Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
PLoS Pathog ; 16(4): e1008408, 2020 04.
Article in English | MEDLINE | ID: mdl-32251450

ABSTRACT

Candida bloodstream infection, i.e. candidemia, is the most frequently encountered life-threatening fungal infection worldwide, with mortality rates up to almost 50%. In the majority of candidemia cases, Candida albicans is responsible. Worryingly, a global increase in the number of patients who are susceptible to infection (e.g. immunocompromised patients), has led to a rise in the incidence of candidemia in the last few decades. Therefore, a better understanding of the anti-Candida host response is essential to overcome this poor prognosis and to lower disease incidence. Here, we integrated genome-wide association studies with bulk and single-cell transcriptomic analyses of immune cells stimulated with Candida albicans to further our understanding of the anti-Candida host response. We show that differential expression analysis upon Candida stimulation in single-cell expression data can reveal the important cell types involved in the host response against Candida. This confirmed the known major role of monocytes, but more interestingly, also uncovered an important role for NK cells. Moreover, combining the power of bulk RNA-seq with the high resolution of single-cell RNA-seq data led to the identification of 27 Candida-response QTLs and revealed the cell types potentially involved herein. Integration of these response QTLs with a GWAS on candidemia susceptibility uncovered a potential new role for LY86 in candidemia susceptibility. Finally, experimental follow-up confirmed that LY86 knockdown results in reduced monocyte migration towards the chemokine MCP-1, thereby implying that this reduced migration may underlie the increased susceptibility to candidemia. Altogether, our integrative systems genetics approach identifies previously unknown mechanisms underlying the immune response to Candida infection.


Subject(s)
Antigens, Surface/genetics , Antigens, Surface/immunology , Candida albicans/physiology , Candidiasis/genetics , Candida albicans/immunology , Candidemia/genetics , Candidemia/immunology , Candidemia/microbiology , Candidiasis/immunology , Candidiasis/microbiology , Cohort Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Killer Cells, Natural , Sequence Analysis, RNA , Single-Cell Analysis
2.
Trends Genet ; 31(7): 353-6, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25891224

ABSTRACT

Despite decades of research, mitochondrial epigenetics remains a controversial notion. Recent findings, however, indicate that dysfunctional mitochondrial DNA (mtDNA) methylation could underlie aging and disease. Unraveling such a level of regulation will be essential in the understanding of and in interfering with the role of mitochondria in many physiological and pathophysiological processes.


Subject(s)
Epigenesis, Genetic , Mitochondria/genetics , Animals , DNA Methylation , DNA, Mitochondrial/genetics , Genes, Mitochondrial , Humans , Mitochondria/enzymology
3.
Inorg Chem ; 57(13): 7748-7756, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-29916702

ABSTRACT

Metal coordination complexes can display interesting biological activity, as illustrated by the bleomycins (BLMs), a family of natural antibiotics that when coordinated to a redox-active metal ion, show antitumor activity. Yet, which metal ion is required for the activity in cells is still subject to debate. In this study, we described how different metal ions affect the intracellular behavior and activity of the synthetic BLM-mimic N, N-bis(2-pyridylmethyl)- N-bis(2-pyridyl)methylamine (N4Py). Our study shows that a mixture of iron(II), copper(II), and zinc(II) complexes can be generated when N4Py is added to cell cultures but that the metal ion can also be exchanged by other metal ions present in cells. Moreover, the combination of chemical data, together with the performed biological experiments, shows that the active complex causing oxidative damage to cells is the FeII-N4Py complex and not per se the metal complex that was initially added to the cell culture medium. Finally, it is proposed that the high activity observed upon the addition of the free N4Py ligand is the result of a combination of scavenging of biologically relevant metals and oxidative damage caused by the iron(II) complex.


Subject(s)
Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Metals, Heavy/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Cell Line, Tumor , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Ligands , Models, Molecular , Molecular Conformation , Structure-Activity Relationship
4.
Mol Ther ; 24(3): 536-47, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26686387

ABSTRACT

DNA hypermethylation is extensively explored as therapeutic target for gene expression modulation in cancer. Here, we re-activated hypermethylated candidate tumor suppressor genes (TSGs) (C13ORF18, CCNA1, TFPI2, and Maspin) by TET2-induced demethylation in cervical cancer cell lines. To redirect TET2 to hypermethylated TSGs, we engineered zinc finger proteins (ZFPs), which were first fused to the transcriptional activator VP64 to validate effective gene re-expression and confirm TSG function. ChIP-Seq not only revealed enriched binding of ZFPs to their intended sequence, but also considerable off-target binding, especially at promoter regions. Nevertheless, results obtained by targeted re-expression using ZFP-VP64 constructs were in line with cDNA overexpression; both revealed strong growth inhibition for C13ORF18 and TFPI2, but not for CCNA1 and Maspin. To explore effectivity of locus-targeted demethylation, ZFP-TET2 fusions were constructed which efficiently demethylated genes with subsequent gene re-activation. Moreover, targeting TET2 to TFPI2 and C13ORF18, but not CCNA1, significantly decreased cell growth, viability, and colony formation in cervical cancer cells compared to a catalytically inactive mutant of TET2. These data underline that effective re-activation of hypermethylated genes can be achieved through targeted DNA demethylation by TET2, which can assist in realizing sustained re-expression of genes of interest.


Subject(s)
DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Silencing , Genes, Tumor Suppressor , Proto-Oncogene Proteins/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Cell Line, Tumor , DNA Methylation , Dioxygenases , Female , Gene Editing , Humans , Protein Binding , Recombinant Fusion Proteins , Zinc Fingers
5.
Biochim Biophys Acta ; 1846(2): 494-509, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25270772

ABSTRACT

Ovarian cancer is the most lethal gynecological tumor type in the world due to late stage detection, and resistance to chemotherapy. Therefore, alternative additional therapies are required. The etiology of ovarian cancer remains largely unknown, but risk factors point toward an important role for oxidative stress. Both healthy and tumor cells can cope with oxidative stress by activating the transcription factor Nrf2 (also known as Nfe2l2), the master regulator of antioxidant and cytoprotective genes. Indeed, for most ovarian cancers, aberrant activation of Nrf2 is observed, which is often associated with a copy number loss within the Nrf2-inhibitory complex KEAP1-CUL3-RBX1. A key role for Nrf2 in ovarian carcinogenesis has been validated by siRNA studies. However, to exploit the Nrf2 pathway for therapeutic interventions, potential side-effects should be minimized. In this review, we explore ovarian cancer specific factors with links to aberrant activity of Nrf2, to be exploited in future combination strategies, synergistic with direct Nrf2 inhibitory drugs. Particularly, we propose to stratify patients based on common ovarian cancer mutations (KRAS, BRAF, ERBB2, BRCA1 and its link with estradiol, TP53) for future NRF2 targeting strategies.


Subject(s)
NF-E2-Related Factor 2/physiology , Ovarian Neoplasms/etiology , Animals , Female , Genes, Tumor Suppressor , Humans , Mutation , NF-E2-Related Factor 2/antagonists & inhibitors , Oncogenes , Ovarian Neoplasms/genetics , Oxidative Stress
6.
Circ Genom Precis Med ; 17(3): e004374, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752343

ABSTRACT

BACKGROUND: The immune system's role in ST-segment-elevated myocardial infarction (STEMI) remains poorly characterized but is an important driver of recurrent cardiovascular events. While anti-inflammatory drugs show promise in reducing recurrence risk, their broad immune system impairment may induce severe side effects. To overcome these challenges, a nuanced understanding of the immune response to STEMI is needed. METHODS: For this, we compared peripheral blood mononuclear single-cell RNA-sequencing (scRNA-seq) and plasma protein expression over time (hospital admission, 24 hours, and 6-8 weeks post-STEMI) in 38 patients and 38 controls (95 995 diseased and 33 878 control peripheral blood mononuclear cells). RESULTS: Compared with controls, classical monocytes were increased and CD56dim natural killer cells were decreased in patients with STEMI at admission and persisted until 24 hours post-STEMI. The largest gene expression changes were observed in monocytes, associating with changes in toll-like receptor, interferon, and interleukin signaling activity. Finally, a targeted cardiovascular biomarker panel revealed expression changes in 33/92 plasma proteins post-STEMI. Interestingly, interleukin-6R, MMP9 (matrix metalloproteinase-9), and LDLR (low-density lipoprotein receptor) were affected by coronary artery disease-associated genetic risk variation, disease status, and time post-STEMI, indicating the importance of considering these aspects when defining potential future therapies. CONCLUSIONS: Our analyses revealed the immunologic pathways disturbed by STEMI, specifying affected cell types and disease stages. Additionally, we provide insights into patients expected to benefit most from anti-inflammatory treatments by identifying the genetic variants and disease stage at which these variants affect the outcome of these (drug-targeted) pathways. These findings advance our knowledge of the immune response post-STEMI and provide guidance for future therapeutic studies.


Subject(s)
Single-Cell Analysis , Humans , Male , Female , Middle Aged , ST Elevation Myocardial Infarction/immunology , ST Elevation Myocardial Infarction/genetics , ST Elevation Myocardial Infarction/blood , Aged , Monocytes/immunology , Monocytes/metabolism , Biomarkers/blood , Myocardial Infarction/immunology , Myocardial Infarction/genetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Case-Control Studies
7.
iScience ; 27(6): 109981, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38868191

ABSTRACT

Encounters with pathogens and other molecules can imprint long-lasting effects on our immune system, influencing future physiological outcomes. Given the wide range of microbes to which humans are exposed, their collective impact on health is not fully understood. To explore relations between exposures and biological aging and inflammation, we profiled an antibody-binding repertoire against 2,815 microbial, viral, and environmental peptides in a population cohort of 1,443 participants. Utilizing antibody-binding as a proxy for past exposures, we investigated their impact on biological aging, cell composition, and inflammation. Immune response against cytomegalovirus (CMV), rhinovirus, and gut bacteria relates with telomere length. Single-cell expression measurements identified an effect of CMV infection on the transcriptional landscape of subpopulations of CD8 and CD4 T-cells. This examination of the relationship between microbial exposures and biological aging and inflammation highlights a role for chronic infections (CMV and Epstein-Barr virus) and common pathogens (rhinoviruses and adenovirus C).

8.
Nat Med ; 30(6): 1696-1710, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773340

ABSTRACT

Acute and chronic coronary syndromes (ACS and CCS) are leading causes of mortality. Inflammation is considered a key pathogenic driver of these diseases, but the underlying immune states and their clinical implications remain poorly understood. Multiomic factor analysis (MOFA) allows unsupervised data exploration across multiple data types, identifying major axes of variation and associating these with underlying molecular processes. We hypothesized that applying MOFA to multiomic data obtained from blood might uncover hidden sources of variance and provide pathophysiological insights linked to clinical needs. Here we compile a longitudinal multiomic dataset of the systemic immune landscape in both ACS and CCS (n = 62 patients in total, n = 15 women and n = 47 men) and validate this in an external cohort (n = 55 patients in total, n = 11 women and n = 44 men). MOFA reveals multicellular immune signatures characterized by distinct monocyte, natural killer and T cell substates and immune-communication pathways that explain a large proportion of inter-patient variance. We also identify specific factors that reflect disease state or associate with treatment outcome in ACS as measured using left ventricular ejection fraction. Hence, this study provides proof-of-concept evidence for the ability of MOFA to uncover multicellular immune programs in cardiovascular disease, opening new directions for mechanistic, biomarker and therapeutic studies.


Subject(s)
Acute Coronary Syndrome , Humans , Female , Acute Coronary Syndrome/immunology , Male , Middle Aged , Aged , Chronic Disease , Monocytes/immunology , Killer Cells, Natural/immunology , T-Lymphocytes/immunology , Inflammation/immunology
9.
Front Immunol ; 14: 1069379, 2023.
Article in English | MEDLINE | ID: mdl-36865558

ABSTRACT

Both gene expression and protein concentrations are regulated by genetic variants. Exploring the regulation of both eQTLs and pQTLs simultaneously in a context- and cell-type dependent manner may help to unravel mechanistic basis for genetic regulation of pQTLs. Here, we performed meta-analysis of Candida albicans-induced pQTLs from two population-based cohorts and intersected the results with Candida-induced cell-type specific expression association data (eQTL). This revealed systematic differences between the pQTLs and eQTL, where only 35% of the pQTLs significantly correlated with mRNA expressions at single cell level, indicating the limitation of eQTLs use as a proxy for pQTLs. By taking advantage of the tightly co-regulated pattern of the proteins, we also identified SNPs affecting protein network upon Candida stimulations. Colocalization of pQTLs and eQTLs signals implicated several genomic loci including MMP-1 and AMZ1. Analysis of Candida-induced single cell gene expression data implicated specific cell types that exhibit significant expression QTLs upon stimulation. By highlighting the role of trans-regulatory networks in determining the abundance of secretory proteins, our study serve as a framework to gain insights into the mechanisms of genetic regulation of protein levels in a context-dependent manner.


Subject(s)
Candida albicans , Candida , Candida albicans/genetics , Inflammation , Quantitative Trait Loci , Gene Expression
10.
Genome Biol ; 24(1): 80, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072791

ABSTRACT

BACKGROUND: Expression quantitative trait loci (eQTL) studies show how genetic variants affect downstream gene expression. Single-cell data allows reconstruction of personalized co-expression networks and therefore the identification of SNPs altering co-expression patterns (co-expression QTLs, co-eQTLs) and the affected upstream regulatory processes using a limited number of individuals. RESULTS: We conduct a co-eQTL meta-analysis across four scRNA-seq peripheral blood mononuclear cell datasets using a novel filtering strategy followed by a permutation-based multiple testing approach. Before the analysis, we evaluate the co-expression patterns required for co-eQTL identification using different external resources. We identify a robust set of cell-type-specific co-eQTLs for 72 independent SNPs affecting 946 gene pairs. These co-eQTLs are replicated in a large bulk cohort and provide novel insights into how disease-associated variants alter regulatory networks. One co-eQTL SNP, rs1131017, that is associated with several autoimmune diseases, affects the co-expression of RPS26 with other ribosomal genes. Interestingly, specifically in T cells, the SNP additionally affects co-expression of RPS26 and a group of genes associated with T cell activation and autoimmune disease. Among these genes, we identify enrichment for targets of five T-cell-activation-related transcription factors whose binding sites harbor rs1131017. This reveals a previously overlooked process and pinpoints potential regulators that could explain the association of rs1131017 with autoimmune diseases. CONCLUSION: Our co-eQTL results highlight the importance of studying context-specific gene regulation to understand the biological implications of genetic variation. With the expected growth of sc-eQTL datasets, our strategy and technical guidelines will facilitate future co-eQTL identification, further elucidating unknown disease mechanisms.


Subject(s)
Autoimmune Diseases , Leukocytes, Mononuclear , Humans , Gene Expression Regulation , Quantitative Trait Loci , Ribosomal Proteins/genetics , Autoimmune Diseases/genetics , Polymorphism, Single Nucleotide , Genome-Wide Association Study
11.
iScience ; 26(10): 107813, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37810211

ABSTRACT

Altered myeloid inflammation and lymphopenia are hallmarks of severe infections. We identified the upregulated EN-RAGE gene program in airway and blood myeloid cells from patients with acute lung injury from SARS-CoV-2 or other causes across 7 cohorts. This program was associated with greater clinical severity and predicted future mechanical ventilation and death. EN-RAGEhi myeloid cells express features consistent with suppressor cell functionality, including low HLA-DR and high PD-L1. Sustained EN-RAGE program expression in airway and blood myeloid cells correlated with clinical severity and increasing expression of T cell dysfunction markers. IL-6 upregulated many EN-RAGE program genes in monocytes in vitro. IL-6 signaling blockade by tocilizumab in a placebo-controlled clinical trial led to rapid normalization of EN-RAGE and T cell gene expression. This identifies IL-6 as a key driver of myeloid dysregulation associated with worse clinical outcomes in COVID-19 patients and provides insights into shared pathophysiological mechanisms in non-COVID-19 ARDS.

12.
Mol Metab ; 58: 101441, 2022 04.
Article in English | MEDLINE | ID: mdl-35031523

ABSTRACT

OBJECTIVE: Cancer cachexia is a devastating chronic condition characterized by involuntary weight loss, muscle wasting, abnormal fat metabolism, anorexia, and fatigue. However, the molecular mechanisms underlying this syndrome remain poorly understood. In particular, the hypothalamus may play a central role in cachexia, given that it has direct access to peripheral signals because of its anatomical location and attenuated blood-brain barrier. Furthermore, this region has a critical role in regulating appetite and metabolism. METHODS: To provide a detailed analysis of the hypothalamic response to cachexia, we performed single-cell RNA-seq combined with RNA-seq of the medial basal hypothalamus (MBH) in a mouse model for pancreatic cancer. RESULTS: We found many cell type-specific changes, such as inflamed endothelial cells, stressed oligodendrocyes and both inflammatory and moderating microglia. Lcn2, a newly discovered hunger suppressing hormone, was the highest induced gene. Interestingly, cerebral treatment with LCN2 not only induced many of the observed molecular changes in cachexia but also affected gene expression in food-intake decreasing POMC neurons. In addition, we found that many of the cachexia-induced molecular changes found in the hypothalamus mimic those at the primary tumor site. CONCLUSION: Our data reveal that multiple cell types in the MBH are affected by tumor-derived factors or host factors that are induced by tumor growth, leading to a marked change in the microenvironment of neurons critical for behavioral, metabolic, and neuroendocrine outputs dysregulated during cachexia. The mechanistic insights provided in this study explain many of the clinical features of cachexia and will be useful for future therapeutic development.


Subject(s)
Cachexia , Pancreatic Neoplasms , Animals , Cachexia/metabolism , Endothelial Cells/metabolism , Gene Regulatory Networks , Hypothalamus/metabolism , Mice , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Sequence Analysis, RNA , Tumor Microenvironment , Pancreatic Neoplasms
13.
Trends Cardiovasc Med ; 32(3): 127-135, 2022 04.
Article in English | MEDLINE | ID: mdl-33667644

ABSTRACT

Cardiovascular disease is the leading cause of death worldwide. The societal health burden it represents can be reduced by taking preventive measures and developing more effective therapies. Reaching these goals, however, requires a better understanding of the pathophysiological processes leading to and occurring in the diseased heart. In the last 5 years, several biological advances applying single-cell technologies have enabled researchers to study cardiovascular diseases with unprecedented resolution. This has produced many new insights into how specific cell types change their gene expression level, activation status and potential cellular interactions with the development of cardiovascular disease, but a comprehensive overview of the clinical implications of these findings is lacking. In this review, we summarize and discuss these recent advances and the promise of single-cell technologies from a translational perspective across the cardiovascular disease continuum, covering both animal and human studies, and explore the future directions of the field.


Subject(s)
Cardiovascular Diseases , Single-Cell Analysis , Animals , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , Heart , Humans , Protein Processing, Post-Translational , Sequence Analysis, RNA
14.
Nat Commun ; 13(1): 3267, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672358

ABSTRACT

The host's gene expression and gene regulatory response to pathogen exposure can be influenced by a combination of the host's genetic background, the type of and exposure time to pathogens. Here we provide a detailed dissection of this using single-cell RNA-sequencing of 1.3M peripheral blood mononuclear cells from 120 individuals, longitudinally exposed to three different pathogens. These analyses indicate that cell-type-specificity is a more prominent factor than pathogen-specificity regarding contexts that affect how genetics influences gene expression (i.e., eQTL) and co-expression (i.e., co-expression QTL). In monocytes, the strongest responder to pathogen stimulations, 71.4% of the genetic variants whose effect on gene expression is influenced by pathogen exposure (i.e., response QTL) also affect the co-expression between genes. This indicates widespread, context-specific changes in gene expression level and its regulation that are driven by genetics. Pathway analysis on the CLEC12A gene that exemplifies cell-type-, exposure-time- and genetic-background-dependent co-expression interactions, shows enrichment of the interferon (IFN) pathway specifically at 3-h post-exposure in monocytes. Similar genetic background-dependent association between IFN activity and CLEC12A co-expression patterns is confirmed in systemic lupus erythematosus by in silico analysis, which implies that CLEC12A might be an IFN-regulated gene. Altogether, this study highlights the importance of context for gaining a better understanding of the mechanisms of gene regulation in health and disease.


Subject(s)
Leukocytes, Mononuclear , Lupus Erythematosus, Systemic , Gene Expression Regulation , Humans , Lectins, C-Type/genetics , Leukocytes, Mononuclear/metabolism , Lupus Erythematosus, Systemic/genetics , RNA/metabolism , Receptors, Mitogen/genetics , Signal Transduction
15.
Commun Biol ; 5(1): 565, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35681050

ABSTRACT

The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.


Subject(s)
Aging , Telomere , Aging/genetics , Epigenesis, Genetic , Female , Humans , Life Style , Parents , Pregnancy , Telomere/genetics
16.
Sci Rep ; 12(1): 9897, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35701452

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of the cellular landscape of organs. Most single-cell protocols require fresh material, which limits sample size per experiment, and consequently, introduces batch effects. This is especially true for samples acquired through complex medical procedures, such as intestinal mucosal biopsies. Moreover, the tissue dissociation procedure required for obtaining single cells is a major source of noise; different dissociation procedures applied to different compartments of the tissue induce artificial gene expression differences between cell subsets. To overcome these challenges, we have developed a one-step dissociation protocol and demonstrated its use on cryopreserved gut mucosal biopsies. Using flow cytometry and scRNA-seq analysis, we compared this one-step dissociation protocol with the current gold standard, two-step collagenase digestion, and an adaptation of a recently published alternative, three-step cold-active Bacillus licheniformus protease digestion. Both cell viability and cell type composition were comparable between the one-step and two-step collagenase dissociation, with the former being more time-efficient. The cold protease digestion resulted in equal cell viability, but better preserves the epithelial cell types. Consequently, to analyze the rarer cell types, such as glial cells, larger total biopsy cell numbers are required as input material. The multi-step protocols affected cell types spanning multiple compartments differently. In summary, we show that cryopreserved gut mucosal biopsies can be used to overcome the logistical challenges and batch effects in large scRNA-seq studies. Furthermore, we demonstrate that using cryopreserved biopsies digested using a one-step collagenase protocol enables large-scale scRNA-seq, FACS, organoid generation and intraepithelial lymphocyte expansion.


Subject(s)
Collagenases , Intestinal Mucosa , Flow Cytometry/methods , Gene Expression , Gene Expression Profiling/methods , Peptide Hydrolases , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
17.
bioRxiv ; 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33758859

ABSTRACT

Type I interferon (IFN-I) neutralizing autoantibodies have been found in some critical COVID-19 patients; however, their prevalence and longitudinal dynamics across the disease severity scale, and functional effects on circulating leukocytes remain unknown. Here, in 284 COVID-19 patients, we found IFN-I autoantibodies in 19% of critical, 6% of severe and none of the moderate cases. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 COVID-19 patients, 15 non-COVID-19 patients and 11 non-hospitalized healthy controls, revealed a lack of IFN-I stimulated gene (ISG-I) response in myeloid cells from critical cases, including those producing anti-IFN-I autoantibodies. Moreover, surface protein analysis showed an inverse correlation of the inhibitory receptor LAIR-1 with ISG-I expression response early in the disease course. This aberrant ISG-I response in critical patients with and without IFN-I autoantibodies, supports a unifying model for disease pathogenesis involving ISG-I suppression via convergent mechanisms.

18.
Nat Genet ; 53(9): 1300-1310, 2021 09.
Article in English | MEDLINE | ID: mdl-34475573

ABSTRACT

Trait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis- and trans-expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis-eQTL for 88% of genes, and these were replicable in numerous tissues. Distal trans-eQTL (detected for 37% of 10,317 trait-associated variants tested) showed lower replication rates, partially due to low replication power and confounding by cell type composition. However, replication analyses in single-cell RNA-seq data prioritized intracellular trans-eQTL. Trans-eQTL exerted their effects via several mechanisms, primarily through regulation by transcription factors. Expression of 13% of the genes correlated with polygenic scores for 1,263 phenotypes, pinpointing potential drivers for those traits. In summary, this work represents a large eQTL resource, and its results serve as a starting point for in-depth interpretation of complex phenotypes.


Subject(s)
Blood Proteins/genetics , Gene Expression Regulation/genetics , Quantitative Trait Loci/genetics , Genome-Wide Association Study , Humans , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Transcriptome/genetics
19.
Sci Transl Med ; 13(612): eabh2624, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34429372

ABSTRACT

Neutralizing autoantibodies against type I interferons (IFNs) have been found in some patients with critical coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the prevalence of these antibodies, their longitudinal dynamics across the disease severity scale, and their functional effects on circulating leukocytes remain unknown. Here, in 284 patients with COVID-19, we found type I IFN­specific autoantibodies in peripheral blood samples from 19% of patients with critical disease and 6% of patients with severe disease. We found no type I IFN autoantibodies in individuals with moderate disease. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 patients with COVID-19 and 26 non­COVID-19 controls revealed a lack of type I IFN­stimulated gene (ISG-I) responses in myeloid cells from patients with critical disease. This was especially evident in dendritic cell populations isolated from patients with critical disease producing type I IFN­specific autoantibodies. Moreover, we found elevated expression of the inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) on the surface of monocytes isolated from patients with critical disease early in the disease course. LAIR1 expression is inversely correlated with ISG-I expression response in patients with COVID-19 but is not expressed in healthy controls. The deficient ISG-I response observed in patients with critical COVID-19 with and without type I IFN­specific autoantibodies supports a unifying model for disease pathogenesis involving ISG-I suppression through convergent mechanisms.


Subject(s)
Autoantibodies , COVID-19 , Interferon Type I , Autoantibodies/immunology , COVID-19/immunology , Humans , Interferon Type I/immunology
20.
Genome Med ; 10(1): 96, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30567569

ABSTRACT

Only a small fraction of patients respond to the drug prescribed to treat their disease, which means that most are at risk of unnecessary exposure to side effects through ineffective drugs. This inter-individual variation in drug response is driven by differences in gene interactions caused by each patient's genetic background, environmental exposures, and the proportions of specific cell types involved in disease. These gene interactions can now be captured by building gene regulatory networks, by taking advantage of RNA velocity (the time derivative of the gene expression state), the ability to study hundreds of thousands of cells simultaneously, and the falling price of single-cell sequencing. Here, we propose an integrative approach that leverages these recent advances in single-cell data with the sensitivity of bulk data to enable the reconstruction of personalized, cell-type- and context-specific gene regulatory networks. We expect this approach will allow the prioritization of key driver genes for specific diseases and will provide knowledge that opens new avenues towards improved personalized healthcare.


Subject(s)
Gene Expression Regulation , Gene Regulatory Networks , Polymorphism, Single Nucleotide , Precision Medicine/methods , Gene Expression Profiling/methods , Genome-Wide Association Study/methods , Humans , Single-Cell Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL