Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Proc Natl Acad Sci U S A ; 120(2): e2204750120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595699

ABSTRACT

Exercise is a nonpharmacological intervention that improves health during aging and a valuable tool in the diagnostics of aging-related diseases. In muscle, exercise transiently alters mitochondrial functionality and metabolism. Mitochondrial fission and fusion are critical effectors of mitochondrial plasticity, which allows a fine-tuned regulation of organelle connectiveness, size, and function. Here we have investigated the role of mitochondrial dynamics during exercise in the model organism Caenorhabditis elegans. We show that in body-wall muscle, a single exercise session induces a cycle of mitochondrial fragmentation followed by fusion after a recovery period, and that daily exercise sessions delay the mitochondrial fragmentation and physical fitness decline that occur with aging. Maintenance of proper mitochondrial dynamics is essential for physical fitness, its enhancement by exercise training, and exercise-induced remodeling of the proteome. Surprisingly, among the long-lived genotypes we analyzed (isp-1,nuo-6, daf-2, eat-2, and CA-AAK-2), constitutive activation of AMP-activated protein kinase (AMPK) uniquely preserves physical fitness during aging, a benefit that is abolished by impairment of mitochondrial fission or fusion. AMPK is also required for physical fitness to be enhanced by exercise, with our findings together suggesting that exercise may enhance muscle function through AMPK regulation of mitochondrial dynamics. Our results indicate that mitochondrial connectivity and the mitochondrial dynamics cycle are essential for maintaining physical fitness and exercise responsiveness during aging and suggest that AMPK activation may recapitulate some exercise benefits. Targeting mechanisms to optimize mitochondrial fission and fusion, as well as AMPK activation, may represent promising strategies for promoting muscle function during aging.


Subject(s)
AMP-Activated Protein Kinases , Mitochondrial Dynamics , Animals , Mitochondrial Dynamics/physiology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Aging/physiology , Caenorhabditis elegans/metabolism , Exercise , Physical Fitness , Muscle, Skeletal/metabolism
2.
EMBO J ; 38(22): e101056, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31609012

ABSTRACT

The mitochondrial membrane potential (ΔΨm ) is the main driver of oxidative phosphorylation (OXPHOS). The inner mitochondrial membrane (IMM), consisting of cristae and inner boundary membranes (IBM), is considered to carry a uniform ΔΨm . However, sequestration of OXPHOS components in cristae membranes necessitates a re-examination of the equipotential representation of the IMM. We developed an approach to monitor ΔΨm at the resolution of individual cristae. We found that the IMM was divided into segments with distinct ΔΨm , corresponding to cristae and IBM. ΔΨm was higher at cristae compared to IBM. Treatment with oligomycin increased, whereas FCCP decreased, ΔΨm heterogeneity along the IMM. Impairment of cristae structure through deletion of MICOS-complex components or Opa1 diminished this intramitochondrial heterogeneity of ΔΨm . Lastly, we determined that different cristae within the individual mitochondrion can have disparate membrane potentials and that interventions causing acute depolarization may affect some cristae while sparing others. Altogether, our data support a new model in which cristae within the same mitochondrion behave as independent bioenergetic units, preventing the failure of specific cristae from spreading dysfunction to the rest.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Membrane Potential, Mitochondrial , Mitochondria/physiology , Mitochondrial Membranes/metabolism , Myoblasts/metabolism , Adenosine Triphosphate/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cells, Cultured , Female , HeLa Cells , Humans , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Myoblasts/cytology , Oxidative Phosphorylation
3.
J Biol Chem ; 293(13): 4735-4751, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29378845

ABSTRACT

Estrogen receptor α (ERα) action plays an important role in pancreatic ß-cell function and survival; thus, it is considered a potential therapeutic target for the treatment of type 2 diabetes in women. However, the mechanisms underlying the protective effects of ERα remain unclear. Because ERα regulates mitochondrial metabolism in other cell types, we hypothesized that ERα may act to preserve insulin secretion and promote ß-cell survival by regulating mitochondrial-endoplasmic reticulum (EndoRetic) function. We tested this hypothesis using pancreatic islet-specific ERα knockout (PERαKO) mice and Min6 ß-cells in culture with Esr1 knockdown (KD). We found that Esr1-KD promoted reactive oxygen species production that associated with reduced fission/fusion dynamics and impaired mitophagy. Electron microscopy showed mitochondrial enlargement and a pro-fusion phenotype. Mitochondrial cristae and endoplasmic reticulum were dilated in Esr1-KD compared with ERα replete Min6 ß-cells. Increased expression of Oma1 and Chop was paralleled by increased oxygen consumption and apoptosis susceptibility in ERα-KD cells. In contrast, ERα overexpression and ligand activation reduced both Chop and Oma1 expression, likely by ERα binding to consensus estrogen-response element sites in the Oma1 and Chop promoters. Together, our findings suggest that ERα promotes ß-cell survival and insulin secretion through maintenance of mitochondrial fission/fusion-mitophagy dynamics and EndoRetic function, in part by Oma1 and Chop repression.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Estrogen Receptor alpha/metabolism , Insulin-Secreting Cells/metabolism , Mitochondria/metabolism , Mitophagy , Animals , Cell Survival , Estrogen Receptor alpha/genetics , Female , Insulin/genetics , Insulin/metabolism , Metalloproteases/biosynthesis , Metalloproteases/genetics , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondrial Proteins/biosynthesis , Mitochondrial Proteins/genetics , Reactive Oxygen Species/metabolism , Transcription Factor CHOP/biosynthesis , Transcription Factor CHOP/genetics
4.
J Cell Sci ; 128(12): 2236-48, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25956888

ABSTRACT

Autocrine VEGF is necessary for endothelial survival, although the cellular mechanisms supporting this function are unknown. Here, we show that--even after full differentiation and maturation--continuous expression of VEGF by endothelial cells is needed to sustain vascular integrity and cellular viability. Depletion of VEGF from the endothelium results in mitochondria fragmentation and suppression of glucose metabolism, leading to increased autophagy that contributes to cell death. Gene-expression profiling showed that endothelial VEGF contributes to the regulation of cell cycle and mitochondrial gene clusters, as well as several--but not all--targets of the transcription factor FOXO1. Indeed, VEGF-deficient endothelium in vitro and in vivo showed increased levels of FOXO1 protein in the nucleus and cytoplasm. Silencing of FOXO1 in VEGF-depleted cells reversed expression profiles of several of the gene clusters that were de-regulated in VEGF knockdown, and rescued both cell death and autophagy phenotypes. Our data suggest that endothelial VEGF maintains vascular homeostasis through regulation of FOXO1 levels, thereby ensuring physiological metabolism and endothelial cell survival.


Subject(s)
Apoptosis , Autocrine Communication , Autophagy , Biomarkers/metabolism , Endothelium, Vascular/pathology , Forkhead Transcription Factors/metabolism , Mitochondria/pathology , Vascular Endothelial Growth Factor A/physiology , Animals , Blotting, Western , Cell Differentiation , Cell Proliferation , Cells, Cultured , Endothelium, Vascular/metabolism , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Humans , Hypoxia/physiopathology , Mice , Mice, Knockout , Mitochondria/metabolism , Phosphorylation , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
5.
EMBO J ; 35(13): 1365-7, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27283747
6.
FASEB J ; 28(3): 1113-21, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24297697

ABSTRACT

Trichomonas vaginalis is a highly divergent, unicellular eukaryote of the phylum Metamonada, class Parabasalia, and the source of a common sexually transmitted infection. This parasite lacks mitochondria, but harbors an evolutionarily related organelle, the hydrogenosome. We explored the role of dynamin-related proteins (DRPs) in the division of the hydrogenosome. Eight DRP homologues [T. vaginalis DRPs (TvDRPs)], which can be grouped into 3 subclasses, are present in T. vaginalis. We examined 5 TvDRPs that are representative of each subclass, by introducing dominant negative mutations analogous to those known to interfere with mitochondrial division in yeast, worms, and mammals. Microscopic and cell fractionation analyses of parasites expressing one of the mutated TvDRPs (TVAG_350040) demonstrated that this protein localizes to hydrogenosomes. Moreover, these organelles were found to be increased in size and reduced in number in cells expressing this dominant negative protein, relative to parasites expressing the corresponding wild-type TvDRP, the other 4 mutant TvDRPs, or an empty vector control. Our data indicate a role for a TvDRP in the fission of T. vaginalis hydrogenosomes, similar to that described for peroxisomes and mitochondria. These findings reveal a conservation of core components involved in the division of diverse eukaryotic organelles across broad phylogenetic distances.


Subject(s)
Dynamins/physiology , Organelles/physiology , Protozoan Proteins/physiology , Trichomonas vaginalis/cytology , Amino Acid Sequence , Animals , Dynamins/chemistry , Humans , Microscopy, Electron , Molecular Sequence Data , Protozoan Proteins/chemistry , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Trichomonas vaginalis/ultrastructure
7.
bioRxiv ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39149365

ABSTRACT

Mfn2 is a mitochondrial outer membrane fusion protein with the additional role of tethering mitochondria to the ER. Here, we describe a novel connection between Mfn2 and calcium release from mitochondria. We show that Mfn2 controls the mitochondrial inner membrane sodium-calcium exchange protein NCLX, which is a major source for calcium release from mitochondria. This discovery was made with the fungal toxin Phomoxanthone (PXA), which induces calcium release from mitochondria. PXA-induced calcium release is blocked by a chemical inhibitor of NCLX, while NCLX and Mfn2 deletions both also prevent PXA-induced calcium release. CETSA experiments show that PXA directly targets Mfn2, which likely controls NCLX through physical interactions since co-immunoprecipitation and proximity ligation assays show increased association between Mfn2 and NCLX upon treatment with PXA. Interactions between Mfn2 and NCLX also increase when cells are treated with mitochondrial ROS-inducing conditions, such as oligomycin treatment of respiring cells, while the interactions do not increase in Oma1 -/- cells. It seems likely that opening of cristae by Oma1-mediated cleavage of Opa1 promotes translocation of NCLX from cristae to the rim where it can come into contact with Mfn2 thus promoting PXA-induced calcium release from mitochondria. These results therefore delineate a pathway that connects ROS produced inside mitochondria with calcium release and signaling in the cytosol.

8.
Sci Adv ; 10(14): eadl0389, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38569044

ABSTRACT

The dynamin-related guanosine triphosphatase, Drp1 (encoded by Dnm1l), plays a central role in mitochondrial fission and is requisite for numerous cellular processes; however, its role in muscle metabolism remains unclear. Here, we show that, among human tissues, the highest number of gene correlations with DNM1L is in skeletal muscle. Knockdown of Drp1 (Drp1-KD) promoted mitochondrial hyperfusion in the muscle of male mice. Reduced fatty acid oxidation and impaired insulin action along with increased muscle succinate was observed in Drp1-KD muscle. Muscle Drp1-KD reduced complex II assembly and activity as a consequence of diminished mitochondrial translocation of succinate dehydrogenase assembly factor 2 (Sdhaf2). Restoration of Sdhaf2 normalized complex II activity, lipid oxidation, and insulin action in Drp1-KD myocytes. Drp1 is critical in maintaining mitochondrial complex II assembly, lipid oxidation, and insulin sensitivity, suggesting a mechanistic link between mitochondrial morphology and skeletal muscle metabolism, which is clinically relevant in combatting metabolic-related diseases.


Subject(s)
Insulins , Succinate Dehydrogenase , Animals , Humans , Male , Mice , Insulins/metabolism , Lipids , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscle, Skeletal/metabolism , Succinate Dehydrogenase/metabolism
9.
J Cell Biol ; 178(5): 757-64, 2007 Aug 27.
Article in English | MEDLINE | ID: mdl-17709430

ABSTRACT

The dynamin-related protein Opa1 is localized to the mitochondrial intermembrane space, where it facilitates fusion between mitochondria. Apoptosis causes Opa1 release into the cytosol and causes mitochondria to fragment. Loss of mitochondrial membrane potential also causes mitochondrial fragmentation but not Opa1 release into the cytosol. Both conditions induce the proteolytic cleavage of Opa1, suggesting that mitochondrial fragmentation is triggered by Opa1 inactivation. The opposite effect was observed with knockdown of the mitochondrial intermembrane space protease Yme1. Knockdown of Yme1 prevents the constitutive cleavage of a subset of Opa1 splice variants but does not affect carbonyl cyanide m-chlorophenyl hydrazone or apoptosis-induced cleavage. Knockdown of Yme1 also increases mitochondrial connectivity, but this effect is independent of Opa1 because it also occurs in Opa1 knockdown cells. We conclude that Yme1 constitutively regulates a subset of Opa1 isoforms and an unknown mitochondrial morphology protein, whereas the loss of membrane potential induces the further proteolysis of Opa1.


Subject(s)
GTP Phosphohydrolases/metabolism , Mitochondria/physiology , Peptide Fragments/metabolism , ATPases Associated with Diverse Cellular Activities , Carbonyl Cyanide m-Chlorophenyl Hydrazone/metabolism , GTP Phosphohydrolases/genetics , HeLa Cells , Humans , Ionophores/metabolism , Membrane Potentials/physiology , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Metalloproteases/genetics , Metalloproteases/metabolism , Mitochondria/enzymology , Mitochondria/ultrastructure , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Peptide Fragments/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
10.
PLoS Genet ; 4(2): e1000022, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18454199

ABSTRACT

The C. elegans eat-3 gene encodes a mitochondrial dynamin family member homologous to Opa1 in humans and Mgm1 in yeast. We find that mutations in the C. elegans eat-3 locus cause mitochondria to fragment in agreement with the mutant phenotypes observed in yeast and mammalian cells. Electron microscopy shows that the matrices of fragmented mitochondria in eat-3 mutants are divided by inner membrane septae, suggestive of a specific defect in fusion of the mitochondrial inner membrane. In addition, we find that C. elegans eat-3 mutant animals are smaller, grow slower, and have smaller broodsizes than C. elegans mutants with defects in other mitochondrial fission and fusion proteins. Although mammalian Opa1 is antiapoptotic, mutations in the canonical C. elegans cell death genes ced-3 and ced-4 do not suppress the slow growth and small broodsize phenotypes of eat-3 mutants. Instead, the phenotypes of eat-3 mutants are consistent with defects in oxidative phosphorylation. Moreover, eat-3 mutants are hypersensitive to paraquat, which promotes damage by free radicals, and they are sensitive to loss of the mitochondrial superoxide dismutase sod-2. We conclude that free radicals contribute to the pathology of C. elegans eat-3 mutants.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Drug Resistance/genetics , Dynamins/chemistry , Dynamins/genetics , Dynamins/metabolism , Free Radicals/metabolism , Free Radicals/toxicity , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , GTP-Binding Proteins/genetics , Genes, Helminth , Humans , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Proteins/genetics , Models, Molecular , Molecular Sequence Data , Mutation , Optic Atrophy, Autosomal Dominant/etiology , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/metabolism , Oxidative Phosphorylation , Paraquat/toxicity , Phenotype , RNA Interference , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology, Amino Acid , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
11.
Life Sci Alliance ; 3(7)2020 07.
Article in English | MEDLINE | ID: mdl-32499316

ABSTRACT

Recent breakthroughs in live-cell imaging have enabled visualization of cristae, making it feasible to investigate the structure-function relationship of cristae in real time. However, quantifying live-cell images of cristae in an unbiased way remains challenging. Here, we present a novel, semi-automated approach to quantify cristae, using the machine-learning Trainable Weka Segmentation tool. Compared with standard techniques, our approach not only avoids the bias associated with manual thresholding but more efficiently segments cristae from Airyscan and structured illumination microscopy images. Using a cardiolipin-deficient cell line, as well as FCCP, we show that our approach is sufficiently sensitive to detect perturbations in cristae density, size, and shape. This approach, moreover, reveals that cristae are not uniformly distributed within the mitochondrion, and sites of mitochondrial fission are localized to areas of decreased cristae density. After a fusion event, individual cristae from the two mitochondria, at the site of fusion, merge into one object with distinct architectural values. Overall, our study shows that machine learning represents a compelling new strategy for quantifying cristae in living cells.


Subject(s)
Mitochondria/physiology , Mitochondria/ultrastructure , Mitochondrial Dynamics , Cell Line , Humans , Image Processing, Computer-Assisted , Microscopy, Fluorescence/methods , Mitochondrial Membranes/physiology , Mitochondrial Membranes/ultrastructure , Optical Imaging/methods
12.
Dev Cell ; 4(6): 769-70, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12791261

ABSTRACT

Rhomboid proteases are integral membrane proteins, typically associated with cleavage of peptide hormones along the secretory pathway. Recent publications demonstrate that yeast mitochondria contain a rhomboid protease required for the cleavage of two mitochondrial intermembrane space proteins, suggesting that rhomboid proteases play a regulatory role in mitochondria.


Subject(s)
Endopeptidases/metabolism , GTP-Binding Proteins/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cytochrome-c Peroxidase/metabolism , GTP Phosphohydrolases/metabolism , Gene Deletion , Models, Biological , Protein Isoforms/genetics , Protein Isoforms/metabolism
13.
Mol Metab ; 21: 51-67, 2019 03.
Article in English | MEDLINE | ID: mdl-30591411

ABSTRACT

OBJECTIVE: Mitochondria are organelles primarily responsible for energy production, and recent evidence indicates that alterations in size, shape, location, and quantity occur in response to fluctuations in energy supply and demand. We tested the impact of acute and chronic exercise on mitochondrial dynamics signaling and determined the impact of the mitochondrial fission regulator Dynamin related protein (Drp)1 on exercise performance and muscle adaptations to training. METHODS: Wildtype and muscle-specific Drp1 heterozygote (mDrp1+/-) mice, as well as dysglycemic (DG) and healthy normoglycemic men (control) performed acute and chronic exercise. The Hybrid Mouse Diversity Panel, including 100 murine strains of recombinant inbred mice, was used to identify muscle Dnm1L (encodes Drp1)-gene relationships. RESULTS: Endurance exercise impacted all aspects of the mitochondrial life cycle, i.e. fission-fusion, biogenesis, and mitophagy. Dnm1L gene expression and Drp1Ser616 phosphorylation were markedly increased by acute exercise and declined to baseline during post-exercise recovery. Dnm1L expression was strongly associated with transcripts known to regulate mitochondrial metabolism and adaptations to exercise. Exercise increased the expression of DNM1L in skeletal muscle of healthy control and DG subjects, despite a 15% ↓(P = 0.01) in muscle DNM1L expression in DG at baseline. To interrogate the role of Dnm1L further, we exercise trained male mDrp1+/- mice and found that Drp1 deficiency reduced muscle endurance and running performance, and altered muscle adaptations in response to exercise training. CONCLUSION: Our findings highlight the importance of mitochondrial dynamics, specifically Drp1 signaling, in the regulation of exercise performance and adaptations to endurance exercise training.


Subject(s)
Dynamins/metabolism , GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics/physiology , Mitochondrial Proteins/metabolism , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology , Physical Functional Performance , Adaptation, Physiological , Adult , Aged , Animals , Blood Glucose/metabolism , Dynamins/genetics , Female , Gene Deletion , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Middle Aged , Phosphorylation , Physical Endurance
14.
Neuron ; 40(4): 749-62, 2003 Nov 13.
Article in English | MEDLINE | ID: mdl-14622579

ABSTRACT

Endophilin is a membrane-associated protein required for endocytosis of synaptic vesicles. Two models have been proposed for endophilin: that it alters lipid composition in order to shape membranes during endocytosis, or that it binds the polyphosphoinositide phosphatase synaptojanin and recruits this phosphatase to membranes. In this study, we demonstrate that the unc-57 gene encodes the Caenorhabditis elegans ortholog of endophilin A. We demonstrate that endophilin is required in C. elegans for synaptic vesicle recycling. Furthermore, the defects observed in endophilin mutants closely resemble those observed in synaptojanin mutants. The electrophysiological phenotype of endophilin and synaptojanin double mutants are virtually identical to the single mutants, demonstrating that endophilin and synaptojanin function in the same pathway. Finally, endophilin is required to stabilize expression of synaptojanin at the synapse. These data suggest that endophilin is an adaptor protein required to localize and stabilize synaptojanin at membranes during synaptic vesicle recycling.


Subject(s)
Acyltransferases/isolation & purification , Caenorhabditis elegans/metabolism , Endocytosis/genetics , Nerve Tissue Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Synaptic Vesicles/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Animals , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/isolation & purification , Caenorhabditis elegans Proteins/metabolism , DNA, Complementary/analysis , DNA, Complementary/genetics , Microscopy, Electron , Molecular Sequence Data , Mutation/genetics , Nerve Tissue Proteins/genetics , Phosphoric Monoester Hydrolases/genetics , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Synaptic Membranes/genetics , Synaptic Membranes/metabolism , Synaptic Membranes/ultrastructure , Synaptic Transmission/genetics , Synaptic Vesicles/ultrastructure
16.
Cell Death Dis ; 9(3): 286, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29459714

ABSTRACT

Mitochondria are cellular organelles with crucial functions in the generation and distribution of ATP, the buffering of cytosolic Ca2+ and the initiation of apoptosis. Compounds that interfere with these functions are termed mitochondrial toxins, many of which are derived from microbes, such as antimycin A, oligomycin A, and ionomycin. Here, we identify the mycotoxin phomoxanthone A (PXA), derived from the endophytic fungus Phomopsis longicolla, as a mitochondrial toxin. We show that PXA elicits a strong release of Ca2+ from the mitochondria but not from the ER. In addition, PXA depolarises the mitochondria similarly to protonophoric uncouplers such as CCCP, yet unlike these, it does not increase but rather inhibits cellular respiration and electron transport chain activity. The respiration-dependent mitochondrial network structure rapidly collapses into fragments upon PXA treatment. Surprisingly, this fragmentation is independent from the canonical mitochondrial fission and fusion mediators DRP1 and OPA1, and exclusively affects the inner mitochondrial membrane, leading to cristae disruption, release of pro-apoptotic proteins, and apoptosis. Taken together, our results suggest that PXA is a mitochondrial toxin with a novel mode of action that might prove a useful tool for the study of mitochondrial ion homoeostasis and membrane dynamics.


Subject(s)
Mitochondria/drug effects , Mitochondrial Membranes/drug effects , Mycotoxins/toxicity , Xanthones/toxicity , Animals , Ascomycota/metabolism , Calcium/metabolism , Cell Line , Electron Transport/drug effects , Electron Transport Chain Complex Proteins/metabolism , Humans , Mice , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mycotoxins/metabolism , Xanthones/metabolism
18.
Methods Mol Biol ; 372: 485-501, 2007.
Article in English | MEDLINE | ID: mdl-18314747

ABSTRACT

The study of mitochondrial division proteins has largely focused on yeast and mammalian cells. We describe methods to use Caenorhabditis elegans as an alternative model for studying mitochondrial division, taking advantage of the many wonderful resources provided by the C. elegans community. Our methods are largely based on manipulation of gene expression using classic and molecular genetic techniques combined with fluorescence microscopy. Some biochemical methods are also included. As antibodies become available, these biochemical methods are likely to become more sophisticated.


Subject(s)
Caenorhabditis elegans/metabolism , Cell Fractionation/methods , Mitochondria/metabolism , Animals , Animals, Genetically Modified , Bacterial Proteins/metabolism , Caenorhabditis elegans/cytology , Caenorhabditis elegans Proteins/isolation & purification , DNA/isolation & purification , Green Fluorescent Proteins/metabolism , Luminescent Proteins/metabolism , RNA Interference
19.
Mol Biol Cell ; 14(4): 1583-96, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12686611

ABSTRACT

The organization of multiple mitochondrial DNA (mtDNA) molecules in discrete protein-DNA complexes called nucleoids is well studied in Saccharomyces cerevisiae. Similar structures have recently been observed in human cells by the colocalization of a Twinkle-GFP fusion protein with mtDNA. However, nucleoids in mammalian cells are poorly characterized and are often thought of as relatively simple structures, despite the yeast paradigm. In this article we have used immunocytochemistry and biochemical isolation procedures to characterize the composition of human mitochondrial nucleoids. The results show that both the mitochondrial transcription factor TFAM and mitochondrial single-stranded DNA-binding protein colocalize with Twinkle in intramitochondrial foci defined as nucleoids by the specific incorporation of bromodeoxyuridine. Furthermore, mtDNA polymerase POLG and various other as yet unidentified proteins copurify with mtDNA nucleoids using a biochemical isolation procedure, as does TFAM. The results demonstrated that mtDNA in mammalian cells is organized in discrete protein-rich structures within the mitochondrial network. In vivo time-lapse imaging of nucleoids show they are dynamic structures able to divide and redistribute in the mitochondrial network and suggest that nucleoids are the mitochondrial units of inheritance. Nucleoids did not colocalize with dynamin-related protein 1, Drp1, a protein of the mitochondrial fission machinery.


Subject(s)
DNA, Mitochondrial/metabolism , Mitochondrial Proteins , Submitochondrial Particles/metabolism , Base Sequence , Cell Line , DNA Helicases , DNA Polymerase gamma , DNA Primase/metabolism , DNA, Mitochondrial/genetics , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , Green Fluorescent Proteins , Humans , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Nuclear Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism
20.
Genetics ; 207(3): 843-871, 2017 11.
Article in English | MEDLINE | ID: mdl-29097398

ABSTRACT

Mitochondria are best known for harboring pathways involved in ATP synthesis through the tricarboxylic acid cycle and oxidative phosphorylation. Major advances in understanding these roles were made with Caenorhabditiselegans mutants affecting key components of the metabolic pathways. These mutants have not only helped elucidate some of the intricacies of metabolism pathways, but they have also served as jumping off points for pharmacology, toxicology, and aging studies. The field of mitochondria research has also undergone a renaissance, with the increased appreciation of the role of mitochondria in cell processes other than energy production. Here, we focus on discoveries that were made using C. elegans, with a few excursions into areas that were studied more thoroughly in other organisms, like mitochondrial protein import in yeast. Advances in mitochondrial biogenesis and membrane dynamics were made through the discoveries of novel functions in mitochondrial fission and fusion proteins. Some of these functions were only apparent through the use of diverse model systems, such as C. elegans Studies of stress responses, exemplified by mitophagy and the mitochondrial unfolded protein response, have also benefitted greatly from the use of model organisms. Recent developments include the discoveries in C. elegans of cell autonomous and nonautonomous pathways controlling the mitochondrial unfolded protein response, as well as mechanisms for degradation of paternal mitochondria after fertilization. The evolutionary conservation of many, if not all, of these pathways ensures that results obtained with C. elegans are equally applicable to studies of human mitochondria in health and disease.


Subject(s)
Mitochondria/metabolism , Organelle Biogenesis , Animals , Citric Acid Cycle , Electron Transport , Mitochondria/genetics , Mitochondria/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL