 4 years and decreased till 10 years of age. Plasma holotranscobalamin was highly correlated with plasma total cobalamin; their ratio was independent of age. Plasma methylmalonic acid was slightly more related to total cobalamin than to holotranscobalamin. A large proportion of mainly young children would be misclassified when adult references are applied. CONCLUSIONS: Pediatric reference values for cobalamin markers are necessary to allow for early recognition and monitoring of children suspect of (clinical) cobalamin deficiency. IMPACT: We analyzed three plasma vitamin B12 status markers, i.e., total cobalamin, holotranscobalamin, and methylmalonic acid, in the plasma of 170 children 0-18 years of age and were able to derive reference intervals thereof. Recognition of vitamin B12 deficiency in children is important but challenging as pediatric reference intervals for plasma vitamin B12 status markers, particularly plasma holotranscobalamin, are not well described. We think that our results may help early recognition and monitoring of children suspect of (clinical) vitamin B12 deficiency.


Subject(s)
Age Factors , Vitamin B 12/blood , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Netherlands
14.
J Inherit Metab Dis ; 44(5): 1124-1135, 2021 09.
Article in English | MEDLINE | ID: mdl-33844307

ABSTRACT

Patients with inborn errors of metabolism causing fasting intolerance can experience acute metabolic decompensations. Long-term data on outcomes using emergency letters are lacking. This is a retrospective, observational, single-center study of the use of emergency letters based on a generic emergency protocol in patients with hepatic glycogen storage diseases (GSD) or fatty acid oxidation disorders (FAOD). Data on hospital admissions, initial laboratory results, and serious adverse events were collected. Subsequently, the website www.emergencyprotocol.net was generated in the context of the CONNECT MetabERN eHealth project following multiple meetings, protocol revisions, and translations. Representing 470 emergency protocol years, 127 hospital admissions were documented in 54/128 (42%) patients who made use of emergency letters generated based on the generic emergency protocol. Hypoglycemia (here defined as glucose concentration < 3.9 mmol/L) was reported in only 15% of hospital admissions and was uncommon in patients with ketotic GSD and patients with FAOD aged >5 years. Convulsions, coma, or death was not documented. By providing basic information, emergency letters for individual patients with hepatic GSD or the main FAOD can be generated at www.emergencyprotocol.net, in nine different languages. Generic emergency protocols are safe and easy for home management by the caregivers and the first hour in-hospital management to prevent metabolic emergencies in patients with hepatic GSD and medium-chain Acyl CoA dehydrogenase deficiency. The website www.emergencyprotocol.net is designed to support families and healthcare providers to generate personalized emergency letters for patients with hepatic GSD and the main FAOD.


Subject(s)
Emergency Treatment/methods , Glycogen Storage Disease Type I/metabolism , Hypoglycemia/therapy , Lipid Metabolism, Inborn Errors/metabolism , Telemedicine , Adolescent , Adult , Child , Child, Preschool , Fasting , Fatty Acids/metabolism , Female , Glycogen Storage Disease Type I/physiopathology , Humans , Hypoglycemia/etiology , Infant , Infant, Newborn , Lipid Metabolism, Inborn Errors/physiopathology , Male , Middle Aged , Oxidation-Reduction , Retrospective Studies , Young Adult
15.
J Med Genet ; 57(3): 145-150, 2020 03.
Article in English | MEDLINE | ID: mdl-31484718

ABSTRACT

Phenylketonuria (PKU) is a prototypical model of a neurodevelopmental metabolic disease that follows a cascade of pathological events affecting brain maturation and functioning. Neonatal screening and early treatment have eradicated the classical PKU phenotype in patients with early and continuously treated phenylketonuria (ECTPKU). However, effort is required to optimise the treatment of the disease to minimise the risk of lifelong neurological, cognitive and behavioural impairment, and to solve issues on the variability in clinical outcome that are rather not understood and has yet hampered a more personalised approach to its treatment. The aim of the present review is to focus on the inconsistencies in the clinical outcome of adult patients with ECTPKU unexplained by the biochemical markers adopted for the monitoring of the disease to date. The interindividual variability of clinical outcome in late as well as in early treated patients under similar biochemical control suggests the existence of disease-independent determinants influencing the individual vulnerability to the neurotoxic effect of phenylalanine. This is further supported by the low predictive power of blood phenylalanine on the clinical outcome from the second decade of life onwards. In conclusion, individual vulnerability to the metabolic alterations of PKU contributes to the prognosis of PKU, also in patients with ECTPKU. The biological factors constitutive of this vulnerability are unknown (but have not been the object of many studies so far) and should be the target of further research as prerequisite for a personalised treatment aimed at avoiding burden and costs of overtreatment and clinical consequences and risks of undertreatment in patients with PKU.


Subject(s)
Brain/physiopathology , Cognition/drug effects , Phenylalanine/metabolism , Phenylketonurias/metabolism , Adult , Brain/metabolism , Cognition/physiology , Female , Humans , Infant, Newborn , Neonatal Screening , Phenylketonurias/pathology , Phenylketonurias/therapy , Precision Medicine
16.
Hum Mol Genet ; 27(17): 3029-3045, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29878199

ABSTRACT

Genomics methodologies have significantly improved elucidation of Mendelian disorders. The combination with high-throughput functional-omics technologies potentiates the identification and confirmation of causative genetic variants, especially in singleton families of recessive inheritance. In a cohort of 99 individuals with abnormal Golgi glycosylation, 47 of which being unsolved, glycomics profiling was performed of total plasma glycoproteins. Combination with whole-exome sequencing in 31 cases revealed a known genetic defect in 15 individuals. To identify additional genetic factors, hierarchical clustering of the plasma glycomics data was done, which indicated a subgroup of four patients that shared a unique glycomics signature of hybrid type N-glycans. In two siblings, compound heterozygous mutations were found in SLC10A7, a gene of unknown function in human. These included a missense mutation that disrupted transmembrane domain 4 and a mutation in a splice acceptor site resulting in skipping of exon 9. The two other individuals showed a complete loss of SLC10A7 mRNA. The patients' phenotype consisted of amelogenesis imperfecta, skeletal dysplasia, and decreased bone mineral density compatible with osteoporosis. The patients' phenotype was mirrored in SLC10A7 deficient zebrafish. Furthermore, alizarin red staining of calcium deposits in zebrafish morphants showed a strong reduction in bone mineralization. Cell biology studies in fibroblasts of affected individuals showed intracellular mislocalization of glycoproteins and a defect in post-Golgi transport of glycoproteins to the cell membrane. In contrast to yeast, human SLC10A7 localized to the Golgi. Our combined data indicate an important role for SLC10A7 in bone mineralization and transport of glycoproteins to the extracellular matrix.


Subject(s)
Bone Diseases, Developmental/etiology , Calcification, Physiologic , Congenital Disorders of Glycosylation/complications , Genomics , Glycomics , Mutation , Organic Anion Transporters, Sodium-Dependent/genetics , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/deficiency , Symporters/genetics , Adult , Animals , Bone Diseases, Developmental/metabolism , Bone Diseases, Developmental/pathology , Cells, Cultured , Cohort Studies , Exome , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Glycosylation , Golgi Apparatus/metabolism , Golgi Apparatus/pathology , Humans , Infant , Male , Organic Anion Transporters, Sodium-Dependent/metabolism , Pedigree , Phenotype , Protein Transport , Symporters/metabolism , Young Adult , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism
17.
Am J Hum Genet ; 101(6): 965-976, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29220678

ABSTRACT

Zellweger spectrum disorders (ZSDs) are autosomal-recessive disorders that are caused by defects in peroxisome biogenesis due to bi-allelic mutations in any of 13 different PEX genes. Here, we identified seven unrelated individuals affected with an apparent dominant ZSD in whom a heterozygous mutant PEX6 allele (c.2578C>T [p.Arg860Trp]) was overrepresented due to allelic expression imbalance (AEI). We demonstrated that AEI of PEX6 is a common phenomenon and is correlated with heterozygosity for a frequent variant in the 3' untranslated region (UTR) of the mutant allele, which disrupts the most distal of two polyadenylation sites. Asymptomatic parents, who were heterozygous for PEX c.2578C>T, did not show AEI and were homozygous for the 3' UTR variant. Overexpression models confirmed that the overrepresentation of the pathogenic PEX6 c.2578T variant compared to wild-type PEX6 c.2578C results in a peroxisome biogenesis defect and thus constitutes the cause of disease in the affected individuals. AEI promoting the overrepresentation of a mutant allele might also play a role in other autosomal-recessive disorders, in which only one heterozygous pathogenic variant is identified.


Subject(s)
3' Untranslated Regions/genetics , ATPases Associated with Diverse Cellular Activities/genetics , Allelic Imbalance/genetics , Zellweger Syndrome/genetics , Alleles , Cells, Cultured , Female , Gene Expression Regulation/genetics , Genetic Predisposition to Disease , Humans , Male , Peroxisomes/genetics , Peroxisomes/pathology , Exome Sequencing
18.
Genet Med ; 22(5): 908-916, 2020 05.
Article in English | MEDLINE | ID: mdl-31904027

ABSTRACT

PURPOSE: Multiple acyl-CoA dehydrogenase deficiency (MADD) is a life-threatening, ultrarare inborn error of metabolism. Case reports described successful D,L-3-hydroxybutyrate (D,L-3-HB) treatment in severely affected MADD patients, but systematic data on efficacy and safety is lacking. METHODS: A systematic literature review and an international, retrospective cohort study on clinical presentation, D,L-3-HB treatment method, and outcome in MADD(-like) patients. RESULTS: Our study summarizes 23 MADD(-like) patients, including 14 new cases. Median age at clinical onset was two months (interquartile range [IQR]: 8 months). Median age at starting D,L-3-HB was seven months (IQR: 4.5 years). D,L-3-HB doses ranged between 100 and 2600 mg/kg/day. Clinical improvement was reported in 16 patients (70%) for cardiomyopathy, leukodystrophy, liver symptoms, muscle symptoms, and/or respiratory failure. D,L-3-HB appeared not effective for neuropathy. Survival appeared longer upon D,L-3-HB compared with historical controls. Median time until first clinical improvement was one month, and ranged up to six months. Reported side effects included abdominal pain, constipation, dehydration, diarrhea, and vomiting/nausea. Median D,L-3-HB treatment duration was two years (IQR: 6 years). D,L-3-HB treatment was discontinued in 12 patients (52%). CONCLUSION: The strength of the current study is the international pooling of data demonstrating that D,L-3-HB treatment can be effective and safe in MADD(-like) patients.


Subject(s)
Cardiomyopathies , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , 3-Hydroxybutyric Acid , Acyl-CoA Dehydrogenase/genetics , Humans , Infant , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Retrospective Studies
19.
Mol Genet Metab ; 129(3): 186-192, 2020 03.
Article in English | MEDLINE | ID: mdl-31924462

ABSTRACT

BACKGROUND: Phenylketonuria (PKU) is an inborn error of phenylalanine (Phe) metabolism. Besides dietary treatment, some patients are responsive to and treated with tetrahydrobiopterin (BH4). Our primary objective was to examine whether the 48-hour BH4 loading test misses BH4-responsive PKU patients. Secondary, we assessed if it would be beneficial to 1) use a cut-off value of 20% Phe reduction instead of commonly used 30%, and 2) extend the loading test to 7 days. METHODS: 24 patients with a 20-30% decrease of blood Phe levels during their initial 48-hour BH4 loading test or at least one mutation associated with long-term BH4 responsiveness, were invited to participate. 22 of them underwent the 7-day BH4 loading test. During the BH4 loading test, BH4 was administered orally once daily for 7 days (20 mg/kg/day). Blood samples on filter paper were collected at 13 time points. Potential BH4 responders (≥20% decrease in blood Phe concentrations at ≥1 moment within the first 48 h or ≥30% at ≥1 moment during the entire test) underwent a treatment trial to assess true long-term responsiveness (≥30% decrease of Phe levels compared to baseline and/or ≥50% increase in natural protein tolerance in accordance with the Dutch guidelines before 2017). The duration of the treatment trial varied from 2 to 18 months. RESULTS: Of the 22 patients who completed the 7-day BH4 loading test, 2 were excluded, 8 had negative tests and 12 were considered to be potential BH4 responders. Of these 12 potential BH4-responsive PKU patients, 5 turned out to be false positive, 6 true-responder and 1 was withdrawn. CONCLUSION: Even though the 48-hour BH4 loading test has proven its efficacy in the past, a full week may be necessary to detect all responders. So, if blood Phe concentrations during the 48-hour BH4 test shows a clear tendency, but not sufficient decrease, a full week (with only measurements each 24 h) could be offered. A threshold of ≥20% decrease within 48 h is not useful for predicting true BH4 responsiveness.


Subject(s)
Biopterins/analogs & derivatives , Diagnostic Tests, Routine/methods , Phenylalanine/blood , Phenylketonurias/diagnosis , Phenylketonurias/drug therapy , Adolescent , Adult , Biopterins/administration & dosage , Child , Female , Genotype , Humans , Male , Middle Aged , Mutation , Phenylketonurias/diet therapy , Phenylketonurias/genetics , Time Factors
20.
J Inherit Metab Dis ; 43(2): 189-199, 2020 03.
Article in English | MEDLINE | ID: mdl-31373030

ABSTRACT

In phenylketonuria (PKU) patients, early diagnosis by neonatal screening and immediate institution of a phenylalanine-restricted diet can prevent severe intellectual impairment. Nevertheless, outcome remains suboptimal in some patients asking for additional treatment strategies. Tetrahydrobiopterin (BH4 ) could be one of those treatment options, as it may not only increase residual phenylalanine hydroxylase activity in BH4 -responsive PKU patients, but possibly also directly improves neurocognitive functioning in both BH4 -responsive and BH4 -unresponsive PKU patients. In the present review, we aim to further define the theoretical working mechanisms by which BH4 might directly influence neurocognitive functioning in PKU having passed the blood-brain barrier. Further research should investigate which of these mechanisms are actually involved, and should contribute to the development of an optimal BH4 treatment regimen to directly improve neurocognitive functioning in PKU. Such possible repurposing approach of BH4 treatment in PKU may improve neuropsychological outcome and mental health in both BH4 -responsive and BH4 -unresponsive PKU patients.


Subject(s)
Biopterins/analogs & derivatives , Phenylketonurias/drug therapy , Biopterins/therapeutic use , Cognition , Humans , Infant, Newborn , Neonatal Screening , Oxidative Stress , Phenylalanine/blood , White Matter
SELECTION OF CITATIONS
SEARCH DETAIL