Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
Add more filters

Publication year range
1.
Cell ; 185(5): 759-761, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35245478

ABSTRACT

Neutrophil recruitment from blood into tissues is a hallmark of inflammation and anti-microbial host defense. In this issue, De Giovanni et al. describe an unanticipated role for a serotonin metabolite, 5-HIAA, which is produced by activated platelets and mast cells and engages the orphan receptor, GPR35, to recruit neutrophils to inflamed tissues.


Subject(s)
Blood Platelets , Neutrophils , Blood Platelets/metabolism , Humans , Inflammation/metabolism , Mast Cells/metabolism , Neutrophil Infiltration , Neutrophils/metabolism
2.
Cell ; 185(10): 1694-1708.e19, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35447074

ABSTRACT

Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration. They also display superior tumorigenic capacity and higher expression of chemotherapy resistance and stemness genes. We adapted single-cell RNA-sequencing with precise spatial resolution to profile infiltrating cells inside and outside the QCC niche. This transcriptomic analysis revealed hypoxia-induced programs and identified more exhausted T cells, tumor-protective fibroblasts, and dysfunctional dendritic cells inside clusters of QCCs. This uncovered differential phenotypes in infiltrating cells based on their intra-tumor location. Thus, QCCs constitute immunotherapy-resistant reservoirs by orchestrating a local hypoxic immune-suppressive milieu that blocks T cell function. Eliminating QCCs holds the promise to counteract immunotherapy resistance and prevent disease recurrence in TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Immunosuppressive Agents/therapeutic use , Immunotherapy , Neoplasm Recurrence, Local , T-Lymphocytes/pathology , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
3.
Cell ; 184(2): 441-459.e25, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33333021

ABSTRACT

Barrier tissue immune responses are regulated in part by nociceptors. Nociceptor ablation alters local immune responses at peripheral sites and within draining lymph nodes (LNs). The mechanisms and significance of nociceptor-dependent modulation of LN function are unknown. Using high-resolution imaging, viral tracing, single-cell transcriptomics, and optogenetics, we identified and functionally tested a sensory neuro-immune circuit that is responsive to lymph-borne inflammatory signals. Transcriptomics profiling revealed that multiple sensory neuron subsets, predominantly peptidergic nociceptors, innervate LNs, distinct from those innervating surrounding skin. To uncover LN-resident cells that may interact with LN-innervating sensory neurons, we generated a LN single-cell transcriptomics atlas and nominated nociceptor target populations and interaction modalities. Optogenetic stimulation of LN-innervating sensory fibers triggered rapid transcriptional changes in the predicted interacting cell types, particularly endothelium, stromal cells, and innate leukocytes. Thus, a unique population of sensory neurons monitors peripheral LNs and may locally regulate gene expression.


Subject(s)
Immunomodulation , Lymph Nodes/immunology , Lymph Nodes/innervation , Sensory Receptor Cells/immunology , Action Potentials , Animals , Inflammation/pathology , Mice , Nociceptors/metabolism , Optogenetics , Peptides/metabolism , Skin/innervation , Sympathetic Nervous System/physiology , Toll-Like Receptors/agonists , Toll-Like Receptors/metabolism
4.
Nat Immunol ; 24(6): 915-924, 2023 06.
Article in English | MEDLINE | ID: mdl-37081147

ABSTRACT

Immune cell locomotion is associated with amoeboid migration, a flexible mode of movement, which depends on rapid cycles of actin polymerization and actomyosin contraction1. Many immune cells do not necessarily require integrins, the major family of adhesion receptors in mammals, to move productively through three-dimensional tissue spaces2,3. Instead, they can use alternative strategies to transmit their actin-driven forces to the substrate, explaining their migratory adaptation to changing external environments4-6. However, whether these generalized concepts apply to all immune cells is unclear. Here, we show that the movement of mast cells (immune cells with important roles during allergy and anaphylaxis) differs fundamentally from the widely applied paradigm of interstitial immune cell migration. We identify a crucial role for integrin-dependent adhesion in controlling mast cell movement and localization to anatomical niches rich in KIT ligand, the major mast cell growth and survival factor. Our findings show that substrate-dependent haptokinesis is an important mechanism for the tissue organization of resident immune cells.


Subject(s)
Actins , Integrins , Animals , Integrins/metabolism , Actins/metabolism , Mast Cells/metabolism , Cell Movement , Leukocytes/metabolism , Cell Adhesion , Mammals/metabolism
5.
Cell ; 175(5): 1307-1320.e22, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30392957

ABSTRACT

In the small intestine, a niche of accessory cell types supports the generation of mature epithelial cell types from intestinal stem cells (ISCs). It is unclear, however, if and how immune cells in the niche affect ISC fate or the balance between self-renewal and differentiation. Here, we use single-cell RNA sequencing (scRNA-seq) to identify MHC class II (MHCII) machinery enrichment in two subsets of Lgr5+ ISCs. We show that MHCII+ Lgr5+ ISCs are non-conventional antigen-presenting cells in co-cultures with CD4+ T helper (Th) cells. Stimulation of intestinal organoids with key Th cytokines affects Lgr5+ ISC renewal and differentiation in opposing ways: pro-inflammatory signals promote differentiation, while regulatory cells and cytokines reduce it. In vivo genetic perturbation of Th cells or MHCII expression on Lgr5+ ISCs impacts epithelial cell differentiation and IEC fate during infection. These interactions between Th cells and Lgr5+ ISCs, thus, orchestrate tissue-wide responses to external signals.


Subject(s)
Cell Differentiation , Cell Self Renewal , Interleukin-10/metabolism , Stem Cells/cytology , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Cell Differentiation/drug effects , Cell Self Renewal/drug effects , Cytokines/pharmacology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Histocompatibility Antigens Class II/metabolism , Immune System/metabolism , Intestines/cytology , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Receptors, G-Protein-Coupled/metabolism , Salmonella enterica/pathogenicity , Stem Cells/metabolism , T-Lymphocytes, Helper-Inducer/cytology
6.
Cell ; 171(2): 398-413.e21, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28942919

ABSTRACT

A fundamental challenge in immunology is to decipher the principles governing immune responses at the whole-organism scale. Here, using a comparative infection model, we observe immune signal propagation within and between organs to obtain a dynamic map of immune processes at the organism level. We uncover two inter-organ mechanisms of protective immunity mediated by soluble and cellular factors. First, analyzing ligand-receptor connectivity across tissues reveals that type I IFNs trigger a whole-body antiviral state, protecting the host within hours after skin vaccination. Second, combining parabiosis, single-cell analyses, and gene knockouts, we uncover a multi-organ web of tissue-resident memory T cells that functionally adapt to their environment to stop viral spread across the organism. These results have implications for manipulating tissue-resident memory T cells through vaccination and open up new lines of inquiry for the analysis of immune responses at the organism level.


Subject(s)
Immunologic Memory , Interferon Type I/immunology , Vaccinia virus/physiology , Vaccinia/immunology , Vaccinia/prevention & control , Viral Vaccines/immunology , Administration, Cutaneous , Animals , Female , Gene Expression Profiling , Mice , Mice, Inbred C57BL , Organ Specificity , Specific Pathogen-Free Organisms , T-Lymphocytes/immunology , Viral Vaccines/administration & dosage
7.
Nat Immunol ; 20(3): 373, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30728493

ABSTRACT

In the version of this article initially published, three authors (Hui-Fern Kuoy, Adam P. Uldrich and Dale. I. Godfrey) and their affiliations, acknowledgments and contributions were not included. The correct information is as follows:Ayano C. Kohlgruber1,2, Shani T. Gal-Oz3, Nelson M. LaMarche1,2, Moto Shimazaki1, Danielle Duquette4, Hui-Fern Koay5,6, Hung N. Nguyen1, Amir I. Mina4, Tyler Paras1, Ali Tavakkoli7, Ulrich von Andrian2,8, Adam P. Uldrich5,6, Dale I. Godfrey5,6, Alexander S. Banks4, Tal Shay3, Michael B. Brenner1,10* and Lydia Lynch1,4,9,10*1Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA. 2Division of Medical Sciences, Harvard Medical School, Boston, MA, USA. 3Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel. 4Division of Endocrinology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. 5Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia. 6ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia. 7Department of General and Gastrointestinal Surgery, Brigham and Women's Hospital, Boston, MA, USA. 8Department of Microbiology and Immunology, Harvard Medical School, Boston, MA, USA. 9School of Biochemistry and Immunology, Trinity College, Dublin, Ireland. 10These authors jointly supervised this work: Michael B. Brenner, Lydia Lynch. *e-mail: mbrenner@research.bwh.harvard.edu; llynch@bwh.harvard.eduAcknowledgementsWe thank A.T. Chicoine, flow cytometry core manager at the Human Immunology Center at BWH, for flow cytometry sorting. We thank D. Sant'Angelo (Rutgers Cancer Institute) for providing Zbtb16-/- mice and R. O'Brien (National Jewish Health) for providing Vg4/6-/- mice. Supported by NIH grant R01 AI11304603 (to M.B.B.), ERC Starting Grant 679173 (to L.L.), the National Health and Medical Research Council of Australia (1013667), an Australian Research Council Future Fellowship (FT140100278 for A.P.U.) and a National Health and Medical Research Council of Australia Senior Principal Research Fellowship (1117766 for D.I.G.).Author contributionsA.C.K., L.L., and M.B.B. conceived and designed the experiments, and wrote the manuscript. A.C.K., N.M.L., L.L., H.N.N., M.S., T.P., and D.D. performed the experiments. S.T.G.-O. and T.S. performed the RNA-seq analysis. A.S.B. and A.I.M. provided advice and performed the CLAMS experiments. A.T. provided human bariatric patient samples. Parabiosis experiments were performed in the laboratory of U.v.A. H.-F.K., A.P.U. and D.I.G provided critical insight into the TCR chain usage of PLZF+ γδ T cells. M.B.B., N.M.L., and L.L. critically reviewed the manuscript.The errors have been corrected in the HTML and PDF version of the article.Correction to: Nature Immunology doi:10.1038/s41590-018-0094-2 (2018), published online 18 April 2018.

8.
Nat Immunol ; 19(5): 464-474, 2018 05.
Article in English | MEDLINE | ID: mdl-29670241

ABSTRACT

γδ T cells are situated at barrier sites and guard the body from infection and damage. However, little is known about their roles outside of host defense in nonbarrier tissues. Here, we characterize a highly enriched tissue-resident population of γδ T cells in adipose tissue that regulate age-dependent regulatory T cell (Treg) expansion and control core body temperature in response to environmental fluctuations. Mechanistically, innate PLZF+ γδ T cells produced tumor necrosis factor and interleukin (IL) 17 A and determined PDGFRα+ and Pdpn+ stromal-cell production of IL-33 in adipose tissue. Mice lacking γδ T cells or IL-17A exhibited decreases in both ST2+ Treg cells and IL-33 abundance in visceral adipose tissue. Remarkably, these mice also lacked the ability to regulate core body temperature at thermoneutrality and after cold challenge. Together, these findings uncover important physiological roles for resident γδ T cells in adipose tissue immune homeostasis and body-temperature control.


Subject(s)
Adipose Tissue/cytology , Homeostasis/physiology , Interleukin-17/metabolism , T-Lymphocytes, Regulatory/physiology , Thermogenesis/physiology , Adipose Tissue/physiology , Animals , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocyte Subsets/physiology
9.
Immunity ; 54(7): 1494-1510.e7, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34033752

ABSTRACT

Aging is associated with dysregulated immune functions. Here, we investigated the impact of age on neutrophil diapedesis. Using confocal intravital microscopy, we found that in aged mice, neutrophils adhered to vascular endothelium in inflamed tissues but exhibited a high frequency of reverse transendothelial migration (rTEM). This retrograde breaching of the endothelium by neutrophils was governed by enhanced production of the chemokine CXCL1 from mast cells that localized at endothelial cell (EC) junctions. Increased EC expression of the atypical chemokine receptor 1 (ACKR1) supported this pro-inflammatory milieu in aged venules. Accumulation of CXCL1 caused desensitization of the chemokine receptor CXCR2 on neutrophils and loss of neutrophil directional motility within EC junctions. Fluorescent tracking revealed that in aged mice, neutrophils undergoing rTEM re-entered the circulation and disseminated to the lungs where they caused vascular leakage. Thus, neutrophils stemming from a local inflammatory site contribute to remote organ damage, with implication to the dysregulated systemic inflammation associated with aging.


Subject(s)
Aging/immunology , Biological Transport/immunology , Inflammation/immunology , Neutrophils/immunology , Animals , Chemokine CXCL1/immunology , Endothelial Cells/immunology , Endothelium, Vascular/immunology , Female , Intercellular Junctions/immunology , Lung/immunology , Male , Mice , Mice, Inbred C57BL , Receptors, Interleukin-8B/immunology , Venules/immunology
10.
Cell ; 161(4): 702-4, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25957676

ABSTRACT

Immunization generates several memory T cell subsets that differ in their migratory properties, anatomic distribution, and, hence, accessibility to investigation. In this issue, Steinert et al. demonstrate that what was believed to be a minor memory cell subset in peripheral tissues has been dramatically underestimated. Thus, current models of protective immunity require revision.


Subject(s)
Arenaviridae Infections/immunology , Immunologic Memory , Lymphocytic choriomeningitis virus/physiology , Monitoring, Immunologic , T-Lymphocyte Subsets/immunology , Animals
11.
Nat Immunol ; 18(7): 753-761, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28553950

ABSTRACT

Healthy individuals of African ancestry have neutropenia that has been linked with the variant rs2814778(G) of the gene encoding atypical chemokine receptor 1 (ACKR1). This polymorphism selectively abolishes the expression of ACKR1 in erythroid cells, causing a Duffy-negative phenotype. Here we describe an unexpected fundamental role for ACKR1 in hematopoiesis and provide the mechanism that links its absence with neutropenia. Nucleated erythroid cells had high expression of ACKR1, which facilitated their direct contact with hematopoietic stem cells. The absence of erythroid ACKR1 altered mouse hematopoiesis including stem and progenitor cells, which ultimately gave rise to phenotypically distinct neutrophils that readily left the circulation, causing neutropenia. Individuals with a Duffy-negative phenotype developed a distinct profile of neutrophil effector molecules that closely reflected the one observed in the ACKR1-deficient mice. Thus, alternative physiological patterns of hematopoiesis and bone marrow cell outputs depend on the expression of ACKR1 in the erythroid lineage, findings with major implications for the selection advantages that have resulted in the paramount fixation of the ACKR1 rs2814778(G) polymorphism in Africa.


Subject(s)
Duffy Blood-Group System , Erythroblasts , Hematopoiesis , Hematopoietic Stem Cells , Neutropenia , Neutrophils , Receptors, Cell Surface , Animals , Humans , Mice , Black People/genetics , Bone Marrow/pathology , Bone Marrow Cells/metabolism , Cell Proliferation , Duffy Blood-Group System/genetics , Duffy Blood-Group System/metabolism , Erythroblasts/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Microscopy, Confocal , Neutropenia/genetics , Neutrophils/cytology , Neutrophils/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism
13.
Cell ; 154(4): 720-2, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23953106

ABSTRACT

Understanding the ontogeny of distinct hematopoietic cell types remains a challenge. In this issue, Schraml et al. contribute to unraveling the complexity of a central component of the mononuclear phagocyte system by using a new in vivo approach to trace the progeny of common dendritic cell precursors.


Subject(s)
Cell Lineage , Dendritic Cells/cytology , Lectins, C-Type/metabolism , Receptors, Immunologic/metabolism , Animals
14.
Nat Immunol ; 16(9): 927-32, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26193080

ABSTRACT

Natural killer (NK) cells have traditionally been considered nonspecific components of innate immunity, but recent studies have shown features of antigen-specific memory in mouse NK cells. However, it has remained unclear whether this phenomenon also exists in primates. We found that splenic and hepatic NK cells from SHIV(SF162P3)-infected and SIV(mac251)-infected macaques specifically lysed Gag- and Env-pulsed dendritic cells in an NKG2-dependent fashion, in contrast to NK cells from uninfected macaques. Moreover, splenic and hepatic NK cells from Ad26-vaccinated macaques efficiently lysed antigen-matched but not antigen-mismatched targets 5 years after vaccination. These data demonstrate that robust, durable, antigen-specific NK cell memory can be induced in primates after both infection and vaccination, and this finding could be important for the development of vaccines against HIV-1 and other pathogens.


Subject(s)
Dendritic Cells/immunology , HIV-1/immunology , Killer Cells, Natural/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Immunologic Memory , Killer Cells, Natural/metabolism , Liver/cytology , Liver/immunology , Macaca mulatta , Receptors, NK Cell Lectin-Like/metabolism , Spleen/cytology , Spleen/immunology
15.
Nat Immunol ; 16(1): 85-95, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25436972

ABSTRACT

Invariant natural killer T cells (iNKT cells) are lipid-sensing innate T cells that are restricted by the antigen-presenting molecule CD1d and express the transcription factor PLZF. iNKT cells accumulate in adipose tissue, where they are anti-inflammatory, but the factors that contribute to their anti-inflammatory nature, as well as their targets in adipose tissue, are unknown. Here we found that iNKT cells in adipose tissue had a unique transcriptional program and produced interleukin 2 (IL-2) and IL-10. Unlike other iNKT cells, they lacked PLZF but expressed the transcription factor E4BP4, which controlled their IL-10 production. The adipose iNKT cells were a tissue-resident population that induced an anti-inflammatory phenotype in macrophages and, through the production of IL-2, controlled the number, proliferation and suppressor function of regulatory T cells (Treg cells) in adipose tissue. Thus, iNKT cells in adipose tissue are unique regulators of immunological homeostasis in this tissue.


Subject(s)
Adipose Tissue/immunology , Kruppel-Like Transcription Factors/biosynthesis , Macrophages/immunology , Natural Killer T-Cells/metabolism , T-Lymphocytes, Regulatory/metabolism , Adipose Tissue/cytology , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/immunology , Cell Growth Processes/immunology , Female , Flow Cytometry , Gene Expression Regulation , Homeostasis/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Kruppel-Like Transcription Factors/deficiency , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/immunology , Macrophages/cytology , Male , Mice, Inbred C57BL , Mice, Knockout , Natural Killer T-Cells/cytology , Natural Killer T-Cells/immunology , Promyelocytic Leukemia Zinc Finger Protein , Specific Pathogen-Free Organisms , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology
16.
Immunity ; 49(6): 1062-1076.e6, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30446388

ABSTRACT

Neutrophils require directional cues to navigate through the complex structure of venular walls and into inflamed tissues. Here we applied confocal intravital microscopy to analyze neutrophil emigration in cytokine-stimulated mouse cremaster muscles. We identified differential and non-redundant roles for the chemokines CXCL1 and CXCL2, governed by their distinct cellular sources. CXCL1 was produced mainly by TNF-stimulated endothelial cells (ECs) and pericytes and supported luminal and sub-EC neutrophil crawling. Conversely, neutrophils were the main producers of CXCL2, and this chemokine was critical for correct breaching of endothelial junctions. This pro-migratory activity of CXCL2 depended on the atypical chemokine receptor 1 (ACKR1), which is enriched within endothelial junctions. Transmigrating neutrophils promoted a self-guided migration response through EC junctions, creating a junctional chemokine "depot" in the form of ACKR1-presented CXCL2 that enabled efficient unidirectional luminal-to-abluminal migration. Thus, CXCL1 and CXCL2 act in a sequential manner to guide neutrophils through venular walls as governed by their distinct cellular sources.


Subject(s)
Chemokine CXCL1 , Chemokine CXCL2 , Duffy Blood-Group System , Neutrophils , Receptors, Cell Surface , Transendothelial and Transepithelial Migration , Animals , Abdominal Muscles/drug effects , Abdominal Muscles/immunology , Abdominal Muscles/metabolism , Chemokine CXCL1/genetics , Chemokine CXCL1/immunology , Chemokine CXCL1/metabolism , Chemokine CXCL2/genetics , Chemokine CXCL2/immunology , Chemokine CXCL2/metabolism , Duffy Blood-Group System/genetics , Duffy Blood-Group System/immunology , Duffy Blood-Group System/metabolism , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation , Intercellular Junctions/drug effects , Intercellular Junctions/immunology , Intercellular Junctions/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neutrophils/cytology , Neutrophils/immunology , Neutrophils/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Transendothelial and Transepithelial Migration/drug effects , Transendothelial and Transepithelial Migration/genetics , Transendothelial and Transepithelial Migration/immunology , Tumor Necrosis Factor-alpha/pharmacology
17.
Cell ; 150(6): 1249-63, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22980984

ABSTRACT

A defining feature of vertebrate immunity is the acquisition of immunological memory, which confers enhanced protection against pathogens by mechanisms that are incompletely understood. Here, we compared responses by virus-specific naive T cells (T(N)) and central memory T cells (T(CM)) to viral antigen challenge in lymph nodes (LNs). In steady-state LNs, both T cell subsets localized in the deep T cell area and interacted similarly with antigen-presenting dendritic cells. However, upon entry of lymph-borne virus, only T(CM) relocalized rapidly and efficiently toward the outermost LN regions in the medullary, interfollicular, and subcapsular areas where viral infection was initially confined. This rapid peripheralization was coordinated by a cascade of cytokines and chemokines, particularly ligands for T(CM)-expressed CXCR3. Consequently, in vivo recall responses to viral infection by CXCR3-deficient T(CM) were markedly compromised, indicating that early antigen detection afforded by intranodal chemokine guidance of T(CM) is essential for efficient antiviral memory.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Lymph Nodes/immunology , T-Lymphocyte Subsets/immunology , Animals , Chemokine CXCL9/immunology , Dendritic Cells/immunology , Interferon-gamma/immunology , Lymph Nodes/cytology , Lymphocytic choriomeningitis virus , Mice , Mice, Inbred C57BL , Monocytes/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, CXCR3/immunology , Stromal Cells/immunology , Vesicular stomatitis Indiana virus
18.
Nat Immunol ; 15(1): 45-53, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24270515

ABSTRACT

Transendothelial migration of neutrophils in postcapillary venules is a key event in the inflammatory response against pathogens and tissue damage. The precise regulation of this process is incompletely understood. We report that perivascular macrophages are critical for neutrophil migration into skin infected with the pathogen Staphylococcus aureus. Using multiphoton intravital microscopy we showed that neutrophils extravasate from inflamed dermal venules in close proximity to perivascular macrophages, which are a major source of neutrophil chemoattractants. The virulence factor α-hemolysin produced by S. aureus lyses perivascular macrophages, which leads to decreased neutrophil transmigration. Our data illustrate a previously unrecognized role for perivascular macrophages in neutrophil recruitment to inflamed skin and indicate that S. aureus uses hemolysin-dependent killing of these cells as an immune evasion strategy.


Subject(s)
Macrophages/immunology , Neutrophils/immunology , Skin/immunology , Staphylococcal Infections/immunology , Animals , Bacterial Toxins/immunology , Bacterial Toxins/metabolism , Blood Vessels/immunology , Blood Vessels/metabolism , Flow Cytometry , Gene Expression/immunology , Hemolysin Proteins/immunology , Hemolysin Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Microscopy, Fluorescence, Multiphoton , Neutrophil Infiltration/immunology , Neutrophils/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Skin/blood supply , Skin/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/immunology , Staphylococcus aureus/metabolism , Time-Lapse Imaging/methods , Transendothelial and Transepithelial Migration/immunology , Venules/immunology , Venules/metabolism
19.
Immunity ; 46(2): 273-286, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28228283

ABSTRACT

Adipose tissue has a dynamic immune system that adapts to changes in diet and maintains homeostatic tissue remodeling. Adipose type 1 innate lymphoid cells (AT1-ILCs) promote pro-inflammatory macrophages in obesity, but little is known about their functions at steady state. Here we found that human and murine adipose tissue harbor heterogeneous populations of AT1-ILCs. Experiments using parabiotic mice fed a high-fat diet (HFD) showed differential trafficking of AT1-ILCs, particularly in response to short- and long-term HFD and diet restriction. At steady state, AT1-ILCs displayed cytotoxic activity toward adipose tissue macrophages (ATMs). Depletion of AT1-ILCs and perforin deficiency resulted in alterations in the ratio of inflammatory to anti-inflammatory ATMs, and adoptive transfer of AT1-ILCs exacerbated metabolic disorder. Diet-induced obesity impaired AT1-ILC killing ability. Our findings reveal a role for AT1-ILCs in regulating ATM homeostasis through cytotoxicity and suggest that this function is relevant in both homeostasis and metabolic disease.


Subject(s)
Adipose Tissue/immunology , Cytotoxicity, Immunologic/immunology , Homeostasis/immunology , Lymphocytes/immunology , Macrophages/immunology , Obesity/immunology , Adipose Tissue/cytology , Animals , Female , Humans , Immunity, Innate , Male , Mice , Mice, Inbred C57BL , Obesity/pathology
20.
Cell ; 147(4): 853-67, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-22078882

ABSTRACT

Deciphering the signaling networks that underlie normal and disease processes remains a major challenge. Here, we report the discovery of signaling components involved in the Toll-like receptor (TLR) response of immune dendritic cells (DCs), including a previously unkown pathway shared across mammalian antiviral responses. By combining transcriptional profiling, genetic and small-molecule perturbations, and phosphoproteomics, we uncover 35 signaling regulators, including 16 known regulators, involved in TLR signaling. In particular, we find that Polo-like kinases (Plk) 2 and 4 are essential components of antiviral pathways in vitro and in vivo and activate a signaling branch involving a dozen proteins, among which is Tnfaip2, a gene associated with autoimmune diseases but whose role was unknown. Our study illustrates the power of combining systematic measurements and perturbations to elucidate complex signaling circuits and discover potential therapeutic targets.


Subject(s)
Dendritic Cells/immunology , Signal Transduction , Toll-Like Receptors/metabolism , Viruses , Animals , Dendritic Cells/metabolism , Female , Humans , Interferon Regulatory Factor-3/metabolism , Interferons/metabolism , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL