Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.529
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 36: 157-191, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29237128

ABSTRACT

In the last few decades, the AIDS pandemic and the significant advances in the medical management of individuals with neoplastic and inflammatory conditions have resulted in a dramatic increase in the population of immunosuppressed patients with opportunistic, life-threatening fungal infections. The parallel development of clinically relevant mouse models of fungal disease and the discovery and characterization of several inborn errors of immune-related genes that underlie inherited human susceptibility to opportunistic mycoses have significantly expanded our understanding of the innate and adaptive immune mechanisms that protect against ubiquitous fungal exposures. This review synthesizes immunological knowledge derived from basic mouse studies and from human cohorts and provides an overview of mammalian antifungal host defenses that show promise for informing therapeutic and vaccination strategies for vulnerable patients.


Subject(s)
Host-Pathogen Interactions/immunology , Mycoses/immunology , Mycoses/microbiology , Acquired Immunodeficiency Syndrome/complications , Acquired Immunodeficiency Syndrome/immunology , Adaptive Immunity , Animals , Disease Susceptibility , Fungal Vaccines/immunology , Fungi/immunology , Humans , Immune System/cytology , Immune System/immunology , Immune System/metabolism , Immunity, Innate , Immunocompromised Host , Immunotherapy , Mycoses/prevention & control , Mycoses/therapy , Signal Transduction
2.
Cell ; 184(4): 1017-1031.e14, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33548172

ABSTRACT

Antibodies mediate natural and vaccine-induced immunity against viral and bacterial pathogens, whereas fungi represent a widespread kingdom of pathogenic species for which neither vaccine nor neutralizing antibody therapies are clinically available. Here, using a multi-kingdom antibody profiling (multiKAP) approach, we explore the human antibody repertoires against gut commensal fungi (mycobiota). We identify species preferentially targeted by systemic antibodies in humans, with Candida albicans being the major inducer of antifungal immunoglobulin G (IgG). Fungal colonization of the gut induces germinal center (GC)-dependent B cell expansion in extraintestinal lymphoid tissues and generates systemic antibodies that confer protection against disseminated C. albicans or C. auris infection. Antifungal IgG production depends on the innate immunity regulator CARD9 and CARD9+CX3CR1+ macrophages. In individuals with invasive candidiasis, loss-of-function mutations in CARD9 are associated with impaired antifungal IgG responses. These results reveal an important role of gut commensal fungi in shaping the human antibody repertoire through CARD9-dependent induction of host-protective antifungal IgG.


Subject(s)
Antibodies, Fungal/immunology , CARD Signaling Adaptor Proteins/metabolism , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Immunity , Immunoglobulin G/immunology , Mycobiome/immunology , Animals , B-Lymphocytes/immunology , Candida albicans/immunology , Candidiasis/immunology , Candidiasis/microbiology , Feces/microbiology , Germinal Center/immunology , Humans , Mice, Inbred C57BL , Phagocytes/metabolism , Polymorphism, Single Nucleotide/genetics , Protein Binding , Signal Transduction
3.
Cell ; 180(1): 176-187.e19, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31923394

ABSTRACT

In response to biotic stress, plants produce suites of highly modified fatty acids that bear unusual chemical functionalities. Despite their chemical complexity and proposed roles in pathogen defense, little is known about the biosynthesis of decorated fatty acids in plants. Falcarindiol is a prototypical acetylenic lipid present in carrot, tomato, and celery that inhibits growth of fungi and human cancer cell lines. Using a combination of untargeted metabolomics and RNA sequencing, we discovered a biosynthetic gene cluster in tomato (Solanum lycopersicum) required for falcarindiol production. By reconstituting initial biosynthetic steps in a heterologous host and generating transgenic pathway mutants in tomato, we demonstrate a direct role of the cluster in falcarindiol biosynthesis and resistance to fungal and bacterial pathogens in tomato leaves. This work reveals a mechanism by which plants sculpt their lipid pool in response to pathogens and provides critical insight into the complex biochemistry of alkynyl lipid production.


