Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Annu Rev Immunol ; 34: 151-72, 2016 05 20.
Article in English | MEDLINE | ID: mdl-26772212

ABSTRACT

Butyrophilin molecules (commonly contracted to BTN), collectively take their name from the eponymous protein in cow's milk. They are considered to be members of the B7 family of costimulatory receptors, which includes B7.1 (CD80), B7.2 (CD86), and related molecules, such as PD-L1 (B7-H1, CD274), ICOS-L (CD275), and B7-H3 (CD276). These coreceptors modulate T cell responses upon antigen presentation by major histocompatibility complex and cognate αß T cell receptor engagement. Molecules such as BTN3A1 (CD277), myelin oligodendrocyte glycoprotein, and mouse Skint1 and Btnl2, all members of the butyrophilin family, show greater structural and functional diversity than the canonical B7 receptors. Some butyrophilins mediate complex interactions between antigen-presenting cells and conventional αß T cells, and others regulate the immune responses of specific γδ T cell subsets by mechanisms that have characteristics of both innate and adaptive immunity.


Subject(s)
Adaptive Immunity , Antigen-Presenting Cells/immunology , B7 Antigens/metabolism , Butyrophilins/metabolism , Immunity, Innate , Milk/metabolism , T-Lymphocytes/immunology , Animals , Butyrophilins/immunology , Cattle , Humans , Lymphocyte Activation , Mice , Receptors, Antigen, T-Cell/metabolism , Signal Transduction
2.
J Transl Med ; 21(1): 672, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770968

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a highly aggressive primary brain tumor with a poor prognosis. This study investigates the therapeutic potential of human Vγ9Vδ2 T cells in GBM treatment. The sensitivity of different glioma specimens to Vγ9Vδ2 T cell-mediated cytotoxicity is assessed using a patient-derived tumor cell clusters (PTCs) model. METHODS: The study evaluates the anti-tumor effect of Vγ9Vδ2 T cells in 26 glioma cases through the PTCs model. Protein expression of BTN2A1 and BTN3A1, along with gene expression related to lipid metabolism and glioma inflammatory response pathways, is analyzed in matched tumor tissue samples. Additionally, the study explores two strategies to re-sensitize tumors in the weak anti-tumor effect (WAT) group: utilizing a BTN3A1 agonistic antibody or employing bisphosphonates to inhibit farnesyl diphosphate synthase (FPPS). Furthermore, the study investigates the efficacy of genetically engineered Vγ9Vδ2 T cells expressing Car-B7H3 in targeting diverse GBM specimens. RESULTS: The results demonstrate that Vγ9Vδ2 T cells display a stronger anti-tumor effect (SAT) in six glioma cases, while showing a weaker effect (WAT) in twenty cases. The SAT group exhibits elevated protein expression of BTN2A1 and BTN3A1, accompanied by differential gene expression related to lipid metabolism and glioma inflammatory response pathways. Importantly, the study reveals that the WAT group GBM can enhance Vγ9Vδ2 T cell-mediated killing sensitivity by incorporating either a BTN3A1 agonistic antibody or bisphosphonates. Both approaches support TCR-BTN mediated tumor recognition, which is distinct from the conventional MHC-peptide recognition by αß T cells. Furthermore, the study explores an alternative strategy by genetically engineering Vγ9Vδ2 T cells with Car-B7H3, and both non-engineered and Car-B7H3 Vγ9Vδ2 T cells demonstrate promising efficacy in vivo, underscoring the versatile potential of Vγ9Vδ2 T cells for GBM treatment. CONCLUSIONS: Vγ9Vδ2 T cells demonstrate a robust anti-tumor effect in some glioma cases, while weaker in others. Elevated BTN2A1 and BTN3A1 expression correlates with improved response. WAT group tumors can be sensitized using a BTN3A1 agonistic antibody or bisphosphonates. Genetically engineered Vγ9Vδ2 T cells, i.e.,  Car-B7H3, show promising efficacy. These results together highlight the versatility of Vγ9Vδ2 T cells for GBM treatment.


Subject(s)
Glioblastoma , Receptors, Chimeric Antigen , Humans , T-Lymphocytes , Receptors, Chimeric Antigen/metabolism , Receptors, Antigen, T-Cell, gamma-delta , Glioblastoma/genetics , Glioblastoma/therapy , Glioblastoma/metabolism , Diphosphonates , Butyrophilins/genetics , Antigens, CD/metabolism
3.
J Autoimmun ; 139: 103071, 2023 09.
Article in English | MEDLINE | ID: mdl-37356345

ABSTRACT

Butyrophilins are surface receptors belonging to the immunoglobulin superfamily. While several members of the butyrophilin family have been implicated in the development of unconventional T cells, butyrophilin 2a2 (Btn2a2) has been shown to inhibit conventional T cell activation. Here, we demonstrate that in steady state, the primary source of Btn2a2 are thymic epithelial cells (TEC). Absence of Btn2a2 alters thymic T cell maturation and bypasses central tolerance mechanisms. Furthermore, Btn2a2-/- mice develop spontaneous autoimmunity resembling human primary Sjögren's Syndrome (pSS), including formation of tertiary lymphoid structures (TLS) in target organs. Ligation of Btn2a2 on developing thymocytes is associated with reduced TCR signaling and CD5 levels, while absence of Btn2a2 results in increased TCR signaling and CD5 levels. These results define a novel role for Btn2a2 in promoting central tolerance by modulating TCR signaling strength and indicate a potential mechanism of pSS development.


Subject(s)
Autoimmune Diseases , Central Tolerance , Mice , Humans , Animals , Butyrophilins/genetics , Thymus Gland , Epithelial Cells , Receptors, Antigen, T-Cell/genetics
4.
BMC Cancer ; 23(1): 437, 2023 May 13.
Article in English | MEDLINE | ID: mdl-37179293

ABSTRACT

BACKGROUND: The most common subtype of ovarian cancer (OC) showing immunogenic potential is represented by the high-grade serous ovarian cancer (HGSOC), which is characterized by the presence of tumor-infiltrating immune cells able to modulate immune response. Because several studies showed a close correlation between OC patient's clinical outcome and expression of programmed cell death protein-1 or its ligand (PD-1/PD-L1), the aim of our study was to investigate if plasma levels of immunomodulatory proteins may predict prognosis of advanced HGSOC women. PATIENTS AND METHODS: Through specific ELISA tests, we analyzed plasma concentrations of PD-L1, PD-1, butyrophilin sub-family 3A/CD277 receptor (BTN3A1), pan-BTN3As, butyrophilin sub-family 2 member A1 (BTN2A1), and B- and T-lymphocyte attenuator (BTLA) in one hundred patients affected by advanced HGSOC, before surgery and therapy. The Kaplan-Meier method was used to generate the survival curves, while univariate and multivariate analysis were performed using Cox proportional hazard regression models. RESULTS: For each analyzed circulating biomarker, advanced HGSOC women were discriminated based on long (≥ 30 months) versus short progression-free survival (PFS < 30 months). The concentration cut-offs, obtained by receiver operating characteristic (ROC) analysis, allowed to observe that poor clinical outcome and median PFS ranging between 6 and 16 months were associated with higher baseline levels of PD-L1 (> 0.42 ng/mL), PD-1 (> 2.48 ng/mL), BTN3A1 (> 4.75 ng/mL), pan-BTN3As (> 13.06 ng/mL), BTN2A1 (> 5.59 ng/mL) and BTLA (> 2.78 ng/mL). Furthermore, a lower median PFS was associated with peritoneal carcinomatosis, age at diagnosis > 60 years or Body Mass Index (BMI) > 25. A multivariate analysis also suggested that plasma concentrations of PD-L1 ≤ 0.42 ng/mL (HR: 2.23; 95% CI: 1.34 to 3.73; p = 0.002), age at diagnosis ≤ 60 years (HR: 1.70; 95% CI: 1.07 to 2.70; p = 0.024) and absence of peritoneal carcinomatosis (HR: 1.87; 95% CI: 1.23 to 2.85; p = 0.003) were significant prognostic marker for a longer PFS in advanced HGSOC patients. CONCLUSIONS: The identification of high-risk HGSOC women could be improved through determination of the plasma PD-L1, PD-1, BTN3A1, pan-BTN3As, BTN2A1 and BTLA levels.


Subject(s)
Ovarian Neoplasms , Peritoneal Neoplasms , Humans , Female , Middle Aged , Programmed Cell Death 1 Receptor/therapeutic use , B7-H1 Antigen/metabolism , Prognosis , Ovarian Neoplasms/metabolism , Butyrophilins , Antigens, CD
5.
Aging (Albany NY) ; 15(20): 10996-11011, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37851374

ABSTRACT

BACKGROUND: Protein casein 2A2 (BTN2A2) is a costimulatory molecule first identified in antigen-presenting cells. Studies have shown the involvement of BTN2A2 in immunity. However, the exact role and the mechanism of BTN2A2 in tumors are still unclear. METHODS: First, we performed real-time PCR to measure BTN2A2 expression in glioma cell lines. Next, we performed Genes Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to understand the mechanism of BTN2A2 in glioma. Next, we used the "ESTIMATE", "ssGSEA" and "CIBERSORT" algorithms to analyze the correlation between BTN2A2 and immune cell infiltration (ICI). Finally, we performed immunohistochemistry, growth curve, transwell, and colony formation assays to determine the functions of BTN2A2 in glioma. RESULTS: Our results showed an increase in BTN2A2 expression levels in glioma tissues and cells. Next, we determined that BTN2A2 was correlated with the prognosis of patients with glioma. Then, using the ESTIMATE, ssGSEA, and CIBERSORT algorithms, we discovered that BTN2A2 was significantly associated with immune cell infiltration (ICI) in glioma. We observed an increase in BTN2A2 expression levels with an increase in the patient's tumor grade. Furthermore, BTN2A2 significantly enhanced the proliferative and migratory abilities of glioma cells. CONCLUSIONS: Our results showed a significant increase in BTN2A2 expression levels in glioma cells and tissues. Furthermore, the prognosis of patients expressing high BTN2A2 levels was poor. Moreover, BTN2A2 was correlated with progression and ICI in patients with glioma. Together, this indicates that BTN2A2 could be a therapeutic target for patients with glioma.


Subject(s)
Glioma , Humans , Biomarkers , Glioma/genetics , Algorithms , Biological Assay , Cell Line
6.
Ther Adv Med Oncol ; 15: 17588359231151845, 2023.
Article in English | MEDLINE | ID: mdl-36818688

ABSTRACT

Individual response to immune checkpoint inhibitors (ICIs) is currently unpredictable in patients with melanoma. Recent findings highlight a striking improvement in the clinical outcomes of overweight/obese patients treated with ICIs, which seems driven, at least in part, by programmed cell death protein 1 (PD-1)-mediated T-cell dysfunction. A putative role of butyrophilins (BTNs) is under investigation as a novel mechanism of cancer immune evasion and obesity-associated inflammation. This study investigates the role of baseline plasma levels of soluble PD-1 (sPD-1), soluble programmed cell death ligand 1 (sPD-L1), BTN2A1 (sBTN2A1), BTN3A1 (sBTN3A1), along with body mass index (BMI), as predictive biomarkers of immunotherapy response in metastatic melanoma patients treated with nivolumab or pembrolizumab as first-line treatment. In all, 41 patients were included in the study. The baseline plasma level of sPD-1 was significantly lower, and the sBTN2A1 was significantly higher, in long-responder patients to nivolumab or pembrolizumab (median sPD-1: 10.3 ng/ml versus 16.6 ng/ml, p = 0.001; median sBTN2A1: 4.4 ng/ml versus 3.77 ng/ml, p = 0.004). Lower levels of sPD-1 and higher levels of sBTN2A1 were also significantly associated with better overall response rate. Notably, when we further stratified the study cohort using BMI along with sPD-1, patients with BMI ⩾ 25 and sPD-1 < 11.24 ng/ml had longer time to treatment failure after PD-1 inhibitor than other subgroups of patients (p < 0.001). Circulating sPD-1 and sBTN2A1 detection, along with BMI, could give more insights into the immune-metabolic interactions underlying the benefit observed in overweight/obese patients, improving the use of dynamic, noninvasive, biomarkers for patient selection.

7.
Res Sq ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824912

ABSTRACT

Butyrophilin (BTN)-3A and BTN2A1 molecules control TCR-mediated activation of human Vγ9Vδ2 T-cells triggered by phosphoantigens (PAg) from microbes and tumors, but the molecular rules governing antigen sensing are unknown. Here we establish three mechanistic principles of PAg-action. Firstly, in humans, following PAg binding to the BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the V-domain of BTN3A2/BTN3A3. Moreover, PAg/B30.2 interaction, and the critical γδ-T-cell-activating V-domain, localize to different molecules. Secondly, this distinct topology as well as intracellular trafficking and conformation of BTN3A heteromers or ancestral-like BTN3A homomers are controlled by molecular interactions of the BTN3 juxtamembrane region. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and division of labor in BTN proteins deepens understanding of PAg sensing and elucidates a mode of action potentially applicable to other BTN/BTNL family members.

8.
Front Immunol ; 13: 876493, 2022.
Article in English | MEDLINE | ID: mdl-35371078

ABSTRACT

Butyrophilins (BTN) are relatives of the B7 family (e.g., CD80, PD-L1). They fulfill a wide range of functions including immunomodulation and bind to various receptors such as the γδ T cell receptor (γδTCR) and small molecules. One intensively studied molecule is BTN3A1, which binds via its cytoplasmic B30.2 domain, metabolites of isoprenoid synthesis, designated as phosphoantigen (PAg), The enrichment of PAgs in tumors or infected cells is sensed by Vγ9Vδ2 T cells, leading to the proliferation and execution of effector functions to remove these cells. This article discusses the contribution of BTNs, the related BTNL molecules and SKINT1 to the development, activation, and homeostasis of γδ T cells and their immunomodulatory potential, which makes them interesting targets for therapeutic intervention.


Subject(s)
Lymphocyte Activation , Receptors, Antigen, T-Cell, gamma-delta , Adjuvants, Immunologic , Antigens, CD/metabolism , Butyrophilins/metabolism , Immunologic Factors , Ligands , Receptors, Antigen, T-Cell, gamma-delta/metabolism
9.
Cell Rep ; 36(2): 109359, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260935

ABSTRACT

The anti-tumor response of Vγ9Vδ2 T cells requires the sensing of accumulated phosphoantigens (pAgs) bound intracellularly to butyrophilin 3A1 (BTN3A1). In this study, we show that butyrophilin 2A1 (BTN2A1) is required for BTN3A-mediated Vγ9Vδ2 T cell cytotoxicity against cancer cells, and that expression of the BTN2A1/BTN3A1 complex is sufficient to trigger Vγ9Vδ2 TCR activation. Also, BTN2A1 interacts with all isoforms of BTN3A (BTN3A1, BTN3A2, BTN3A3), which appears to be a rate-limiting factor to BTN2A1 export to the plasma membrane. BTN2A1/BTN3A1 interaction is enhanced by pAgs and, strikingly, B30.2 domains of both proteins are required for pAg responsiveness. BTN2A1 expression in cancer cells correlates with bisphosphonate-induced Vγ9Vδ2 T cell cytotoxicity. Vγ9Vδ2 T cell killing of cancer cells is modulated by anti-BTN2A1 monoclonal antibodies (mAbs), whose action relies on the inhibition of BTN2A1 binding to the Vγ9Vδ2TCR. This demonstrates the potential of BTN2A1 as a therapeutic target and adds to the emerging butyrophilin-family cooperation pathway in γδ T cell activation.


Subject(s)
Butyrophilins/metabolism , Immune Checkpoint Proteins/metabolism , Neoplasms/immunology , Neoplasms/pathology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes, Cytotoxic/immunology , Animals , Antibodies, Monoclonal/metabolism , Antigens/metabolism , Antigens, CD/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , HEK293 Cells , Humans , Lymphocyte Activation/immunology , Mice , Phosphorylation , Protein Binding , Protein Transport
10.
Oncoimmunology ; 9(1): 1832348, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33178494

ABSTRACT

Despite a proportion of renal cancer patients can experiment marked and durable responses to immune-checkpoint inhibitors, the treatment efficacy is widely variable and identifying the patient who will benefit from immunotherapy remains an issue. We performed a prospective study to investigate if soluble forms of the immune-checkpoints PD-1 (sPD-1), PD-L1 (sPD-L1), pan-BTN3As, BTN3A1, and BTN2A1, could be candidate to predict the response to immune-checkpoint blockade therapy. We evaluated the plasma levels in a learning cohort of metastatic clear cell renal carcinoma (mccRCC) patients treated with the anti-PD-1 agent nivolumab by ad hoc developed ELISA's. Using specific cut-offs determined through ROC curves, we showed that high baseline levels of sPD-1 (>2.11 ng/ml), sPD-L1 (>0.66 ng/ml), and sBTN3A1 (>6.84 ng/ml) were associated with a longer progression-free survival (PFS) to nivolumab treatment [median PFS, levels above thresholds: sPD-1, 20.7 months (p < .0001); sPD-L1, 19 months (p < .0001); sBTN3A1, 17.5 months (p = .002)]. High sPD-1 and sBTN3A1 levels were also associated with best overall response by RECIST and objective response of >20%. The results were confirmed in a validation cohort of 20 mccRCC patients. The analysis of plasma dynamic changes after nivolumab showed a statistically significant decrease of sPD-1 after 2 cycles (Day 28) in the long-responder patients. Our study revealed that the plasma levels of sPD-1, sPD-L1, and sBTN3A1 can predict response to nivolumab, discriminating responders from non-responders already at therapy baseline, with the advantages of non-invasive sample collection and real-time monitoring that allow to evaluate the dynamic changes during cancer evolution and treatment.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Antigens, CD , B7-H1 Antigen , Butyrophilins , Carcinoma, Renal Cell/drug therapy , Humans , Kidney Neoplasms/drug therapy , Nivolumab/therapeutic use , Prognosis , Programmed Cell Death 1 Receptor , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL