ABSTRACT
RATIONALE: Pathogenic (P)/likely pathogenic (LP) SMAD3 variants cause Loeys-Dietz syndrome type 3 (LDS3), which is characterized by arterial aneurysms, dissections and tortuosity throughout the vascular system combined with osteoarthritis. OBJECTIVES: Investigate the impact of P/LP SMAD3 variants with functional tests on patient-derived fibroblasts and vascular smooth muscle cells (VSMCs), to optimize interpretation of SMAD3 variants. METHODS: A retrospective analysis on clinical data from individuals with a P/LP SMAD3 variant and functional analyses on SMAD3 patient-derived VSMCs and SMAD3 patient-derived fibroblasts, differentiated into myofibroblasts. RESULTS: Individuals with dominant negative (DN) SMAD3 variant in the MH2 domain exhibited more major events (66.7% vs. 44.0%, P = 0.054), occurring at a younger age compared to those with haploinsufficient (HI) variants. The age at first major event was 35.0 years [IQR 29.0-47.0] in individuals with DN variants in MH2, compared to 46.0 years [IQR 40.0-54.0] in those with HI variants (P = 0.065). Fibroblasts carrying DN SMAD3 variants displayed reduced differentiation potential, contrasting with increased differentiation potential in HI SMAD3 variant fibroblasts. HI SMAD3 variant VSMCs showed elevated SMA expression and altered expression of alternative MYH11 isoforms. DN SMAD3 variant myofibroblasts demonstrated reduced extracellular matrix formation compared to control cell lines. CONCLUSION: Distinguishing between P/LP HI and DN SMAD3 variants can be achieved by assessing differentiation potential, and SMA and MYH11 expression. The differences between DN and HI SMAD3 variant fibroblasts and VSMCs potentially contribute to the differences in disease manifestation. Notably, myofibroblast differentiation seems a suitable alternative in vitro test system compared to VSMCs.
Subject(s)
Fibroblasts , Genetic Association Studies , Loeys-Dietz Syndrome , Muscle, Smooth, Vascular , Smad3 Protein , Humans , Smad3 Protein/genetics , Smad3 Protein/metabolism , Loeys-Dietz Syndrome/genetics , Loeys-Dietz Syndrome/pathology , Male , Female , Fibroblasts/metabolism , Adult , Middle Aged , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Cell Differentiation/genetics , Cell Line , Myocytes, Smooth Muscle/metabolism , Retrospective Studies , Phenotype , Myofibroblasts/metabolism , Myofibroblasts/pathology , MutationABSTRACT
For neurodevelopmental disorders (NDDs), a molecular diagnosis is key for management, predicting outcome, and counseling. Often, routine DNA-based tests fail to establish a genetic diagnosis in NDDs. Transcriptome analysis (RNA sequencing [RNA-seq]) promises to improve the diagnostic yield but has not been applied to NDDs in routine diagnostics. Here, we explored the diagnostic potential of RNA-seq in 96 individuals including 67 undiagnosed subjects with NDDs. We performed RNA-seq on single individuals' cultured skin fibroblasts, with and without cycloheximide treatment, and used modified OUTRIDER Z scores to detect gene expression outliers and mis-splicing by exonic and intronic outliers. Analysis was performed by a user-friendly web application, and candidate pathogenic transcriptional events were confirmed by secondary assays. We identified intragenic deletions, monoallelic expression, and pseudoexonic insertions but also synonymous and non-synonymous variants with deleterious effects on transcription, increasing the diagnostic yield for NDDs by 13%. We found that cycloheximide treatment and exonic/intronic Z score analysis increased detection and resolution of aberrant splicing. Importantly, in one individual mis-splicing was found in a candidate gene nearly matching the individual's specific phenotype. However, pathogenic splicing occurred in another neuronal-expressed gene and provided a molecular diagnosis, stressing the need to customize RNA-seq. Lastly, our web browser application allowed custom analysis settings that facilitate diagnostic application and ranked pathogenic transcripts as top candidates. Our results demonstrate that RNA-seq is a complementary method in the genomic diagnosis of NDDs and, by providing accessible analysis with improved sensitivity, our transcriptome analysis approach facilitates wider implementation of RNA-seq in routine genome diagnostics.
Subject(s)
Gene Expression Profiling , Neurodevelopmental Disorders , Humans , RNA-Seq , Cycloheximide , Sequence Analysis, RNA/methods , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/geneticsABSTRACT
To optimize care for children with Marfan syndrome (MFS) in the Netherlands, Dutch MFS growth charts were constructed. Additionally, we aimed to investigate the effect of FBN1 variant type (haploinsufficiency [HI]/dominant negative [DN]) on growth, and compare MFS-related height increase across populations. Height and weight data of individuals with MFS aged 0-21 years were retrospectively collected. Generalized Additive Models for Location, Scale and Shape (GAMLSS) was used for growth chart modeling. To investigate genotype-phenotype relationships, FBN1 variant type was included as an independent variable in height-for-age and BMI-for-age models. MFS-related height increase was compared with that of previous MFS growth studies from the United States, Korea, and France. Height and weight data of 389 individuals with MFS were included (210 males). Height-for-age, BMI-for-age, and weight-for-height charts reflected the tall and slender MFS habitus throughout childhood. Mean increase in height of individuals with MFS compared with the general Dutch population was significantly lower than in the other three MFS populations compared to their reference populations. FBN1-HI variants were associated with taller height in both sexes, and decreased BMI in females (p-values <0.05). This Dutch MFS growth study broadens the notion that genetic background and MFS variant type (HI/DN) influence tall and slender stature in MFS.
Subject(s)
Marfan Syndrome , Male , Female , Humans , Marfan Syndrome/diagnosis , Marfan Syndrome/epidemiology , Marfan Syndrome/genetics , Growth Charts , Retrospective Studies , Netherlands/epidemiology , Mutation , Genotype , Phenotype , Fibrillin-1/geneticsABSTRACT
BACKGROUND: O'Donnell-Luria-Rodan syndrome (ODLURO) is an autosomal-dominant neurodevelopmental disorder caused by pathogenic, mostly truncating variants in KMT2E. It was first described by O'Donnell-Luria et al in 2019 in a cohort of 38 patients. Clinical features encompass macrocephaly, mild intellectual disability (ID), autism spectrum disorder (ASD) susceptibility and seizure susceptibility. METHODS: Affected individuals were ascertained at paediatric and genetic centres in various countries by diagnostic chromosome microarray or exome/genome sequencing. Patients were collected into a case cohort and were systematically phenotyped where possible. RESULTS: We report 18 additional patients from 17 families with genetically confirmed ODLURO. We identified 15 different heterozygous likely pathogenic or pathogenic sequence variants (14 novel) and two partial microdeletions of KMT2E. We confirm and refine the phenotypic spectrum of the KMT2E-related neurodevelopmental disorder, especially concerning cognitive development, with rather mild ID and macrocephaly with subtle facial features in most patients. We observe a high prevalence of ASD in our cohort (41%), while seizures are present in only two patients. We extend the phenotypic spectrum by sleep disturbances. CONCLUSION: Our study, bringing the total of known patients with ODLURO to more than 60 within 2 years of the first publication, suggests an unexpectedly high relative frequency of this syndrome worldwide. It seems likely that ODLURO, although just recently described, is among the more common single-gene aetiologies of neurodevelopmental delay and ASD. We present the second systematic case series of patients with ODLURO, further refining the mutational and phenotypic spectrum of this not-so-rare syndrome.
Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Megalencephaly , Neurodevelopmental Disorders , Autism Spectrum Disorder/genetics , Child , Humans , Intellectual Disability/diagnosis , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Seizures/epidemiology , Seizures/genetics , Syndrome , Exome SequencingABSTRACT
The RNA polymerase II complex (pol II) is responsible for transcription of all â¼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA.
Subject(s)
DNA-Directed RNA Polymerases/genetics , Muscle Hypotonia/pathology , Mutation , Neurodevelopmental Disorders/pathology , Saccharomyces cerevisiae/growth & development , Adolescent , Age of Onset , Child , Child, Preschool , Female , HeLa Cells , Heterozygote , Humans , Male , Muscle Hypotonia/enzymology , Muscle Hypotonia/genetics , Neurodevelopmental Disorders/enzymology , Neurodevelopmental Disorders/genetics , Phenotype , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolismABSTRACT
PURPOSE: Heterozygous pathogenic/likely pathogenic (P/LP) variants in the ACTA2 gene confer a high risk for thoracic aortic aneurysms and aortic dissections. This retrospective multicenter study elucidates the clinical outcome of ACTA2-related vasculopathies. METHODS: Index patients and relatives with a P/LP variant in ACTA2 were included. Data were collected through retrospective review of medical records using a standardized questionnaire. RESULTS: A total of 49 individuals from 28 families participated in our study. In total, 20 different ACTA2 variants were detected. Aortic events occurred in 65% of the cases (78.6% index patients and 47.6% relatives). Male sex and hypertension emerged as significantly associated with aortic events. Of 20 individuals, 5 had an aortic diameter of <45 mm (1.77 inches) at the time of the type A dissection. Mean age at first aortic event was 49.0 ± 12.4 years. Severe surgical complications for type A and type B dissection occurred in 25% and 16.7% of the cases and in-hospital mortality rates were 9.5% and 0%, respectively. CONCLUSION: P/LP ACTA2 variants are associated with an increased risk for an aortic event and age-related penetrance, which emphasizes the importance of early recognition of the disease. Caregivers should be aware of the risk for aortic dissections, even in individuals with aortic diameters within the normal range.
Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Actins/genetics , Adult , Aortic Dissection/genetics , Aorta , Aortic Aneurysm, Thoracic/epidemiology , Aortic Aneurysm, Thoracic/genetics , Cohort Studies , Humans , Male , Middle Aged , MutationABSTRACT
Located in the critical 1p36 microdeletion region, the chromodomain helicase DNA-binding protein 5 (CHD5) gene encodes a subunit of the nucleosome remodeling and deacetylation (NuRD) complex required for neuronal development. Pathogenic variants in six of nine chromodomain (CHD) genes cause autosomal dominant neurodevelopmental disorders, while CHD5-related disorders are still unknown. Thanks to GeneMatcher and international collaborations, we assembled a cohort of 16 unrelated individuals harboring heterozygous CHD5 variants, all identified by exome sequencing. Twelve patients had de novo CHD5 variants, including ten missense and two splice site variants. Three familial cases had nonsense or missense variants segregating with speech delay, learning disabilities, and/or craniosynostosis. One patient carried a frameshift variant of unknown inheritance due to unavailability of the father. The most common clinical features included language deficits (81%), behavioral symptoms (69%), intellectual disability (64%), epilepsy (62%), and motor delay (56%). Epilepsy types were variable, with West syndrome observed in three patients, generalized tonic-clonic seizures in two, and other subtypes observed in one individual each. Our findings suggest that, in line with other CHD-related disorders, heterozygous CHD5 variants are associated with a variable neurodevelopmental syndrome that includes intellectual disability with speech delay, epilepsy, and behavioral problems as main features.
Subject(s)
DNA Helicases/genetics , Intellectual Disability/genetics , Mutation, Missense , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Catalytic Domain , Child , Child, Preschool , Cohort Studies , Epilepsy/genetics , Female , Genes, Dominant , Humans , Intellectual Disability/physiopathology , Male , Neurodevelopmental Disorders/physiopathology , Pedigree , Young AdultABSTRACT
INTRODUCTION: The aim of this retrospective cohort study was to determine the potential diagnostic yield of prenatal whole exome sequencing in fetuses with structural anomalies on expert ultrasound scans and normal chromosomal microarray results. MATERIAL AND METHODS: In the period 2013-2016, 391 pregnant women with fetal ultrasound anomalies who received normal chromosomal microarray results, were referred for additional genetic counseling and opted for additional molecular testing pre- and/or postnatally. Most of the couples received only a targeted molecular test and in 159 cases (40.7%) whole exome sequencing (broad gene panels or open exome) was performed. The results of these molecular tests were evaluated retrospectively, regardless of the time of the genetic diagnosis (prenatal or postnatal). RESULTS: In 76 of 391 fetuses (19.4%, 95% CI 15.8%-23.6%) molecular testing provided a genetic diagnosis with identification of (likely) pathogenic variants. In the majority of cases (91.1%, 73/76) the (likely) pathogenic variant would be detected by prenatal whole exome sequencing analysis. CONCLUSIONS: Our retrospective cohort study shows that prenatal whole exome sequencing, if offered by a clinical geneticist, in addition to chromosomal microarray, would notably increase the diagnostic yield in fetuses with ultrasound anomalies and would allow early diagnosis of a genetic disorder irrespective of the (incomplete) fetal phenotype.
Subject(s)
Abnormalities, Multiple/diagnosis , Chromosome Disorders/diagnosis , Exome Sequencing/methods , Fetal Diseases/diagnosis , Genetic Testing/methods , Prenatal Diagnosis/methods , Abnormalities, Multiple/genetics , Adult , Chromosome Disorders/genetics , Female , Fetal Diseases/genetics , Humans , Pregnancy , Retrospective Studies , Ultrasonography, Prenatal/methodsABSTRACT
Thoracic aortic aneurysm is a potentially life-threatening disease with a strong genetic contribution. Despite identification of multiple genes involved in aneurysm formation, little is known about the specific underlying mechanisms that drive the pathological changes in the aortic wall. The aim of our study was to unravel the molecular mechanisms underlying aneurysm formation in Marfan syndrome (MFS). We collected aortic wall samples from FBN1 variant-positive MFS patients (n = 6) and healthy donor hearts (n = 5). Messenger RNA (mRNA) expression levels were measured by RNA sequencing and compared between MFS patients and controls, and between haploinsufficient (HI) and dominant negative (DN) FBN1 variants. Immunohistochemical staining, proteomics and cellular respiration experiments were used to confirm our findings. FBN1 mRNA expression levels were highly variable in MFS patients and did not significantly differ from controls. Moreover, we did not identify a distinctive TGF-ß gene expression signature in MFS patients. On the contrary, differential gene and protein expression analysis, as well as vascular smooth muscle cell respiration measurements, pointed toward inflammation and mitochondrial dysfunction. Our findings confirm that inflammatory and mitochondrial pathways play important roles in the pathophysiological processes underlying MFS-related aortic disease, providing new therapeutic options.
Subject(s)
Aortic Diseases/genetics , Genomics , Marfan Syndrome/genetics , Adult , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/pathology , Cell Respiration , Female , Fibrillin-1/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , Marfan Syndrome/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Signal Transduction , Transforming Growth Factor beta/metabolismABSTRACT
INTRODUCTION: Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined. METHODS AND RESULTS: We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults. Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%-3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-16.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, Pâ¯=â¯1.6×10-5; U.S. cohort, Pâ¯=â¯2.2×10-13). CONCLUSION: Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy.
Subject(s)
Cardiomyopathies/genetics , Heterozygote , Loss of Function Mutation , Muscle Proteins/genetics , Mutation, Missense , Protein Kinases/genetics , Abnormalities, Multiple/genetics , Adult , Age of Onset , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/physiopathology , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Hypertrophic/genetics , Child , Child, Preschool , Chromosomes, Human, Pair 15/genetics , Echocardiography , Electrocardiography , Humans , Infant , PhenotypeABSTRACT
Recently, ADAMTS19 was identified as a novel causative gene for autosomal recessive heart valve disease (HVD), affecting mainly the aortic and pulmonary valves. Exome sequencing and data repository (CentoMD) analyses were performed to identify patients with ADAMTS19 variants (two families). A third family was recognized based on cardiac phenotypic similarities and SNP array homozygosity. Three novel loss of function (LoF) variants were identified in six patients from three families. Clinically, all patients presented anomalies of the aortic/pulmonary valves, which included thickening of valve leaflets, stenosis and insufficiency. Three patients had (recurrent) subaortic membrane, suggesting that ADAMTS19 is the first gene identified related to discrete subaortic stenosis. One case presented a bi-commissural pulmonary valve. All patients displayed some degree of atrioventricular valve insufficiency. Other cardiac anomalies included atrial/ventricular septal defects, persistent ductus arteriosus, and mild dilated ascending aorta. Our findings confirm that biallelic LoF variants in ADAMTS19 are causative of a specific and recognizable cardiac phenotype. We recommend considering ADAMTS19 genetic testing in all patients with multiple semilunar valve abnormalities, particularly in the presence of subaortic membrane. ADAMTS19 screening in patients with semilunar valve abnormalities is needed to estimate the frequency of the HVD related phenotype, which might be not so rare.
Subject(s)
ADAMTS Proteins/genetics , Genetic Variation/genetics , Heart Defects, Congenital/genetics , Heart Valve Diseases/genetics , Aorta/abnormalities , Child , Child, Preschool , Female , Heart Septal Defects, Atrial/genetics , Heart Septal Defects, Ventricular/genetics , Heart Valves/abnormalities , Heart Ventricles/abnormalities , Humans , Male , PhenotypeABSTRACT
Aneurysms-osteoarthritis syndrome (AOS) is characterized by arterial aneurysms and dissection in combination with early-onset osteoarthritis, which can impact quality of life. We describe the subjective quality of life and investigate anxiety and depression in 28 AOS patients aged 15-73 years. Three questionnaires were used: 36-Item Short Form Survey (SF-36), hospital anxiety and depression scale (HADS) and Rotterdam disease specific questionnaire. Results of the SF-36 and HADS were compared to a reference Dutch cohort and the SF-36 questionnaire also to patients with Marfan syndrome. Compared to the general population, AOS patients scored significantly lower on the following SF-36 domains: physical functioning, vitality, social functioning, bodily pain, and general health. Physical functioning was also lower than in Marfan patients. Patients with AOS scored higher on the HADS depression scale, while anxiety did not show a significant difference compared to the general population. No difference in SF-36 and HADS domain scores were found between patient with and without orthopaedic symptoms and patients with or without previous aortic surgery. Additionally, we found that patients' worries for their future and heredity of their disease are important factors for anxiety, which should be addressed in clinical practice.
Subject(s)
Anxiety/psychology , Aortic Aneurysm/psychology , Aortic Dissection/psychology , Depression/psychology , Marfan Syndrome/psychology , Osteoarthritis/psychology , Pain/psychology , Adolescent , Adult , Aged , Aortic Dissection/genetics , Aortic Dissection/physiopathology , Anxiety/genetics , Anxiety/physiopathology , Aortic Aneurysm/genetics , Aortic Aneurysm/physiopathology , Case-Control Studies , Depression/genetics , Depression/physiopathology , Female , Gene Expression , Heterozygote , Humans , Male , Marfan Syndrome/genetics , Marfan Syndrome/physiopathology , Middle Aged , Mutation , Osteoarthritis/genetics , Osteoarthritis/physiopathology , Pain/genetics , Pain/physiopathology , Quality of Life/psychology , Smad3 Protein/genetics , Surveys and Questionnaires , SyndromeABSTRACT
Correction to: Journal of Human Genetics (2016) 61, 229-33 https://doi.org/10.1038/jhg.2015.134 ; published online 26 November 2015.
ABSTRACT
PURPOSE: We aimed to determine the prevalence and phenotypic spectrum of NOTCH1 mutations in left-sided congenital heart disease (LS-CHD). LS-CHD includes aortic valve stenosis, a bicuspid aortic valve, coarctation of the aorta, and hypoplastic left heart syndrome. METHODS: NOTCH1 was screened for mutations in 428 nonsyndromic probands with LS-CHD, and family histories were obtained for all. When a mutation was detected, relatives were also tested. RESULTS: In 148/428 patients (35%), LS-CHD was familial. Fourteen mutations (3%; 5 RNA splicing mutations, 8 truncating mutations, 1 whole-gene deletion) were detected, 11 in familial disease (11/148 (7%)) and 3 in sporadic disease (3/280 (1%)). Forty-nine additional mutation carriers were identified among the 14 families, of whom 12 (25%) were asymptomatic. Most of these mutation carriers had LS-CHD, but 9 (18%) had right-sided congenital heart disease (RS-CHD) or conotruncal heart disease (CTD). Thoracic aortic aneurysms (TAAs) occurred in 6 mutation carriers (probands included 6/63 (10%)). CONCLUSION: Pathogenic mutations in NOTCH1 were identified in 7% of familial LS-CHD and in 1% of sporadic LS-CHD. The penetrance is high; a cardiovascular malformation was found in 75% of NOTCH1 mutation carriers. The phenotypic spectrum includes LS-CHD, RS-CHD, CTD, and TAA. Testing NOTCH1 for an early diagnosis in LS-CHD/RS-CHD/CTD/TAA is warranted.Genet Med 18 9, 914-923.
Subject(s)
Heart Defects, Congenital/genetics , Heart Failure/genetics , Hypoplastic Left Heart Syndrome/genetics , Receptor, Notch1/genetics , Adolescent , Adult , Aged , Aorta/physiopathology , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/physiopathology , Child , Child, Preschool , Female , Heart Defects, Congenital/physiopathology , Heart Failure/physiopathology , Humans , Hypoplastic Left Heart Syndrome/physiopathology , Male , Middle Aged , Mutation , PedigreeABSTRACT
In 2012 Alazami et al. described a novel syndromic cause of primordial dwarfism with distinct facial features and severe intellectual disability. A homozygous frameshift mutation in LARP7, a chaperone of the noncoding RNA 7SK, was discovered in patients from a single consanguineous Saudi family. To date, only one additional patient has recently been described. To further delineate the phenotype associated with LARP7 mutations, we report two additional cases originating from the Netherlands and Saudi Arabia. The patients presented with intellectual disability, distinct facial features and variable short stature. We describe their clinical features and compare them with the previously reported patients. Both cases were identified by diagnostic whole-exome sequencing, which detected two homozygous pathogenic LARP7 variants: c.1091_1094delCGGT in the Dutch case and c.1045_1051dupAAGGATA in the Saudi Arabian case. Both variants are leading to frameshifts with introduction of premature stop codons, suggesting that loss of function is likely the disease mechanism. This study is an independent confirmation of the syndrome due to LARP7 depletion. Our cases broaden the associated clinical features of the syndrome and contribute to the delineation of the phenotypic spectrum of LARP7 mutations.
Subject(s)
Facies , Growth Disorders/genetics , Intellectual Disability/genetics , Ribonucleoproteins/genetics , Child , Child, Preschool , Humans , Male , PhenotypeABSTRACT
RATIONALE: Congenital heart malformations are a major cause of morbidity and mortality, especially in young children. Failure to establish normal left-right (L-R) asymmetry often results in cardiovascular malformations and other laterality defects of visceral organs. OBJECTIVE: To identify genetic mutations causing cardiac laterality defects. METHODS AND RESULTS: We performed a genome-wide linkage analysis in patients with cardiac laterality defects from a consanguineous family. The patients had combinations of defects that included dextrocardia, transposition of great arteries, double-outlet right ventricle, atrioventricular septal defects, and caval vein abnormalities. Sequencing of positional candidate genes identified mutations in NPHP4. We performed mutation analysis of NPHP4 in 146 unrelated patients with similar cardiac laterality defects. Forty-one percent of these patients also had laterality defects of the abdominal organs. We identified 8 additional missense variants that were absent or very rare in control subjects. To study the role of nphp4 in establishing L-R asymmetry, we used antisense morpholinos to knockdown nphp4 expression in zebrafish. Depletion of nphp4 disrupted L-R patterning as well as cardiac and gut laterality. Cardiac laterality defects were partially rescued by human NPHP4 mRNA, whereas mutant NPHP4 containing genetic variants found in patients failed to rescue. We show that nphp4 is involved in the formation of motile cilia in Kupffer's vesicle, which generate asymmetrical fluid flow necessary for normal L-R asymmetry. CONCLUSIONS: NPHP4 mutations are associated with cardiac laterality defects and heterotaxy. In zebrafish, nphp4 is essential for the development and function of Kupffer's vesicle cilia and is required for global L-R patterning.
Subject(s)
Genetic Pleiotropy/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Heart Defects, Congenital/genetics , Proteins/genetics , Amino Acid Sequence , Animals , Cohort Studies , Female , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/pathology , Humans , Male , Molecular Sequence Data , Pedigree , ZebrafishABSTRACT
BACKGROUND: Vascular Ehlers-Danlos syndrome (vEDS) is a rare connective tissue disorder with a high risk for arterial, bowel, and uterine rupture, caused by heterozygous pathogenic variants in COL3A1. The aim of this cohort study is to provide further insights into the natural history of vEDS and describe genotype-phenotype correlations in a Dutch multicenter cohort to optimize patient care and increase awareness of the disease. METHODS: Individuals with vEDS throughout the Netherlands were included. The phenotype was charted by retrospective analysis of molecular and clinical data, combined with a one-time physical examination. RESULTS: A total of 142 individuals (50% female) participated the study, including 46 index patients (32%). The overall median age at genetic diagnosis was 41.0 years. More than half of the index patients (54.3%) and relatives (53.1%) had a physical appearance highly suggestive of vEDS. In these individuals, major events were not more frequent (P=0.90), but occurred at a younger age (P=0.01). A major event occurred more often and at a younger age in men compared with women (P<0.001 and P=0.004, respectively). Aortic aneurysms (P=0.003) and pneumothoraces (P=0.029) were more frequent in men. Aortic dissection was more frequent in individuals with a COL3A1 variant in the first quarter of the collagen helical domain (P=0.03). CONCLUSIONS: Male sex, type and location of the COL3A1 variant, and physical appearance highly suggestive of vEDS are risk factors for the occurrence and early age of onset of major events. This national multicenter cohort study of Dutch individuals with vEDS provides a valuable basis for improving guidelines for the diagnosing, follow-up, and treatment of individuals with vEDS.
Subject(s)
Collagen Type III , Ehlers-Danlos Syndrome , Humans , Ehlers-Danlos Syndrome/genetics , Ehlers-Danlos Syndrome/epidemiology , Female , Male , Netherlands/epidemiology , Adult , Collagen Type III/genetics , Middle Aged , Retrospective Studies , Cohort Studies , Phenotype , Adolescent , Genetic Association Studies , Young Adult , Aged , Ehlers-Danlos Syndrome, Type IVABSTRACT
OBJECTIVE: Aneurysms-osteoarthritis syndrome (AOS), caused by SMAD3 mutations, is a recently described autosomal-dominant syndrome characterized by arterial aneurysms, tortuosity, and aortic dissections in combination with osteoarthritis. Our objective was to evaluate the AOS-related vascular consequences in the visceral and iliac arteries and raise awareness for this aggressive syndrome among vascular specialists. METHODS: All AOS patients were monitored regularly according to our clinical AOS protocol. The study included those with one or more visceral aneurysms or tortuosity, or both. Clinical and surgical data were obtained from record abstraction. RESULTS: The study included 17 AOS patients (47% men) aged 47±13 years. A total of 73 aneurysms were encountered, of which 46 were located in the abdomen. The common iliac artery was most commonly affected (37%), followed by the superior mesenteric artery (15%), celiac trunk (11%), and splenic artery (9%). Rapid aneurysm growth≤1 year was found in three arteries (gastric, hepatic, and vertebral artery). Furthermore, arterial tortuosity was noted in 94% of patients. Four patients underwent six elective (endo) vascular interventions for aneurysms in the iliac, hepatic, gastric, or splenic artery, without major perioperative or postoperative complications. CONCLUSIONS: AOS predisposes patients to widespread visceral and iliac artery aneurysms and extreme arterial tortuosity. Early elective aneurysm repair should be considered because the risk of aneurysm rupture is estimated to be very high and elective (endo) vascular interventions were not complicated by fragility of arterial tissue. Given the aggressive behavior of AOS, it is of utmost importance that vascular specialists are aware of this new syndrome.
Subject(s)
Aneurysm , Iliac Aneurysm , Osteoarthritis , Viscera/blood supply , Adult , Aneurysm/diagnosis , Aneurysm/genetics , Aneurysm/surgery , Disease Progression , Elective Surgical Procedures , Endovascular Procedures/adverse effects , Female , Genetic Predisposition to Disease , Humans , Iliac Aneurysm/diagnosis , Iliac Aneurysm/genetics , Iliac Aneurysm/surgery , Magnetic Resonance Angiography , Male , Middle Aged , Mutation , Osteoarthritis/genetics , Phenotype , Retrospective Studies , Smad3 Protein/genetics , Syndrome , Tomography, X-Ray Computed , Treatment Outcome , Vascular Surgical Procedures/adverse effectsABSTRACT
BACKGROUND: Aneurysms-osteoarthritis syndrome (AOS) is a new autosomal dominant syndromic form of thoracic aortic aneurysms and dissections characterised by the presence of arterial aneurysms and tortuosity, mild craniofacial, skeletal and cutaneous anomalies, and early-onset osteoarthritis. AOS is caused by mutations in the SMAD3 gene. METHODS: A cohort of 393 patients with aneurysms without mutation in FBN1, TGFBR1 and TGFBR2 was screened for mutations in SMAD3. The patients originated from The Netherlands, Belgium, Switzerland and USA. The clinical phenotype in a total of 45 patients from eight different AOS families with eight different SMAD3 mutations is described. In all patients with a SMAD3 mutation, clinical records were reviewed and extensive genetic, cardiovascular and orthopaedic examinations were performed. RESULTS: Five novel SMAD3 mutations (one nonsense, two missense and two frame-shift mutations) were identified in five new AOS families. A follow-up description of the three families with a SMAD3 mutation previously described by the authors was included. In the majority of patients, early-onset joint abnormalities, including osteoarthritis and osteochondritis dissecans, were the initial symptom for which medical advice was sought. Cardiovascular abnormalities were present in almost 90% of patients, and involved mainly aortic aneurysms and dissections. Aneurysms and tortuosity were found in the aorta and other arteries throughout the body, including intracranial arteries. Of the patients who first presented with joint abnormalities, 20% died suddenly from aortic dissection. The presence of mild craniofacial abnormalities including hypertelorism and abnormal uvula may aid the recognition of this syndrome. CONCLUSION: The authors provide further insight into the phenotype of AOS with SMAD3 mutations, and present recommendations for a clinical work-up.