Subject(s)
Diynes/metabolism , Fatty Acids/biosynthesis , Fatty Alcohols/metabolism , Solanum lycopersicum/genetics , Disease Resistance/genetics , Diynes/chemistry , Fatty Acids/metabolism , Fatty Alcohols/chemistry , Gene Expression Regulation, Plant/genetics , Metabolomics , Multigene Family/genetics , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Stress, Physiological/genetics
4.
Cell ; 176(6): 1340-1355.e15, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30799037

ABSTRACT

Th17 cells provide protection at barrier tissues but may also contribute to immune pathology. The relevance and induction mechanisms of pathologic Th17 responses in humans are poorly understood. Here, we identify the mucocutaneous pathobiont Candida albicans as the major direct inducer of human anti-fungal Th17 cells. Th17 cells directed against other fungi are induced by cross-reactivity to C. albicans. Intestinal inflammation expands total C. albicans and cross-reactive Th17 cells. Strikingly, Th17 cells cross-reactive to the airborne fungus Aspergillus fumigatus are selectively activated and expanded in patients with airway inflammation, especially during acute allergic bronchopulmonary aspergillosis. This indicates a direct link between protective intestinal Th17 responses against C. albicans and lung inflammation caused by airborne fungi. We identify heterologous immunity to a single, ubiquitous member of the microbiota as a central mechanism for systemic induction of human anti-fungal Th17 responses and as a potential risk factor for pulmonary inflammatory diseases.


Subject(s)
Candida albicans/immunology , Th17 Cells/immunology , Th17 Cells/metabolism , Aspergillus fumigatus/immunology , Aspergillus fumigatus/pathogenicity , Candida albicans/pathogenicity , Cross Reactions/immunology , Cystic Fibrosis/immunology , Cystic Fibrosis/microbiology , Humans , Immunity , Immunity, Heterologous/immunology , Th17 Cells/physiology
5.
Immunity ; 56(8): 1727-1742.e6, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37379835

ABSTRACT

STING (stimulator of interferon genes) exerts protective cellular responses to viral infection via induction of interferon production and autophagy. Here, we report the role of STING in modulating the immune responses toward fungal infection. Upon Candida albicans stimulation, STING transited alongside the endoplasmic reticulum (ER) to the phagosomes. In phagosomes, STING directly bound with Src via the N-terminal 18 amino acids of STING, and this binding prevented Src from recruiting and phosphorylating Syk. Consistently, Syk-associated signaling and production of pro-inflammatory cytokines and chemokines were increased in mouse BMDCs (bone-marrow-derived dendritic cells) lacking STING with fungal treatment. STING deficiency improved anti-fungal immunity in systemic C. albicans infection. Importantly, administration of the N-terminal 18-aa (amino acid) peptide of STING improved host outcomes in disseminated fungal infection. Overall, our study identifies a previously unrecognized function of STING in negatively regulating anti-fungal immune responses and offers a potential therapeutic strategy for controlling C. albicans infection.


Subject(s)
Nucleotides , Signal Transduction , Animals , Mice , Cytokines/metabolism , Immunity, Innate , Interferons/metabolism , Nucleotides/metabolism , Phagosomes/metabolism , Phagosomes/microbiology
6.
Annu Rev Microbiol ; 77: 403-425, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37713457

ABSTRACT

Fungal-mediated disease progression and antifungal drug efficacy are significantly impacted by the dynamic infection microenvironment. At the site of infection, oxygen often becomes limiting and induces a hypoxia response in both the fungal pathogen and host cells. The fungal hypoxia response impacts several important aspects of fungal biology that contribute to pathogenesis, virulence, antifungal drug susceptibility, and ultimately infection outcomes. In this review, we summarize recent advances in understanding the molecular mechanisms of the hypoxia response in the most common human fungal pathogens, discuss potential therapeutic opportunities, and highlight important areas for future research.


Subject(s)
Antifungal Agents , Hypoxia , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Virulence , Disease Progression
7.
Annu Rev Microbiol ; 77: 583-602, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37406342

ABSTRACT

Candida auris is a multidrug-resistant fungal pathogen that presents a serious threat to global human health. Since the first reported case in 2009 in Japan, C. auris infections have been reported in more than 40 countries, with mortality rates between 30% and 60%. In addition, C. auris has the potential to cause outbreaks in health care settings, especially in nursing homes for elderly patients, owing to its efficient transmission via skin-to-skin contact. Most importantly, C. auris is the first fungal pathogen to show pronounced and sometimes untreatable clinical drug resistance to all known antifungal classes, including azoles, amphotericin B, and echinocandins. In this review, we explore the causes of the rapid spread of C. auris. We also highlight its genome organization and drug resistance mechanisms and propose future research directions that should be undertaken to curb the spread of this multidrug-resistant pathogen.


Subject(s)
Candida auris , Candida , Humans , Aged , Candida/genetics , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Echinocandins , Amphotericin B
8.
Annu Rev Microbiol ; 76: 369-388, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35650665

ABSTRACT

The last several decades have witnessed a surge in drug-resistant fungal infections that pose a serious threat to human health. While there is a limited arsenal of drugs that can be used to treat systemic infections, scientific advances have provided renewed optimism for the discovery of novel antifungals. The development of chemical-genomic assays using Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of molecules in a living cell. Advances in molecular biology techniques have enabled complementary assays to be developed in fungal pathogens, including Candida albicans and Cryptococcus neoformans. These approaches enable the identification of target genes for drug candidates, as well as genes involved in buffering drug target pathways. Here, we examine yeast chemical-genomic assays and highlight how such resources can be utilized to predict the mechanisms of action of compounds, to study virulence attributes of diverse fungal pathogens, and to bolster the antifungal pipeline.


Subject(s)
Antifungal Agents , Cryptococcus neoformans , Antifungal Agents/pharmacology , Candida albicans/genetics , Cryptococcus neoformans/genetics , Genomics/methods , Humans , Saccharomyces cerevisiae
9.
Semin Immunol ; 67: 101752, 2023 05.
Article in English | MEDLINE | ID: mdl-37001464

ABSTRACT

The continuous expansion of immunocompromised patient populations at-risk for developing life-threatening opportunistic fungal infections in recent decades has helped develop a deeper understanding of antifungal host defenses, which has provided the foundation for eventually devising immune-based targeted interventions in the clinic. This review outlines how genetic variation in certain immune pathway-related genes may contribute to the observed clinical variability in the risk of acquisition and/or severity of fungal infections and how immunogenetic-based patient stratification may enable the eventual development of personalized strategies for antifungal prophylaxis and/or vaccination. Moreover, this review synthesizes the emerging cytokine-based, cell-based, and other immunotherapeutic strategies that have shown promise as adjunctive therapies for boosting or modulating tissue-specific antifungal immune responses in the context of opportunistic fungal infections.


Subject(s)
Antifungal Agents , Mycoses , Humans , Antifungal Agents/therapeutic use , Immunotherapy , Cytokines
10.
Semin Immunol ; 67: 101757, 2023 05.
Article in English | MEDLINE | ID: mdl-37003056

ABSTRACT

The dynamic and complex community of microbes that colonizes the intestines is composed of bacteria, fungi, and viruses. At the mucosal surfaces, immunoglobulins play a key role in protection against bacterial and fungal pathogens, and their toxins. Secretory immunoglobulin A (sIgA) is the most abundantly produced antibody at the mucosal surfaces, while Immunoglobulin G (IgG) isotypes play a critical role in systemic protection. IgA and IgG antibodies with reactivity to commensal fungi play an important role in shaping the mycobiota and host antifungal immunity. In this article, we review the latest evidence that establishes a connection between commensal fungi and B cell-mediated antifungal immunity as an additional layer of protection against fungal infections and inflammation.


Subject(s)
Antifungal Agents , Immunoglobulin A, Secretory , Humans , Immunoglobulin G , Bacteria , Immunity, Mucosal , Immunoglobulins
11.
Proc Natl Acad Sci U S A ; 121(43): e2400920121, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39413134

ABSTRACT

B cell linker protein (BLNK) is crucial for orchestrating B cell receptor-associated spleen tyrosine kinase (Syk) signaling. However, the role of BLNK in Syk-coupled C-type lectin receptor (CLR) signaling in macrophages remains unclear. Here, we delineate that CLRs govern the Syk-mediated activation of BLNK, thereby impeding macrophage migration by disrupting podosome ring formation upon stimulation with fungal ß-glucans or α-mannans. Mechanistically, BLNK instigates its association with casitas B-lineage lymphoma (c-Cbl), competitively impeding the interaction between c-Cbl and Src-family kinase Fyn. This interference disrupts Fyn-mediated phosphorylation of c-Cbl and subsequent c-Cbl-associated F-actin assembly. Consequently, BLNK deficiency intensifies CLR-mediated recruitment of the c-Cbl/phosphatidylinositol 3-kinase complex to the F-actin cytoskeleton, thereby enhancing macrophage migration. Notably, mice with monocyte-specific BLNK deficiency exhibit heightened resistance to infection with Candida albicans, a prominent human fungal pathogen. This resistance is attributed to the increased infiltration of Ly6C+ macrophages into renal tissue. These findings unveil a previously unrecognized role of BLNK for the negative regulation of macrophage migration through inhibiting CLR-mediated podosome ring formation during fungal infections.


Subject(s)
Candida albicans , Candidiasis , Cell Movement , Immunity, Innate , Macrophages , Proto-Oncogene Proteins c-cbl , Syk Kinase , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Candida albicans/immunology , Candida albicans/physiology , Candidiasis/immunology , Candidiasis/microbiology , Candidiasis/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Podosomes/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-cbl/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins c-fyn/genetics , Signal Transduction , Syk Kinase/metabolism
12.
Pharmacol Rev ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39326898

ABSTRACT

Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described in organisms allover the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons, and are involved in pH regulation, chemosensing and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or for Alzheimer's/Parkinson's disease management. CAs from pathogenic bacteria, fungi, protozoans and nematodes started to be considered as drug targets in recent years, with notable advances registered ultimately. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future, due to the emergence of drug design approaches which afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, (iso)coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed since drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide and high-ceiling diuretics) show efective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. Significance Statement Carbonic anhydrase inhibitors have multiple pharmacologic applications as diuretics, antiglaucoma, antiepileptic, antiobesity, anti-acute mountain sickness, anti-idiopathic intracranial hypertension and as antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations started to be investigated recently. Parasite carbonic anhydrases are also drug targets for antiinfectives with novel mechanisms of action which can by pass drug resistance to commonly used such agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.

13.
RNA ; 30(4): 354-366, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38307611

ABSTRACT

Some eukaryotic pre-tRNAs contain an intron that is removed by a dedicated set of enzymes. Intron-containing pre-tRNAs are cleaved by tRNA splicing endonuclease, followed by ligation of the two exons and release of the intron. Fungi use a "heal and seal" pathway that requires three distinct catalytic domains of the tRNA ligase enzyme, Trl1. In contrast, humans use a "direct ligation" pathway carried out by RTCB, an enzyme completely unrelated to Trl1. Because of these mechanistic differences, Trl1 has been proposed as a promising drug target for fungal infections. To validate Trl1 as a broad-spectrum drug target, we show that fungi from three different phyla contain Trl1 orthologs with all three domains. This includes the major invasive human fungal pathogens, and these proteins can each functionally replace yeast Trl1. In contrast, species from the order Mucorales, including the pathogens Rhizopus arrhizus and Mucor circinelloides, have an atypical Trl1 that contains the sealing domain but lacks both healing domains. Although these species contain fewer tRNA introns than other pathogenic fungi, they still require splicing to decode three of the 61 sense codons. These sealing-only Trl1 orthologs can functionally complement defects in the corresponding domain of yeast Trl1 and use a conserved catalytic lysine residue. We conclude that Mucorales use a sealing-only enzyme together with unidentified nonorthologous healing enzymes for their heal and seal pathway. This implies that drugs that target the sealing activity are more likely to be broader-spectrum antifungals than drugs that target the healing domains.


Subject(s)
Mucorales , Saccharomyces cerevisiae Proteins , Humans , RNA Ligase (ATP)/genetics , RNA Ligase (ATP)/metabolism , Saccharomyces cerevisiae/genetics , RNA, Transfer/chemistry , Saccharomyces cerevisiae Proteins/genetics , RNA Precursors/metabolism , RNA Splicing , Mucorales/genetics , Mucorales/metabolism
14.
Clin Microbiol Rev ; 37(1): e0014223, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38294218

ABSTRACT

Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.


Subject(s)
Antifungal Agents , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mycoses/drug therapy , Mycoses/microbiology , Drug Resistance, Fungal
15.
Mol Microbiol ; 121(4): 781-797, 2024 04.
Article in English | MEDLINE | ID: mdl-38242855

ABSTRACT

Invasive candidiasis caused by non-albicans species has been on the rise, with Candida glabrata emerging as the second most common etiological agent. Candida glabrata possesses an intrinsically lower susceptibility to azoles and an alarming propensity to rapidly develop high-level azole resistance during treatment. In this study, we have developed an efficient piggyBac (PB) transposon-mediated mutagenesis system in C. glabrata to conduct genome-wide genetic screens and applied it to profile genes that contribute to azole resistance. When challenged with the antifungal drug fluconazole, PB insertion into 270 genes led to significant resistance. A large subset of these genes has a role in the mitochondria, including almost all genes encoding the subunits of the F1F0 ATPase complex. We show that deleting ATP3 or ATP22 results in increased azole resistance but does not affect susceptibility to polyenes and echinocandins. The increased azole resistance is due to increased expression of PDR1 that encodes a transcription factor known to promote drug efflux pump expression. Deleting PDR1 in the atp3Δ or atp22Δ mutant resulted in hypersensitivity to fluconazole. Our results shed light on the mechanisms contributing to azole resistance in C. glabrata. This PB transposon-mediated mutagenesis system can significantly facilitate future genome-wide genetic screens.


Subject(s)
Candida glabrata , Fluconazole , Fluconazole/metabolism , Candida glabrata/genetics , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Azoles , Proton-Translocating ATPases/metabolism , Microbial Sensitivity Tests
16.
Eur J Immunol ; : e2451092, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194380

ABSTRACT

Dectin-1 is a C-type lectin-receptor involved in sensing fungi by innate immune cells. Encoded by the Clec7a gene, Dectin-1 exists in two major splice isoforms, Dectin-1a and 1b, which differ in the presence of a membrane-proximal stalk domain. As reported previously, this domain determines degradative routes for Dectin-1a and 1b leading to the generation of a stable N-terminal fragment exclusively from Dectin-1a. Here, we narrow down the responsible part of the stalk and demonstrate the stabilisation of the Dectin-1a N-terminal fragment in tetraspanin-enriched microdomains. C57BL/6 and BALB/c mice show divergent Dectin-1 isoform expression patterns, which are caused by a single nucleotide polymorphism in exon 3 of the Clec7a gene, leading to a non-sense Dectin-1a mRNA in C57BL/6 mice. Using backcrossing, we generated mice with the C57BL/6 Clec7a allele on a BALB/c background and compared these to the parental strains. Expression of the C57BL/6 allele leads to the exclusive presence of the Dectin-1b protein. Furthermore, it was associated with higher Dectin-1 mRNA expression, but less Dectin-1 at the cell surface according to flow cytometry. In neutrophils, this altered ROS production induced by Dectin-1 model ligands, while cellular responses in macrophages and dendritic cells were not significantly influenced by the Dectin-1 isoform pattern.

17.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36631407

ABSTRACT

Recently, peptide-based drugs have gained unprecedented interest in discovering and developing antifungal drugs due to their high efficacy, broad-spectrum activity, low toxicity and few side effects. However, it is time-consuming and expensive to identify antifungal peptides (AFPs) experimentally. Therefore, computational methods for accurately predicting AFPs are highly required. In this work, we develop AFP-MFL, a novel deep learning model that predicts AFPs only relying on peptide sequences without using any structural information. AFP-MFL first constructs comprehensive feature profiles of AFPs, including contextual semantic information derived from a pre-trained protein language model, evolutionary information, and physicochemical properties. Subsequently, the co-attention mechanism is utilized to integrate contextual semantic information with evolutionary information and physicochemical properties separately. Extensive experiments show that AFP-MFL outperforms state-of-the-art models on four independent test datasets. Furthermore, the SHAP method is employed to explore each feature contribution to the AFPs prediction. Finally, a user-friendly web server of the proposed AFP-MFL is developed and freely accessible at http://inner.wei-group.net/AFPMFL/, which can be considered as a powerful tool for the rapid screening and identification of novel AFPs.


Subject(s)
Antifungal Agents , alpha-Fetoproteins , Antifungal Agents/pharmacology , Algorithms , Peptides/chemistry , Computational Biology/methods
18.
Annu Rev Microbiol ; 74: 409-430, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32667838

ABSTRACT

Bacteria produce a multitude of volatile compounds. While the biological functions of these deceptively simple molecules are unknown in many cases, for compounds that have been characterized, it is clear that they serve impressively diverse purposes. Here, we highlight recent studies that are uncovering the volatile repertoire of bacteria, and the functional relevance and impact of these molecules. We present work showing the ability of volatile compounds to modulate nutrient availability in the environment; alter the growth, development, and motility of bacteria and fungi; influence protist and arthropod behavior; and impact plant and animal health. We further discuss the benefits associated with using volatile compounds for communication and competition, alongside the challenges of studying these molecules and their functional roles. Finally, we address the opportunities these compounds present from commercial, clinical, and agricultural perspectives.


Subject(s)
Bacteria/metabolism , Microbial Interactions , Volatile Organic Compounds/metabolism , Bacteria/growth & development , Bacteria/pathogenicity , Bacterial Physiological Phenomena , Biological Control Agents , Eukaryota/physiology , Fungi/growth & development , Fungi/metabolism , Plants/microbiology , Volatile Organic Compounds/chemistry
19.
BMC Biol ; 22(1): 7, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233907

ABSTRACT

BACKGROUND: Mosquitoes transmit many infectious diseases that affect human health. The fungus Beauveria bassiana is a biological pesticide that is pathogenic to mosquitoes but harmless to the environment. RESULTS: We found a microRNA (miRNA) that can modulate the antifungal immunity of Aedes aegypti by inhibiting its cognate serine protease. Fungal infection can induce the expression of modular serine protease (ModSP), and ModSP knockdown mosquitoes were more sensitive to B. bassiana infection. The novel miRNA-novel-53 is linked to antifungal immune response and was greatly diminished in infected mosquitoes. The miRNA-novel-53 could bind to the coding sequences of ModSP and impede its expression. Double fluorescence in situ hybridization (FISH) showed that this inhibition occurred in the cytoplasm. The amount of miRNA-novel-53 increased after miRNA agomir injection. This resulted in a significant decrease in ModSP transcript and a significant increase in mortality after fungal infection. An opposite effect was produced after antagomir injection. The miRNA-novel-53 was also knocked out using CRISPR-Cas9, which increased mosquito resistance to the fungus B. bassiana. Moreover, mosquito novel-circ-930 can affect ModSP mRNA by interacting with miRNA-novel-53 during transfection with siRNA or overexpression plasmid. CONCLUSIONS: Novel-circ-930 affects the expression level of ModSP by a novel-circ-930/miRNA-novel-53/ModSP mechanism to modulate antifungal immunity, revealing new information on innate immunity in insects.


Subject(s)
Aedes , MicroRNAs , Mycoses , Animals , Humans , Aedes/genetics , Aedes/microbiology , MicroRNAs/genetics , RNA, Circular , Serine Proteases/genetics , Antifungal Agents , In Situ Hybridization, Fluorescence , Fungi/genetics , Serine Endopeptidases
20.
Nano Lett ; 24(13): 4044-4053, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38517749

ABSTRACT

Fungal keratitis (FK) is an infectious eye disease that poses a significant risk of blindness. However, the effectiveness of conventional antifungal drugs is limited due to the intrinsic ocular barrier that impedes drug absorption. There is an urgent need to develop new therapeutic strategies to effectively combat FK. Herein, we synthesized an ultrasmall positively charged carbon dot using a simple stage-melting method. The carbon dot can penetrate the corneal barrier by opening the tight junctions, allowing them to reach the lesion site and effectively kill the fungi. The results both in vitro and in vivo demonstrated that it exhibited good biocompatibility and antifungal activity, significantly improving the therapeutic effect in a mouse model of FK. Therefore, this biophilic ultrasmall size and positive carbon dot, characterized by its ability to penetrate the corneal barrier and its antifungal properties, may offer valuable insights into the design of effective ocular nanomedicines.


Subject(s)
Corneal Ulcer , Eye Infections, Fungal , Keratitis , Animals , Mice , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Keratitis/drug therapy , Keratitis/microbiology , Corneal Ulcer/drug therapy , Corneal Ulcer/microbiology , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Cornea/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL