Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36982294

ABSTRACT

Bovine babesiosis is caused by the Apicomplexa parasites from the genus Babesia. It is one of the most important tick-borne veterinary diseases worldwide; Babesia bovis being the species associated with the most severe clinical signs of the disease and causing the greatest economic losses. Many limitations related to chemoprophylaxis and the acaricides control of transmitting vectors have led to the adoption of live attenuated vaccine immunisation against B. bovis as an alternative control strategy. However, whilst this strategy has been effective, several drawbacks related to its production have prompted research into alternative methodologies for producing vaccines. Classical approaches for developing anti-B. bovis vaccines are thus discussed in this review and are compared to a recent functional approach to highlight the latter's advantages when designing an effective synthetic vaccine targeting this parasite.


Subject(s)
Babesia bovis , Babesia , Cattle Diseases , Tick-Borne Diseases , Animals , Cattle , Vaccines, Attenuated , Vaccines, Synthetic
2.
Int J Mol Sci ; 22(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33450807

ABSTRACT

Apical membrane antigen 1 is a microneme protein which plays an indispensable role during Apicomplexa parasite invasion. The detailed mechanism of AMA-1 molecular interaction with its receptor on bovine erythrocytes has not been completely defined in Babesia bovis. This study was focused on identifying the minimum B. bovis AMA-1-derived regions governing specific and high-affinity binding to its target cells. Different approaches were used for detecting ama-1 locus genetic variability and natural selection signatures. The binding properties of twelve highly conserved 20-residue-long peptides were evaluated using a sensitive and specific binding assay based on radio-iodination. B. bovis AMA-1 ectodomain structure was modelled and refined using molecular modelling software. NetMHCIIpan software was used for calculating B- and T-cell epitopes. The B. bovis ama-1 gene had regions under functional constraint, having the highest negative selective pressure intensity in the Domain I encoding region. Interestingly, B. bovis AMA-1-DI (100YMQKFDIPRNHGSGIYVDLG119 and 120GYESVGSKSYRMPVGKCPVV139) and DII (302CPMHPVRDAIFGKWSGGSCV321)-derived peptides had high specificity interaction with erythrocytes and bound to a chymotrypsin and neuraminidase-treatment sensitive receptor. DI-derived peptides appear to be exposed on the protein's surface and contain predicted B- and T-cell epitopes. These findings provide data (for the first-time) concerning B. bovis AMA-1 functional subunits which are important for establishing receptor-ligand interactions which could be used in synthetic vaccine development.


Subject(s)
Erythrocytes/metabolism , Ligands , Receptors, Cell Surface/metabolism , Animals , Cattle , Erythrocytes/immunology , Models, Molecular , Molecular Conformation , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/immunology , Structure-Activity Relationship
3.
Exp Parasitol ; 210: 107831, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31926147

ABSTRACT

Babesia (B.) bovis is one of the main etiological agents of bovine babesiosis, causes serious economic losses to the cattle industry. Control of bovine babesiosis has been hindered by the limited treatment selection for B. bovis, thus, new options are urgently needed. We explored the drug library and unbiasedly screened 640 food and drug administration (FDA) approved drug compounds for their inhibitory activities against B. bovis in vitro. The initial screening identified 13 potentially effective compounds. Four potent compounds, namely mycophenolic acid (MPA), pentamidine (PTD), doxorubicin hydrochloride (DBH) and vorinostat (SAHA) exhibited the lowest IC50 and then selected for further evaluation of their in vitro efficacies using viability, combination inhibitory and cytotoxicity assays. The half-maximal inhibitory concentration (IC50) values of MPA, PTD, DBH, SAHA were 11.38 ± 1.66, 13.12 ± 4.29, 1.79 ± 0.15 and 45.18 ± 7.37 µM, respectively. Of note, DBH exhibited IC50 lower than that calculated for the commonly used antibabesial drug, diminazene aceturate (DA). The viability result revealed the ability of MPA, PTD, DBH, SAHA to prevent the regrowth of treated parasite at 4 × and 2 × of IC50. Antagonistic interactions against B. bovis were observed after treatment with either MPA, PTD, DBH or SAHA in combination with DA. Our findings indicate the richness of FDA approved compounds by novel potent antibabesial candidates and the identified potent compounds especially DBH might be used for the treatment of animal babesiosis caused by B. bovis.


Subject(s)
Antiprotozoal Agents/pharmacology , Babesia bovis/drug effects , Animals , Antiprotozoal Agents/toxicity , Babesia bovis/growth & development , Babesiosis/drug therapy , Babesiosis/parasitology , Cattle , Cattle Diseases/drug therapy , Cattle Diseases/parasitology , Dogs , Doxorubicin/pharmacology , Doxorubicin/toxicity , Drug Approval , Drug Combinations , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Inhibitory Concentration 50 , Madin Darby Canine Kidney Cells/drug effects , Mycophenolic Acid/pharmacology , Mycophenolic Acid/toxicity , Pentamidine/pharmacology , Pentamidine/toxicity , Small Molecule Libraries , Spectrometry, Fluorescence , Vorinostat/pharmacology , Vorinostat/toxicity
4.
Parasitol Res ; 118(7): 2027-2040, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31079252

ABSTRACT

Babesia bovis is the etiological agent of bovine babesiosis, a disease transmitted by Rhipicephalus microplus, which affects cattle herds in tropical and subtropical regions of the world, causing significant economic losses due to decreasing meat and milk yield. This study used molecular techniques to determine the occurrence and genetic diversity of B. bovis, based on the genes encoding the spherical body protein (sbp-2) and the merozoite surface antigens (MSAs) genes, in a herd of 400 Nellore (Bos indicus) sampled from beef cattle farms in the Pantanal region, state of Mato Grosso do Sul, Midwestern Brazil. The results of the nested PCR assays based on the sbp-2 gene indicated that 18 (4.5%) calves were positive for B. bovis; out of them, while 77.7% (14/18) were positive for the B. bovis msa-2b fragment, 66.6% (12/18) were positive for the msa-2c fragment. The phylogenetic analysis based on the maximum likelihood method using 14 sequences from msa-2b clones and 13 sequences from msa-2c clones indicated that the sequences detected in this study are clearly distributed in different cladograms. These findings corroborated the diversity analysis of the same sequences, which revealed the presence of 14 and 11 haplotypes of the msa-2b and msa-2c genes, respectively. Furthermore, the entropy analyses of amino acid sequences revealed 78 and 44 high entropy peaks with values ranging from 0.25 to 1.53 and from 0.27 to 1.09 for MSA-2B and MSA-2C, respectively. Therefore, the results indicate a low molecular occurrence of B. bovis in beef cattle sampled in the Brazilian Pantanal. Despite this, a high degree of genetic diversity was found in the analyzed B. bovis population, with possibly different haplotypes coexisting in the same animal and/or in the same studied herd.


Subject(s)
Antigens, Protozoan/genetics , Babesia bovis/genetics , Babesiosis/parasitology , Cattle Diseases/parasitology , Genetic Variation , Amino Acid Sequence , Animals , Antigens, Surface/genetics , Babesiosis/epidemiology , Brazil , Cattle , Cattle Diseases/epidemiology , Entropy , Merozoites , Phylogeny , Polymerase Chain Reaction/veterinary , Wetlands
5.
J Microsc ; 271(1): 84-97, 2018 07.
Article in English | MEDLINE | ID: mdl-29608216

ABSTRACT

Tick-borne Babesia parasites are responsible for costly diseases worldwide. Improved control and prevention tools are urgently needed, but development of such tools is limited by numerous gaps in knowledge of the parasite-host relationships. We hereby used atomic force microscopy (AFM) and frequency-modulated Kelvin probe potential microscopy (FM-KPFM) techniques to compare size, texture, roughness and surface potential of normal and infected Babesia bovis, B. bigemina and B. caballi erythrocytes to better understand the physical properties of these parasites. In addition, AFM and FM-KPFM allowed a detailed view of extraerythrocytic merozoites revealing shape, topography and surface potential of paired and single parasites. B. bovis-infected erythrocytes display distinct surface texture and overall roughness compared to noninfected erythrocytes. Interestingly, B. caballi-infected erythrocytes do not display the surface ridges typical in B. bovis parasites. Observations of extraerythrocytic B. bovis, B. bigemina and B. caballi merozoites using AFM revealed differences in size and shape between these three parasites. Finally, similar to what was previously observed for Plasmodium-infected erythrocytes, FM-KPFM images reveal an unequal electric charge distribution, with higher surface potential above the erythrocyte regions that are likely associated with Babesia parasites than over its remainder regions. In addition, the surface potential of paired extraerythrocytic B. bovis Mo7 merozoites revealed an asymmetric potential distribution. These observations may be important to better understand the unique cytoadhesive properties of B. bovis-infected erythrocytes, and to speculate on the role of differences in the distribution of surface charges in the biology of the parasites.


Subject(s)
Babesia bovis/physiology , Erythrocytes/parasitology , Merozoites/physiology , Microscopy, Atomic Force/methods , Animals , Cattle , Host-Parasite Interactions , Imaging, Three-Dimensional/methods
6.
Appl Microbiol Biotechnol ; 102(2): 885-896, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29177536

ABSTRACT

Baculoviruses are large DNA virus of insects principally employed in recombinant protein expression. Its ability to form occlusion bodies (OBs), which are composed mainly of polyhedrin protein (POLH), makes them biotechnologically attractive, as these crystals (polyhedra) can incorporate foreign peptides and can be easily isolated. On the other hand, peptide microarrays allow rapid and inexpensive high-throughput serological screening of new candidates to be incorporated to OBs. To integrate these 2 biotechnological approaches, we worked on Babesia bovis, one of the causative agents of bovine babesiosis. Current molecular diagnosis of infection with B. bovis includes enzyme-linked immunosorbent assay (ELISA) techniques, which use merozoite lysate obtained from infected bovine erythrocytes. However, it is important to produce recombinant antigens that replace the use of crude antigens. Here, we describe a new biotechnological platform for the design of indirect ELISAs based on 5 antigenic peptides of 15 amino acid residues of B. bovis (ApBb), selected from a peptide microarray and expressed as a fusion to POLH. An Sf9POLHE44G packaging cell line infected with recombinant baculoviruses carrying POLH-ApBb fusions yielded higher levels of chimeric polyhedra, highlighting the advantage of a trans-contribution of a mutant copy of polyhedrin. Finally, the use of dissolved recombinant polyhedra as antigens was successful in an ELISA assay, as B. bovis-positive sera recognized the fusion POLH-ApBb. Thus, the use of this platform resulted in a promising alternative for molecular diagnosis of relevant infectious diseases.


Subject(s)
Antigens, Protozoan/immunology , Babesia bovis/chemistry , Babesiosis/diagnosis , Baculoviridae , Enzyme-Linked Immunosorbent Assay/methods , Peptides/immunology , Animals , Antibodies, Protozoan/blood , Biotechnology , Cattle , Cattle Diseases/diagnosis , Enzyme-Linked Immunosorbent Assay/veterinary , Protozoan Proteins/immunology , Recombinant Proteins/immunology
7.
Exp Appl Acarol ; 74(1): 117-122, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29380168

ABSTRACT

Livestock constitutes a fundamental asset for the livelihood of rural communities in Angola. Rhipicephalus microplus (Acarina, Ixodidae) is considered to be the most important external parasite impacting the cattle industry in the world. The present work used a cross-sectional study on tick species infesting cattle in smallholder and commercial farms, to investigate the presence of R. microplus in Angola. This species was found to be recently established in certain areas of Cuanza-Sul and Benguela provinces. Furthermore, taking the current understanding of the pattern of dispersal of R. microplus into account, it is probable that this species is already present in other areas of the country. Animal movement without the necessary control measures facilitates the dispersal of this tick species. Consequently, R. microplus is causing rapid displacement of the native tick species, Rhipicephalus decoloratus. The presence of R. microplus in Angola constitutes a serious problem and poses a potential threat to the livestock sector as well as being an important risk factor for the sustainability of the livelihood strategies developed by smallholders.


Subject(s)
Animal Distribution , Cattle Diseases/epidemiology , Rhipicephalus/physiology , Tick Infestations/veterinary , Angola/epidemiology , Animals , Cattle , Cattle Diseases/parasitology , Cross-Sectional Studies , Female , Male , Tick Infestations/epidemiology , Tick Infestations/parasitology
8.
J Proteome Res ; 16(3): 1327-1338, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28152313

ABSTRACT

Arthropod-borne protozoan pathogens have a complex life cycle that includes asexual reproduction of haploid stages in mammalian hosts and the development of diploid stages in invertebrate hosts. The ability of pathogens to invade, survive, and replicate within distinct cell types is required to maintain their life cycle. In this study, we describe a comparative proteomic analysis of a cattle pathogen, Babesia bovis, during its development within the mammalian and tick hosts with the goal of identifying cell-surface proteins expressed by B. bovis kinetes as potential targets for the development of a transmission blocking vaccine. To determine parasite tick-stage-specific cell-surface proteins, CyDye labeling was performed with B. bovis blood stages from the bovine host and kinetes from the tick vector. Cell-surface kinete-stage-specific proteins were identified using 2D difference in gel electrophoresis and analyzed by mass spectrometry. Ten proteins were identified as kinete-stage-specific, with orthologs found in closely related Apicomplexan pathogens. Transcriptional analysis revealed two genes were highly expressed by kinetes as compared with blood stages. Immunofluorescence using antibodies against the two proteins confirmed kinete-stage-specific expression. The identified cell-surface kinete proteins are potential candidates for the development of a B. bovis transmission blocking vaccine.


Subject(s)
Babesia bovis/chemistry , Life Cycle Stages/physiology , Proteomics/methods , Rhipicephalus/microbiology , Animals , Babesia bovis/growth & development , Cattle , Female , Gene Expression Profiling , Mass Spectrometry , Membrane Proteins/analysis , Membrane Proteins/genetics
9.
BMC Vet Res ; 13(1): 383, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29216890

ABSTRACT

BACKGROUND: Bovine babesiosis is one of the most economically important tick-borne diseases threatening the livestock industry globally including South Africa. This disease is induced by members of Babesia bovis species. Antigenic variations among geographical strains of B. bovis, and these heterogeneities are cited as the mechanism by which parasites evade from host immune system and they hamper the successful development of a single vaccine that could confer absolute protection. Given the economic importance of livestock industry in South Africa, the extent of genetic diversity among field isolates of B. bovis merits extensive investigation. In this study, we genetically characterized partial genes of B. bovis and studied the phylogenetic relationship among B. bovis isolates of South African origin. The genes, which were PCR-amplified from bovine samples collected from different locations across South Africa, coded for rhoptry-associated protein 1 (BbRAP-1), cysteine peptidase 2 (BbCP2), spherical body protein 4 (BbSBP-4) and ß-tubulin (BbßTUB). Phylogenies were inferred from newly determined sequences using the neighbour-joining approach. RESULTS: Nested PCR assays with gene-specific primers indicated that, of the 54 bovine samples tested, 59.3% (32/54; 95% CI = 46.0-71.3%), 27.8% (15/54; 95% CI = 17.6-40.9%), 37.0% (20/54; 95% CI = 25.4-50.4%) and 29.6% (16/54; 95% CI = 19.1-42.8%) possessed BbRAP-1, BbCP2, BbSBP-4 and BbßTUB fragments, respectively. Sequencing of PCR-generated fragments revealed that nucleotide sequences of each of the four genes were highly conserved among the B. bovis isolates examined. Phylogenetic analyses of BbCP2, BbSBP-4 and BbßTUB sequences indicated a close phylogenetic relatedness among South African-derived sequences and those of global B. bovis strains. CONCLUSION: The data reported in this study indicated that there is a high conservation among the genes of B. bovis isolates from cattle in South Africa. These findings give an indication that immunologically important proteins encoded by these genes could potentially be considered for exploitation as viable candidates for inclusion in recombinant subunit vaccines.


Subject(s)
Babesia bovis/genetics , Babesiosis/parasitology , Cattle Diseases/parasitology , Protozoan Proteins/genetics , Animals , Babesiosis/epidemiology , Cattle , Cattle Diseases/epidemiology , Computer Simulation , Genes, Protozoan/genetics , Phylogeny , Polymerase Chain Reaction/veterinary , Sequence Analysis, DNA/veterinary , South Africa/epidemiology
10.
Exp Parasitol ; 170: 214-219, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27717771

ABSTRACT

Bovine serum is an important factor for the optimal growth of Babesia bovis in vitro. This protozoan can be cultured in M-199 with Earle's salts medium (M-199) supplemented with 40% bovine serum (BS). In the present study, four media were assessed along with the control medium M-199. The effect on the proliferation of B. bovis in vitro was tested when these media were combined with insulin (Ins), transferrin (Trans) and selenite (Sel) in the absence of bovine serum. Treatment with Advanced DMEM/F12 medium (A-DMEM/F12) achieved the highest percentage of parasitized erythrocytes (PPE), reaching a maximum value of 9.59%. A-DMEM/F12 medium supplemented with a mixture of Ins (2000 mg/L), Trans (1100 mg/L), and Sel (1.34 mg/L) allowed for the adaptation and proliferation of B. bovis without bovine serum, showed a constant increase in PPE, and reached a maximum value of 9.7% during seven cycles of in vitro culture. It was concluded that continuous proliferation of B. bovis in vitro could be achieved using A-DMEM/F12 medium supplemented with Ins-Trans-Sel, without bovine serum. After adaptation for proliferation in serum-free medium, the B. bovis strain of parasites could have future use in the study of this economically important protozoan species that affects cattle.


Subject(s)
Babesia bovis/physiology , Culture Media, Serum-Free/chemistry , Insulin , Selenious Acid , Transferrin , Adaptation, Physiological , Animals , Babesia bovis/drug effects , Babesia bovis/growth & development , Babesia bovis/isolation & purification , Buffers , Cattle , Erythrocytes/parasitology , Hydrogen-Ion Concentration , Serum
11.
Exp Parasitol ; 166: 10-5, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26965399

ABSTRACT

Babesia bovis is an apicomplexan hemoprotozoan that can invade bovine red blood cells (RBCs), where it multiplies asexually. RBC invasion assays using free viable merozoites are now routinely used to understand the invasion mechanism of B. bovis, and to evaluate the efficacy of chemicals and antibodies that potentially inhibit RBC invasion by the parasite. The application of high-voltage pulses (high-voltage electroporation), a commonly used method to isolate free merozoites from infected RBCs, reduces the viability of the merozoites. Recently, a cold treatment of B. bovis in vitro culture was found to induce an effective release of merozoites from the infected RBCs. In the present study, we incubated in vitro cultures of B. bovis in an ice bath to liberate merozoites from infected RBCs and then evaluated the isolated merozoites in RBC invasion and invasion-inhibitions assays. The viability of the purified merozoites (72.4%) was significantly higher than that of merozoites isolated with high-voltage electroporation (48.5%). The viable merozoites prepared with the cold treatment also invaded uninfected bovine RBCs at a higher rate (0.572%) than did merozoites prepared with high-voltage electroporation (0.251%). The invasion-blocking capacities of heparin, a polyclonal rabbit antibody directed against recombinant B. bovis rhoptry associated protein 1, and B. bovis-infected bovine serum were successfully demonstrated in an RBC invasion assay with the live merozoites prepared with the cold treatment, suggesting that the targets of these inhibitors were intact in the merozoites. These findings indicate that the cold treatment technique is a useful tool for the isolation of free, viable, invasion-competent B. bovis merozoites, which can be effectively used for RBC invasion and invasion-inhibition assays in Babesia research.


Subject(s)
Babesia bovis/physiology , Cold Temperature , Erythrocytes/parasitology , Animals , Antibodies, Protozoan/immunology , Anticoagulants/pharmacology , Babesia bovis/immunology , Babesiosis/parasitology , Cattle , Centrifugation, Density Gradient , Electroporation , Female , Heparin/pharmacology , Merozoites/physiology , Parasitemia/parasitology , Rabbits
12.
Korean J Parasitol ; 52(5): 507-11, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25352699

ABSTRACT

Outbreaks of tick-borne disease cases in Santa Catarina, Brazil are known, but the presence of the pathogen DNA has never been determined. In this study, the first survey of Anaplasma marginale, Babesia bigemina, and Babesia bovis DNA on blood samples of 33 cattle from an outbreak in Ponte Alta Municipality, Santa Catarina, Brazil, has been carried out. A multiplex PCR detected 54.5% of animals were co-infected with 2 or 3 parasites, while 24.2% were infected with only 1 species. The most prevalent agent was B. bigemina (63.6%) followed by A. marginale (60.6%). This is the first report of tick-borne disease pathogens obtained by DNA analysis in Southern Brazil.


Subject(s)
Anaplasmosis/epidemiology , Babesiosis/epidemiology , Disease Outbreaks/veterinary , Polymerase Chain Reaction/veterinary , Anaplasma marginale/genetics , Anaplasma marginale/isolation & purification , Animals , Babesia/genetics , Babesia/isolation & purification , Brazil/epidemiology , Cattle , DNA, Protozoan/blood , DNA, Protozoan/isolation & purification
13.
Microbiol Resour Announc ; 13(6): e0003924, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38651914

ABSTRACT

We are reporting a Babesia bovis genome containing four nuclear chromosomes, a mitochondrial genome, and an apicoplast from reference isolate NVSL348. This report includes a gapless assembly consisting of all six genetic molecules.

14.
Iran J Parasitol ; 19(1): 86-97, 2024.
Article in English | MEDLINE | ID: mdl-38654941

ABSTRACT

Background: Bovine babesiosis, a global disease, has not been studied so far in Kashmir valley, which is having temperate type of climate as compared to rest of India having tropical to sub-tropical climate, so we felt the need to investigate it. Methods: To diagnose the babesiosis in clinically suspected cattle (n=450), peripheral blood film examination and PCR tests using generic and species-specific primers targeting Babesia/Theleria genera and B. bigemina, B. bovis as well as B. divergens, respectively were conducted. Four PCR products were sequenced and subjected to BLASTn analysis. Ticks were collected from the clinically suspected animals and identified as per the standard morphological keys. Results: The prevalence of babesiosis among suspected cattle in central Kashmir by peripheral blood film examination and PCR technique was 11.11% and 33.62%, respectively. The 18S rRNA gene of Isolate B1 of Babesia spp. showed 99.0 to 100% nucleotide sequence homology with 18S rRNA gene of different isolates of B. bigemina registered in the GenBank, while as 18S rRNA gene of Isolate Z showed 98.5 to 99.2% and 93.1 to 93.9% nucleotide sequence homology with 18S rRNA gene of different isolates of Babesia spp. and B. bigemina, respectively, registered in the GenBank. Rhipicephalus spp. and Haemaphysalis spp. were the two major tick genera identified in the present study. Conclusion: Bovine Babesiosis in Kashmir is attributed to B. bovis, B. bigemina and some other Babesia spp. or strains which needs further investigation. To our knowledge, this is the first report of Babesia bovis from northern India in cattle.

15.
Parasit Vectors ; 17(1): 75, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374075

ABSTRACT

BACKGROUND: Bovine babesiosis caused by Babesia bovis is one of the most important tick-borne diseases of cattle in tropical and subtropical regions. Babesia bovis parasites have a complex lifecycle, including development within the mammalian host and tick vector. In the tick midgut, extracellular Babesia parasites transform into gametes that fuse to form zygotes. To date, little is known about genes and proteins expressed by male gametes. METHODS AND RESULTS: We developed a method to separate male gametes from in vitro induced B. bovis culture. Separation enabled the validation of sex-specific markers. Collected male gametocytes were observed by Giemsa-stained smear and live-cell fluorescence microscopy. Babesia male gametes were used to confirm sex-specific markers by quantitative real-time PCR. Some genes were found to be male gamete specific genes including pka, hap2, α-tubulin II and znfp2. However, α-tubulin I and ABC transporter, trap2-4 and ccp1-3 genes were found to be upregulated in culture depleted of male gametes (female-enriched). Live immunofluorescence analysis using polyclonal antibodies confirmed surface expression of HAP2 by male and TRAP2-4 by female gametes. These results revealed strong markers to distinguish between B. bovis male and female gametes. CONCLUSIONS: Herein, we describe the identification of sex-specific molecular markers essential for B. bovis sexual reproduction. These tools will enhance our understanding of the biology of sexual stages and, consequently, the development of additional strategies to control bovine babesiosis.


Subject(s)
Babesia bovis , Babesia , Babesiosis , Cattle Diseases , Ticks , Cattle , Female , Male , Animals , Babesia bovis/genetics , Babesiosis/parasitology , Tubulin , Babesia/genetics , Ticks/parasitology , Biomarkers , Germ Cells , Cattle Diseases/diagnosis , Cattle Diseases/parasitology , Mammals
16.
Ticks Tick Borne Dis ; 15(5): 102352, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38759344

ABSTRACT

In Egypt, tick-borne diseases pose a significant threat to human and animal health, and the threat to dromedaries (Camelus dromedarius), the country's dominant camelid species, is of particular concern. These animals are frequently infested with ticks, and may thus develop tick-borne diseases or become reservoirs of tick-borne pathogens. However, there is a paucity of data on tick infestation in Egyptian camels, especially in the south of the country. Accordingly, we aimed to determine the prevalence of tick infestation in southern Egyptian camel populations (in Luxor and Aswan governorates), and identify the hemoprotozoan parasites carried by camel-infesting ticks. Camels were checked for ticks during veterinary examination at quarantine and household checks, and ticks were collected from infested camels for species identification using morphological examination and PCR analyses. Tick and hemoprotozoan species were identified using Basic Local Alignment Search Tool analysis with subsequent confirmation in phylogenetic analyses. All camel-infesting ticks belonged to the species Hyalomma dromedarii, and were clustered with ticks of this species previously found in Egypt in a phylogenetic tree based on the 16S rRNA gene. Molecular analysis targeting the 18S rRNA gene revealed the presence of hitherto undetected hemoprotozoan parasites, Colpodella spp., in 30/297 (10.1 %) camel-infesting ticks. In phylogenetic analysis, these Colpodella spp. were highly homologous (94-98.6 %) with Colpodella spp. previously deposited in GenBank with accession numbers OQ540590Q, MH208621, and GQ411073, which relate to Colpodella spp. previously detected from Haemaphysalis longicornis, Rhipicephalus haemaphysaloides, and humans in China. PCR analyses with spherical body protein-4 (SBP-4) gene-specific primers revealed Babesia bovis in 16/297 (5 %) of camel-infesting ticks, however, Babesia bigemina and Theileria annulata were not detected. Here, we report the first detection of Colpodella spp. in H. dromedarii in Egypt. Further epidemiological studies are needed to assess the risk to camels and humans, and the transmission dynamics. Based on the high tick infestation rates in Egyptian camels and the identification of previously unreported protozoan hemoparasites in ticks, we consider that the dromedary should be subject to surveillance as a sentinel species for tick-borne diseases in Egypt. Our findings underline the need for surveillance and collecting data on lesser known pathogens circulating in camel-infesting ticks, as part of a public health strategy for dealing with tick-borne diseases in Egypt.


Subject(s)
Camelus , Ixodidae , Tick Infestations , Animals , Camelus/parasitology , Egypt/epidemiology , Ixodidae/parasitology , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Female , Phylogeny , Male , Prevalence , Nymph/growth & development , Nymph/parasitology
17.
Parasite Epidemiol Control ; 25: e00340, 2024 May.
Article in English | MEDLINE | ID: mdl-38333559

ABSTRACT

Tick-borne diseases have a major adverse effect on livestock worldwide, causing enormous economic losses in meat and milk production as well threatening animal and public health. In this study, we aimed to detect and characterize piroplasms isolated from cattle and buffalo in southern Egypt, using molecular techniques. Three hundred blood samples were collected from cattle and buffalo in two governorates in southern Egypt. All 300 samples (100%) were confirmed to contain DNA, as they exhibited bands of bovine ß-actin gene at the expected 227 bp for cattle and buffalo. The samples were analyzed by PCR for the presence of piroplasms, specifically Babesia bovis, Babesia bigemina, and Theileria annulata. Samples positive for the piroplasma 18S ribosomal RNA gene were further examined for two additional genes, spherical body protein 4 gene, to provide an enhanced degree of specificity for the identification of B. bovis and B. bigemina, and the major merozoite surface antigen gene for T. annulata. The infection rate for piroplasma spp. was 60/300 (20%). The positivity rates were 10.7% (32/300) for T. annulata, 5.3% (16/300) for B. bovis, and 4% (12/300) for B. bigemina. By host species, 42/150 (28%) cattle and 18/150 (12%) buffalo were positive for piroplasms. None of the isolates sequenced for the B. bovis isolates from buffalo in this study showed 100% identity with any sequence deposited in GenBank for the small subunit ribosomal RNA gene (maximum identity value = 99.74%). Similarly, no T. annulata small subunit ribosomal RNA gene sequence identified in this study exhibited 100% identity with any sequence deposited in GenBank (maximum identity value = 99.89%). The current study provides a partial sequence of the T. annulata merozoite-piroplasm surface antigen gene, as well as the B. bovis and B. bigemina spherical body protein 4 genes, in cattle and buffalo in southern Egypt, and is the first report on these piroplasma genes in cattle and buffalo in southern Egypt.

18.
Vet Parasitol ; 326: 110081, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38113611

ABSTRACT

B. bovis invasion of bovine erythrocytes requires tight junction formation involving AMA-1/RON2 complex interaction. RON2 has been considered a vaccine candidate since antibodies targeting the protein can inhibit parasite invasion of target cells; however, the mechanism controlling B. bovis RON2 interaction with red blood cells is not yet fully understood. This study was thus aimed at identifying B. bovis RON2 protein regions associated with interaction with bovine erythrocytes. Natural selection analysis of the ron2 gene identified predominantly negative selection signals in the C-terminal region. Interestingly, protein-cell and competition assays highlighted the RON2-C region's role in peptide 42918-mediated erythrocyte binding, probably to a sialoglycoprotein receptor. This peptide (1218SFIMVKPPALHCVLKPVETL1237) lies within an intrinsically disordered region of the RON2 secondary structure flanked by two helical residues. The study provides, for the first time, valuable insights into RON2's role in interaction with its target cells. Future studies are required for studying the peptide's potential as an anti-B. bovis vaccine component.


Subject(s)
Babesia bovis , Vaccines , Animals , Cattle , Epitopes , Protozoan Proteins/metabolism , Peptides , Erythrocytes/parasitology
19.
Open Vet J ; 14(7): 1577-1584, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39175968

ABSTRACT

Background: Bovine babesiosis represents a serious challenge for animal health, herd production, and profitability. Understanding the epidemiology and risk factors associated with babesiosis is critical to reduce their negative impacts. Aim: Investigation of the seroprevalence and risk factors associated with Babesia bigemina (B. bigemina) and Babesia bovis (B. bovis) in five districts in Sharkia governorate using ELISA. Methods: Across-sectional research was conducted to determine the seropositivity of babesiosis by collecting a total of 352 blood samples from 250 cattle and 102 buffaloes. A multivariate logistic regression model was implemented to evaluate the strength of the risk factors associated with both Babesia species infection. Results: The seroprevalence of B. bigemina and B. bovis was 42.6% and 17.0 %, respectively. The prevalence of babesiosis in cattle was found to be 48.8% for B. bigemina and 16.8% for B. bovis. Inclusive, in buffaloes, the prevalence was 27.5% for B. bigemina and 17.6% for B. bovis. Adult animals were more vulnerable to infection with babesia than young animals by 3-5 times, respectively. Males were more susceptible to B. bigemina and B. bovis than females by 3.7 and 3.5 times. Similarly, the odds of infection in infested animals with ticks were 2-4 times higher than in animals without ticks. Conclusion: The obtained results revealed that age, sex of the animal, and tick infestation were major risk factors for the seropositivity of both Babesia species. Inclusive, there was no evidence to support the premise that seroprevalence of babesiosis is correlated with the season and species.


Subject(s)
Babesia , Babesiosis , Buffaloes , Cattle Diseases , Animals , Buffaloes/parasitology , Babesiosis/epidemiology , Seroepidemiologic Studies , Cattle , Egypt/epidemiology , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Female , Male , Babesia/immunology , Babesia/isolation & purification , Risk Factors , Prevalence , Cross-Sectional Studies
20.
Front Pharmacol ; 15: 1407548, 2024.
Article in English | MEDLINE | ID: mdl-38751779

ABSTRACT

Introduction: B. bovis is an apicomplexan parasite responsible for bovine babesiosis, a tick-borne disease with a worldwide impact. The disease remains inefficiently controlled, and few effective drugs, including imidocarb dipropionate (ID), are currently available in endemic areas. The objective of this study was to evaluate whether buparvaquone (BPQ), a drug currently used to treat cattle infected with the Babesia-related Theileria spp. parasites, could be active against Babesia parasites. Herein, we compared the effect of ID and BPQ on B. bovis growth in vitro erythrocyte culture. Methods: We compared the effect of ID and BPQ on the culture-adapted Texas T2Bo strain of B. bovis. In vitro cultured parasites were incubated with ID and BPQ at two starting parasitemia levels (PPE), 0.2% and 1%. In vitro cultured parasites were treated with ID or BPQ at concentrations ranging from 10 to 300 nM, during 4 consecutive days. Parasitemia levels were daily evaluated using microscopic examination. Data was compared using the independent Student's t-test. Results and discussion: Both ID and BPQ significantly inhibited (p < 0.05) the growth of B. bovis, regardless of the initial parasitemia used. At 1% parasitemia, BPQ had lower calculated inhibitory concentration 50 (IC50: 50.01) values than ID (IC50: 117.3). No parasites were found in wells with 0.2% starting parasitemia, treated previously with 50 nM of BPQ or ID, after 2 days of culture without drugs. At 1% parasitemia, no parasite survival was detected at 150 nM of BPQ or 300 nM of ID, suggesting that both drugs acted as babesiacidals. Conclusion: Overall, the data suggests that BPQ is effective against B. bovis and shows a residual effect that seems superior to ID, which is currently the first-line drug for treating bovine babesiosis globally.

SELECTION OF CITATIONS
SEARCH DETAIL