Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Publication year range
1.
Exp Parasitol ; 251: 108567, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37308002

ABSTRACT

The present study investigated the role of heat shock protein 90 (HSP90) in the proliferation and survival of Babesia gibsoni in vitro. To detect the effect on the entry of B. gibsoni into host erythrocytes, the parasite was incubated with an antibody against B. gibsoni HSP90 (BgHSP90) for 24 h. The results of this experiment demonstrated that both the incorporation of [3H]hypoxanthine into the nucleic acids of B. gibsoni and the number of parasites were not altered, indicating that an anti-BgHSP90 antibody did not directly inhibit the entry of the parasite into erythrocytes. Moreover, two HSP90 inhibitors, geldanamycin (GA) and tanespimycin (17-AAG), were used to evaluate the function of BgHSP90. GA and 17-AAG decreased both the incorporation of [3H]hypoxanthine and the number of infected erythrocytes, suggesting that BgHSP90 plays important roles in DNA synthesis and the proliferation of B. gibsoni. The effect of 17-AAG on the parasites was weaker than that of GA. Additionally, the effect of GA on the survival and superoxide generation of canine neutrophils was assessed. The survival of canine neutrophils was not affected. The superoxide generation was strongly suppressed by GA. This result indicated that GA inhibited the function of canine neutrophils. Additional studies are necessary to elucidate the role of BgHSP90 in the proliferation of the parasite.


Subject(s)
Babesia , Babesiosis , Dog Diseases , Animals , Dogs , Superoxides/metabolism , HSP90 Heat-Shock Proteins/metabolism , Hypoxanthines/metabolism , Hypoxanthines/pharmacology , Cell Proliferation , Dog Diseases/parasitology , Babesiosis/parasitology
2.
Exp Parasitol ; 246: 108461, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36642297

ABSTRACT

The prevalence of canine babesiosis due to Babesia gibsoni has increased throughout the world including in southern India. The polymerase chain reaction (PCR) based molecular characterization of B. gibsoni in dogs of Kerala, south India, targeting three specific genes viz., apical membrane antigen (AMA1), 50 kDa surface antigen (P50), and heat shock protein (HSP70) was undertaken in this study. Out of 297 blood samples collected from clinically suspected animals, microscopy detected piroplasms of B. gibsoni in 60 (20.20 per cent), while the PCR targeting the BgP50 gene detected 85 (28.61 per cent). Polymerase chain reaction targeting the BgAMA1 and BgHSP70 detected a lesser number of samples (60 and 65 respectively) as positive. The phylogenetic analysis of BgHSP70 gene sequences did not reveal genetic heterogeneity among the B. gibsoni isolates of South India and from other countries, while the BgP50 gene differentiated the Indian isolates from Japanese isolates. When BgAMA1 was used for phylogenetic analysis, genetic variation was not observed among Indian and Taiwanese isolates, however, differentiated them from the Japanese isolates.


Subject(s)
Babesia , Babesiosis , Dog Diseases , Animals , Dogs , Antigens, Surface , Babesia/classification , Babesia/genetics , Babesiosis/parasitology , Dog Diseases/parasitology , HSP70 Heat-Shock Proteins/genetics , Phylogeny
3.
Exp Parasitol ; 241: 108354, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36027930

ABSTRACT

Atovaquone (ATV) has a growth inhibitory effect against Babesia gibsoni. The target site is considered mitochondria, as in the case of Plasmodium spp.; ATV would collapse the mitochondrial membrane potential. B. gibsoni has also reported that single nucleotide polymorphisms in cytochrome b of mitochondria are involved in ATV susceptibility. However, the details are still unknown. The study aim was to measure the mitochondrial membrane potential of B. gibsoni and evaluate the effect of ATV alone and combined with proguanil (PG) on the mitochondrial membrane potential. As a result of exposure of wild-type B. gibsoni to ATV alone, the number of cells with decreased mitochondrial membrane potential increased. When wild-type B. gibsoni was exposed to the ATV + PG combination, the peak value of mitochondrial membrane potential was larger than that when exposed to ATV alone. It was suggested that ATV alone affects the mitochondrial membrane potential of B. gibsoni, and the effect is enhanced by the combination of ATV and PG. The effect of ATV was weakened for B. gibsoni having reduced sensitivity to ATV (B. gibsoni with M121I), and the effect was not enhanced by the combination of ATV and PG. Although we still need to elucidate the mechanism of ATV and PG for B. gibsoni, these results strongly suggests that the target of ATV for B. gibsoni is also cytochrome b of mitochondria.


Subject(s)
Babesiosis , Dog Diseases , Animals , Atovaquone/pharmacology , Cytochromes b/genetics , Dogs , Membrane Potential, Mitochondrial
4.
Exp Parasitol ; 221: 108050, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33307095

ABSTRACT

Heat shock protein 90 (HSP90) is a molecular chaperon and an essential component for stage differentiation and intracellular growth inside the host cells of many protozoans. HSP90 of Babesia gibsoni (BgHSP90) was suggested to function in the development of diminazene aceturate (DA)-resistance. Therefore, we examined the expression level of BgHSP90 in a DA-resistant B. gibsoni isolate. Transcription of the BgHSP90 gene in the DA-resistant isolate and wild-type B. gibsoni was assessed by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). As a result, the copy number and relative amount of BgHSP90 transcripts in the DA-resistant isolate were significantly lower than those in the wild-type. Moreover, a rabbit anti-recombinant BgHSP90 antibody was developed, and the protein synthesis of BgHSP90 in the DA-resistant isolate was compared with that in the wild-type by Western blot analysis and indirect fluorescence assay. There was significantly less BgHSP90 protein than in the wild-type. Additionally, the relative intensity of BgHSP70 in DA-resistant isolate was also lower than that in the wild-type. This suggested that the expression of BgHSP90 and BgHSP70 in the DA-resistant B. gibsoni isolate was suppressed and that the reduced amount of BgHSP90 and BgHSP70 might cause the weak proliferation of the DA-resistant isolate. Further studies are necessary to elucidate the function of BgHSP90.


Subject(s)
Antiprotozoal Agents/pharmacology , Babesia/drug effects , Babesia/metabolism , Diminazene/analogs & derivatives , HSP90 Heat-Shock Proteins/metabolism , Animals , Blotting, Western , Diminazene/pharmacology , Dogs , Drug Resistance , Electrophoresis, Polyacrylamide Gel , Erythrocytes/chemistry , Erythrocytes/parasitology , Fluorescent Antibody Technique, Indirect , Immunoblotting , Potassium/metabolism , Rabbits , Real-Time Polymerase Chain Reaction
5.
Acta Vet Hung ; 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34773454

ABSTRACT

A four-year-old intact male Boxer, that had a history of travelling to Serbia, was referred for lethargy and anaemia. Shortly before the dog was referred, it was diagnosed twice with an infection with Babesia canis and was treated with imidocarb both times. A blood smear evaluation was indicative of the presence of intraerythrocytic piroplasms. After receiving inconclusive results regarding the type of piroplasm, the dog was diagnosed with simultaneous infections with B. canis and Babesia gibsoni via real-time polymerase chain reaction (rt-PCR) testing. The dog was treated with imidocarb, atovaquone and azithromycin, and in a follow-up examination, the PCR results were negative for B. canis and B. gibsoni. Several weeks later, the dog was presented again, and a PCR was positive for B. gibsoni. After atovaquone and azithromycin failed to eliminate the parasites, a therapy attempt using metronidazole, clindamycin and doxycycline was initiated. Six months after diagnosis, the treatment appeared successful in eliminating B. gibsoni. This case report describes the clinical findings of the co-infection and the initiated diagnostic and therapeutic approaches.

6.
BMC Vet Res ; 15(1): 428, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31783850

ABSTRACT

BACKGROUND: Babesia gibsoni (B. gibsoni) is an intraerythrocytic protozoan parasite of dogs that causes fever and hemolytic illness. A timely diagnosis is essential for the disease management. RESULTS: Here, we report a QubeMDx PCR system which enables a rapid, sensitive and reliable diagnosis of B. gibsoni near the dog patient. Within 30 min, this diagnostic assay was able to detect as low as 0.002% parasitemia of the dog blood. Using clinical samples, this new assay was validated to demonstrate 100% agreement with real-time PCR. CONCLUSIONS: This novel diagnostic method provides a reliable point-of-care test to assist in the identification of B. gibsoni.


Subject(s)
Babesia/isolation & purification , Babesiosis/diagnosis , Dog Diseases/diagnosis , Real-Time Polymerase Chain Reaction/veterinary , Animals , Babesiosis/blood , Babesiosis/parasitology , Dog Diseases/blood , Dog Diseases/parasitology , Dogs , Point-of-Care Systems , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
7.
Exp Parasitol ; 206: 107771, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31585116

ABSTRACT

A PCR targeting mitochondrial cytochrome oxidase subunit III (cox3) for molecular detection of Babesia gibsoni infection in dogs has been developed in this study. Fifty blood samples from suspected clinical cases from dogs, brought to the veterinary college clinics, were examined for presence of B. gibsoni using conventional diagnosis by microscopic examination of Giemsa stained thin blood smears. In addition, species specific PCRs targeting ITS-1 region (BgITS-1 PCR) and nested PCR targeting 18S ribosomal RNA gene (Bg18SnPCR) were carried out. A 634 bp PCR fragment of B. gibsoni cox3 gene was amplified in positive samples from three geographical locations of Satara, Wai and Pune in Maharashtra state of India. From analysis of the sequence of the B. gibsoni cox3 gene, we found that the Indian isolate had 96-98% similarity to the isolate from Japan and China. Post sequencing, de-novo diagnostic primer pair for species specific amplification of 164 bp fragment of B. gibsonicox3 was designed and the PCR was standardized. The diagnostic results of de-novo Bgcox3 PCR were compared with BgITS-1 PCR and Bg18S nPCR. Thin blood smears detected 22% (11/50) samples positive for small form of Babesia species. The BgITS-1 PCR detected 25% samples (15/50) as positive and Bg18S nPCR detected 80% (40/50) B. gibsoni positive samples. The de-novo Bgcox3 PCR detected 66% (33/50) samples positive for B. gibsoni (at 95% CI). The analytical sensitivity of cox3 PCR was evaluated as 0.000003% parasitaemia or 09 parasites in 100  µl of blood. The de-novo diagnostic cox3 PCR did not cross react with control positive DNA from other haemoprotozoa and rickettsia like B. vogeli, Hepatozoon canis, Trypanosoma evansi, Ehrlichia canis and Anaplasma platys. Statistically, cox3 PCR had better diagnostic efficiency than ITS-1 PCR in terms of sensitivity (p = 0.0006). No statistically significant difference between results of cox3 PCR and 18S nPCR was observed (p = 0.1760). Kappa values estimated for each test pair showed fair to moderate agreement between the observations. Specificity of Bgcox3 PCR was 100% when compared with microscopy or BgITS-1 PCR. Sensitivity of Bgcox3 PCR was 100% when compared with that of Bg18S nPCR.


Subject(s)
Babesia/isolation & purification , Babesiosis/diagnosis , Dog Diseases/diagnosis , Electron Transport Complex IV/genetics , Mitochondria/enzymology , Animals , Babesia/classification , Babesia/genetics , Babesiosis/parasitology , Base Sequence , Cross Reactions , DNA, Ribosomal Spacer/chemistry , Dog Diseases/parasitology , Dogs , Erythrocytes/parasitology , Likelihood Functions , Phylogeny , Polymerase Chain Reaction/veterinary , Predictive Value of Tests , RNA, Ribosomal, 18S/analysis , Sensitivity and Specificity , Sequence Alignment/veterinary
8.
Parasitol Res ; 118(5): 1581-1592, 2019 May.
Article in English | MEDLINE | ID: mdl-30826925

ABSTRACT

Ixodid ticks are ectoparasites responsible for the transmission of a large number of bacterial, viral, and protozoan pathogens to animals and humans. As long-term blood-pool feeders, the digestion of host blood is critical to their development as well as to the establishment of the sexual cycle of hemoparasites such as Babesia parasites, the agents of human and animal babesiosis. Previous studies have demonstrated that cysteine proteases are involved in blood digestion, embryogenesis, and pathogen transmission in other species of ticks, but their characteristics and functions are still unidentified in Haemaphysalis flava. Here, we describe the characterization of a cysteine protease HfCL from H. flava. We show that HfCL belongs to the L-like papain family of proteases, exhibits high expression in nymphs and adults, and localizes to both the midgut and salivary glands. Biochemical assays using purified recombinant enzyme reveal that rHfCL can hydrolyze the fluorogenic substrate Z-phe-Arg-MCA with optimal activity detected at pH 6. Furthermore, the short-term growth assay indicates that rHfCL can inhibit the intraerythrocytic development of Babesia microti and Babesia gibsoni in vitro.


Subject(s)
Babesia/growth & development , Cathepsin L/metabolism , Cysteine Proteases/metabolism , Ixodidae/enzymology , Ixodidae/parasitology , Animals , Babesiosis/transmission , Caspases , Humans , Nymph/parasitology
9.
Parasitol Res ; 118(1): 235-243, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30474737

ABSTRACT

Babesia gibsoni (B. gibsoni), an intracellular apicomplexan protozoan, poses great threat to canine health. Currently, little information is available about the B. gibsoni (WH58) endemic to Wuhan, China. Here, the mitochondrial (mt) genome of B. gibsoni (WH58) was amplified by five pairs of primers and sequenced and annotated by alignment with the reported mt genome sequences of Babesia canis (B. canis, KC207822), Babesia orientalis (KF218819), Babesia bovis (AB499088), and Theileria equi (AB499091). The evolutionary relationships were analyzed with the amino acid sequences of cytochrome c oxidase I (cox1) and cytochrome b (cob) genes in apicomplexan parasite species. Additionally, the mt genomes of Babesia, Theileria, and Plasmodium spp. were compared in size, host infection, form, distribution, and direction of the protein-coding genes. The full size of the mt genome of B. gibsoni (WH58) was 5865 bp with a linear form, containing terminal-inverted repeats on both ends, six large subunit ribosomal RNA fragments, and three protein-coding genes: cox1, cob, and cytochrome c oxidase III (cox3). Babesia, Theileria, and Plasmodium spp. had a similar mt genome size of about 6000 bp. The mt genomes of parasites that cause canine babesiosis showed a slightly smaller size than the other species. Moreover, Babesia microti (R1 strain) was about 11,100 bp in size, which was twice larger than that of the other species. The mt form was linear for Babesia and Theileria spp. but circular for Plasmodium falciparum and Plasmodium knowlesi. Additionally, all the species contained the three protein-coding genes of cox1, cox3, and cob except Toxoplasma gondii (RH strain) which only contained the cox1 and cob genes. The phylogenetic analysis indicated that B. gibsoni (WH58) was more identical to B. gibsoni (AB499087), B. canis (KC207822), and Babesia rossi (KC207823) and most divergent from Babesia conradae in Babesia spp. Despite the highest similarity to B. gibsoni (AB499087) reported in Japan, B. gibsoni (WH58) showed notable differences in the sequence of nucleotides and amino acids and the property in virulence to host and in vitro cultivation. This study compared the mt genomes of the two B. gibsoni isolates and other parasites in the phylum Apicomplexa and provided new insights into their differences and evolutionary relationships.


Subject(s)
Babesia/isolation & purification , Babesiosis/parasitology , Dog Diseases/parasitology , Genome, Mitochondrial , Protozoan Infections, Animal/parasitology , Amino Acid Sequence , Animals , Apicomplexa/classification , Apicomplexa/genetics , Apicomplexa/isolation & purification , Babesia/classification , Babesia/genetics , China/epidemiology , Cytochromes b/genetics , DNA Primers/genetics , Dogs , Molecular Sequence Annotation , Phylogeny , Protozoan Infections, Animal/epidemiology , Sequence Analysis, DNA
10.
Parasitol Res ; 117(12): 3945-3951, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30293152

ABSTRACT

Babesia gibsoni is a protozoan parasite responsible for the majority of reported cases of canine babesiosis in China. Currently, microscopic examination of the Giemsa-stained thin blood smears is the main diagnosis method in clinic. Here, we report the recombinase polymerase amplification-lateral flow (LF-RPA) dipstick detection method for targeting B. gibsoni cytochrome c oxidase subunit I (cox I) gene. The reaction takes only 20-30 min under isothermal temperatures between 30 and 45 °C. Specificity was evaluated using DNA from related apicomplexan parasites and their host, while the sensitivity was calculated based on the DNA from the experimental B. gibsoni-infected dogs. Results indicated that the LF-RPA method is 20 times more sensitive than the conventional PCR based on 18S rRNA and has no cross reaction with any other test DNAs. The applicability of the LF-RPA method was further evaluated using 15 samples collected from clinic. Thirteen of the 15 samples (86.67%) were detected as positive by LF-RPA, while 10 of them (66.67%) were found positive by conventional PCR. Overall, the novel LF-RPA assay is effective for the detection of B. gobsini and has considerable advantages over the conventional PCR in sensitivity, specificity, simplicity in operation, less time consumption, and visual detection. The LF-RPA method may facilitate the surveillance and early detection of B. gibsoni infection in dogs.


Subject(s)
Babesia/genetics , Babesia/isolation & purification , Babesiosis/diagnosis , Dog Diseases/diagnosis , Nucleic Acid Amplification Techniques/methods , Animals , Babesiosis/parasitology , China , Dog Diseases/parasitology , Dogs , Polymerase Chain Reaction/methods , RNA, Ribosomal, 18S/genetics , Recombinases/genetics , Sensitivity and Specificity
11.
Exp Parasitol ; 183: 92-98, 2017 12.
Article in English | MEDLINE | ID: mdl-29122576

ABSTRACT

The mechanism of the development of diminazene aceturate (DA) resistance in Babesia gibsoni is still unknown even though DA-resistant B. gibsoni isolate was previously developed in vitro. To clarify the mechanisms of DA-resistance in B. gibsoni, we initially examined the intracellular DA content in the DA-resistant isolate using high-performance liquid chromatography, and compared it with that in the wild-type. As a result, the intracellular DA content in the DA-resistant isolate was significantly lower than that in the wild-type, suggesting that the decreased DA content may contribute to DA-resistance. Additionally, the glucose consumption of the DA-resistant isolate was significantly higher than that of the wild-type, indicating that a large amount of glucose is utilized to maintain DA-resistance. It is possible that a large amount of energy is utilized to maintain the mechanisms of DA-resistance. It was reported that as the structure of DA is similar with that of adenosine, DA may be taken up by the P2 transporter, which contributes to the uptake of adenosine, in Trypanosoma brucei brucei, and that the uptake of adenosine is decreased in DA-resistant T. brucei brucei. In the present study, the adenosine incorporation in the DA-resistant B. gibsoni isolate was higher than in the wild-type. Moreover, the adenosine incorporation in the wild-type was not inhibited by the presence of DA. These results suggest that adenosine transport in B. gibsoni is not affected by DA and may not mediate DA-resistance. To clarify the mechanism of the development of DA resistance in B. gibsoni, we should investigate the cause of the decreased DA content in the DA-resistant isolate in the future.


Subject(s)
Adenosine/metabolism , Babesia/chemistry , Diminazene/analogs & derivatives , Animals , Babesia/drug effects , Babesia/metabolism , Babesiosis/parasitology , Blood Glucose/metabolism , Chromatography, High Pressure Liquid , Diminazene/analysis , Diminazene/pharmacology , Dog Diseases/parasitology , Dogs , Drug Resistance , Erythrocyte Count/veterinary , Erythrocytes/chemistry , Erythrocytes/parasitology , Hypoxanthine/metabolism , Male , Parasitemia/parasitology , Parasitemia/veterinary , Potassium/blood , Sodium/blood
12.
Exp Parasitol ; 157: 185-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26297954

ABSTRACT

Babesia gibsoni is a haemoprotozoan parasite of emerging global importance. The clinical presentation of babesial infections is diverse and the systemic inflammatory response induced by infection is considered to be a major feature of the pathophysiology of canine babesiosis. An experimental case-controlled longitudinal study was conducted to assess the clinical, haematological, cytokine and acute phase protein changes that occur during experimental B. gibsoni infection of beagle puppies. Infected dogs became transiently pyrexic and anaemic, intermittently neutropenic and transiently, but profoundly, thrombocytopenic, although this had no apparent adverse clinical effect. Experimental B. gibsoni infection also induced an acute phase response, characterised by a marked increase in the concentration of C-reactive protein, which was delayed in onset following infection but preceded the detection of peripheral parasitaemia. Experimental B. gibsoni infection was also associated with marked increases in the concentration of multiple cytokines which were also delayed in onset following infection and occurred subsequent to the detection of peripheral parasitaemia and the acute phase response. This study furthers our understanding of the immune response that occurs during babesial infections and the role that systemic inflammation plays in the pathophysiology of canine babesiosis.


Subject(s)
Acute-Phase Proteins/metabolism , Babesiosis/metabolism , Blood Cell Count/veterinary , Cytokines/metabolism , Dog Diseases/metabolism , Animals , Babesiosis/blood , Babesiosis/immunology , C-Reactive Protein/analysis , Case-Control Studies , Dog Diseases/blood , Dog Diseases/immunology , Dogs , Longitudinal Studies
13.
Korean J Parasitol ; 52(4): 345-53, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25246713

ABSTRACT

Babesia gibsoni is an intraerythrocytic apicomplexan parasite that causes piroplasmosis in dogs. B. gibsoni infection is characterized clinically by fever, regenerative anemia, splenomegaly, and sometimes death. Since no vaccine is available, rapid and accurate diagnosis and prompt treatment of infected animals are required to control this disease. Over the past decade, several candidate molecules have been identified using biomolecular techniques in the authors' laboratory for the development of a serodiagnostic method, vaccine, and drug for B. gibsoni. This review article describes newly identified candidate molecules and their applications for diagnosis, vaccine production, and drug development of B. gibsoni.


Subject(s)
Antigens, Protozoan/immunology , Antiprotozoal Agents/isolation & purification , Babesia/drug effects , Babesia/isolation & purification , Babesiosis/diagnosis , Protozoan Vaccines/immunology , Animals , Antiprotozoal Agents/pharmacology , Babesia/immunology , Babesiosis/drug therapy , Babesiosis/prevention & control , Dogs , Drug Discovery/methods
14.
Acta Parasitol ; 69(1): 375-383, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38133744

ABSTRACT

PURPOSE: The study aimed to investigate genetic diversity in Babesia gibsoni, the causative agent of canine babesiosis, and to assess the presence of atovaquone-resistant isolates in naturally infected dogs. METHODS: A total of 24 blood samples confirmed for B. gibsoni infection was subjected to PCR amplification and sequencing based on cytb gene. Genetic characterization of B. gibsoni as well as attempts to detect the point mutation rendering atovaquone resistance was carried out based on the analysis of nucleotide sequence of cytb gene using bioinformatics software. RESULTS: The findings indicated that the B. gibsoni isolates in the investigation exhibited a high nucleotide identity with the Asian genotype, ranging from 98.41 to 98.69%. Notably, none of the isolates carried cytb gene variants associated with atovaquone resistance. Phylogenetic analysis revealed clustering of most isolates with those from Japan and China, except for one isolate forming a distinct subclade. Haplotype network analysis indicated a high diversity with 22 distinct haplotypes among the B. gibsoni isolates, emphasizing the genetic variability within the studied population. CONCLUSION: In conclusion, the cytb gene exhibited remarkable conservation among the twenty-four B. gibsoni isolates studied and the study represents the first genetic diversity assessment of B. gibsoni using the cytb gene in dogs from India. These findings shed light on the genetic characteristics of B. gibsoni in the region and provide valuable insight for addressing the challenges posed by this life-threatening disease in dogs.


Subject(s)
Babesia , Babesiosis , Cytochromes b , Dog Diseases , Genetic Variation , Phylogeny , Dogs , Animals , Babesia/genetics , Babesia/classification , Babesia/isolation & purification , Babesiosis/parasitology , Dog Diseases/parasitology , India , Cytochromes b/genetics , Haplotypes , Atovaquone/pharmacology , Drug Resistance/genetics , Genotype , Polymerase Chain Reaction/veterinary
15.
Acta Trop ; 249: 107069, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952866

ABSTRACT

Diminazene aceturate (DA), imidocarb dipropionate (ID), atovaquone (ATO), azithromycin (AZI), clindamycin, and quinine have been used to treat animal and human babesiosis for many years, despite their negative effects and rising indications of resistance. Thus, finding anti-babesial compounds that can either treat the infection or lower the dose of drugs given has been a primary objective. Quinazolines are one of the most important nitrogen heterocycles, with a wide range of pharmacological activities including analgesic, anti-inflammatory, sedative-hypnotic, anti-histaminic, anti-cancer, and anti-protozoan properties. The present study investigated the anti-babesial activities of twenty 6,7-dimethoxyquinazoline-2,4-diamines on Babesia spp. One candidate, 6,7-dimethoxy-N4-ethylisopropyl-N2-ethyl(pyridin-4-yl)quinazoline-2,4-diamine (SHG02), showed potent inhibition on Babesia gibsoni in vitro, as well as on B. microti and B. rodhaini in mice. Our findings indicate that the candidate compound SHG02 is promising for further development of anti-babesial drugs and provides a new structure to be explored for developing anti-Babesia therapeutics.


Subject(s)
Antiprotozoal Agents , Babesia , Babesiosis , Dog Diseases , Dogs , Animals , Humans , Mice , Atovaquone/pharmacology , Atovaquone/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use
16.
Parasitol Int ; 100: 102860, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38199521

ABSTRACT

Molecular surveillance of canine tick-borne pathogens (TBPs) in Bangladesh has constantly been undervalued. Therefore, the emergence of new pathogens often remains undetected. This study aimed to screen tick-borne pathogens in stray dogs and ticks in the Dhaka metropolitan area (DMA). Eighty-five dog blood and 53 ticks were collected in six city districts of DMA from September 2022 to January 2023. The ticks were identified by morphology. Screening of TBPs was performed by polymerase chain reaction (PCR), followed by sequencing. The PCR assays were conducted to analyze the 18S rRNA (Babesia gibsoni, B. vogeli, and Hepatozoon canis), 16S rRNA (Anaplasma phagocytophilum, A. platys, and A. bovis), gltA (Ehrlichia canis and Rickettsia spp.), flagellin B (Borrelia spp.) and 16-23S rRNA (Bartonella spp.). Three tick species, Rhipicephalus sanguineus (50/53), R. microplus (1/53), and Haemaphysalis bispinosa (2/53), were identified. Babesia gibsoni (38 out of 85) and A. platys (7 out of 85) were detected in dog blood. In contrast, four pathogens, B. gibsoni (1 out of 53), B. vogeli (1 out of 53), H. canis (22 out of 53), and A. platys (1 out of 53), were detected in the ticks. However, the detection rates of TBPs in dog blood and ticks were not correlated in this study. The phylogenetic analyses suggested that a single genotype for each of the four pathogens is circulating in DMA. This study reports the existence of B. vogeli, H. canis, and A. platys in Bangladesh for the first time.


Subject(s)
Babesia , Dog Diseases , Rhipicephalus sanguineus , Tick-Borne Diseases , Animals , Dogs , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology , Bangladesh/epidemiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Babesia/genetics , Rhipicephalus sanguineus/genetics , Rhipicephalus sanguineus/microbiology , Dog Diseases/diagnosis , Anaplasma/genetics
17.
Vet Parasitol Reg Stud Reports ; 53: 101071, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39025542

ABSTRACT

Blood samples from fifteen captive Indian wolves (Canis lupus pallipes) maintained at Arignar Anna Zoological Park, Vandalur, Chennai were screened for the presence of Babesia spp., Ehrlichia canis and Trypnosoma evansi DNA by PCR. Out of 15 wolf samples, 3 samples were found positive for Babesia spp. The amplified 18S rRNA gene fragments from 3 wolves were sequenced and confirmed as Babesia gibsoni. A maximum likelihood tree was constructed using the three sequences along with other Babesia spp. sequences derived from GenBank adopting HKY nucleotide substitution model based on the Bayesian Information Criterion. The phylogenetic analysis confirmed that the three sequences were of Babesia gibsoni and highly divergent from Babesia canis, B. vogeli and B. vulpes. This might be a possible spill over event of B. gibsoni from community dogs through blood feeding dog ticks. This is the first report and molecular confirmation of B. gibsoni infection in captive Indian wolves.


Subject(s)
Babesia , Babesiosis , Phylogeny , RNA, Ribosomal, 18S , Wolves , Animals , Babesia/isolation & purification , Babesia/genetics , Babesia/classification , Babesiosis/parasitology , Babesiosis/epidemiology , India/epidemiology , Wolves/parasitology , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/analysis , Animals, Zoo , Polymerase Chain Reaction/veterinary , DNA, Protozoan/genetics , Female , Male
18.
Exp Parasitol ; 135(2): 414-20, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23968686

ABSTRACT

Identification and molecular characterization of Babesia gibsoni proteins with potential antigenic properties are crucial for the development and validation of the serodiagnostic method. In this study, we isolated a cDNA clone encoding a novel B. gibsoni 76-kDa protein by immunoscreening of the parasite cDNA library. Computer analysis revealed that the protein presents a glutamic acid-rich region in the C-terminal. Therefore, the protein was designated as B. gibsoni glutamic acid-rich protein (BgGARP). A BLASTp analysis of a translated BgGARP polypeptide demonstrated that the peptide shared a significant homology with a 200-kDa protein of Babesia bigemina and Babesia bovis. A truncated BgGARP cDNA (BgGARPt) encoding a predicted 13-kDa peptide was expressed in Escherichia coli (E. coli), and mouse antisera against the recombinant protein were used to characterize a corresponding native protein. The antiserum against recombinant BgGARPt (rBgGARPt) recognized a 140-kDa protein in the lysate of infected erythrocytes, which was detectable in the cytoplasm of the parasites by confocal microscopic observation. In addition, the specificity and sensitivity of enzyme-linked immunosorbent assay (ELISA) with rBgGARPt were evaluated using B. gibsoni-infected dog sera and specific pathogen-free (SPF) dog sera. Moreover, 107 serum samples from dogs clinically diagnosed with babesiosis were examined using ELISA with rBgGARPt. The results showed that 86 (80.4%) samples were positive by rBgGARPt-ELISA, which was comparable to IFAT and PCR as reference test. Taken together, these results demonstrate that BgGARP is a suitable serodiagnostic antigen for detecting antibodies against B. gibsoni in dogs.


Subject(s)
Antigens, Protozoan/immunology , Babesia/chemistry , Protozoan Proteins/immunology , Amino Acid Sequence , Animals , Antigens, Protozoan/genetics , Babesia/genetics , Babesia/immunology , Babesiosis/diagnosis , Babesiosis/parasitology , Babesiosis/veterinary , Base Sequence , Cloning, Molecular , Cross Reactions , Dog Diseases/diagnosis , Dog Diseases/parasitology , Dogs , Enzyme-Linked Immunosorbent Assay/standards , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Gene Expression , Glutamic Acid , Immune Sera/immunology , Mice , Mice, Inbred ICR , Molecular Sequence Data , Protozoan Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sensitivity and Specificity , Specific Pathogen-Free Organisms
19.
Exp Parasitol ; 135(1): 42-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23792005

ABSTRACT

Host cell invasion by apicomplexan parasites driven by gliding motility and empowered by actin-based movement is essential for parasite survival and pathogenicity. The parasites share a conserved invasion process: actin-based motility led by the coordination of adhesin-cytoskeleton via aldolase. A number of studies of host cell invasion in the Plasmodium species and Toxoplasma gondii have been performed. However, the mechanisms of host cell invasion by Babesia species have not yet been studied. Here, we show that Babesia gibsoni aldolase (BgALD) forms a complex with B. gibsoni thrombospondin-related anonymous protein (BgTRAP) and B. gibsoni actin (BgACT), depending on tryptophan-734 (W-734) in BgTRAP. In addition, actin polymerization is mediated by BgALD. Moreover, cytochalasin D, which disrupts actin polymerization, suppressed B. gibsoni parasite growth and inhibited the host cell invasion by parasites, indicating that actin dynamics are essential for erythrocyte invasion by B. gibsoni. This study is the first molecular approach to determine the invasion mechanisms of Babesia species.


Subject(s)
Actins/metabolism , Babesia/enzymology , Babesia/physiology , Erythrocytes/parasitology , Fructose-Bisphosphate Aldolase/metabolism , Actins/chemistry , Animals , Babesia/drug effects , Cytochalasin D/pharmacology , DNA, Complementary/isolation & purification , DNA, Protozoan/isolation & purification , Female , Fructose-Bisphosphate Aldolase/chemistry , Fructose-Bisphosphate Aldolase/genetics , Kinetics , Mice , Mice, Inbred ICR , Nucleic Acid Synthesis Inhibitors/pharmacology , Open Reading Frames/genetics , Polymerization , Protozoan Proteins/metabolism
20.
Acta Trop ; 241: 106890, 2023 May.
Article in English | MEDLINE | ID: mdl-36907290

ABSTRACT

Babesia gibsoni is an intraerythrocytic apicomplexan parasite transmitted by Haemaphysalis longicornis and causes canine babesiosis. Within the tick, the Babesia parasite undergoes sexual conjugation and the sporogony process of its life cycle. To control B. gibsoni infection, prompt and effective treatment of acute infections and curing chronic carriers are urgently needed. Gene disruption of Plasmodium CCps resulted in blocking the transition of sporozoites from the mosquito midgut to the salivary glands, showing that these proteins are potential targets for the development of a transmission-blocking vaccine. In this study, we described the identification and characterization of three members of the CCp family in B. gibsoni, named CCp1, CCp2, and CCp3. The B. gibsoni sexual stages were induced in vitro by exposing parasites to xanthurenic acid (XA), dithiothreitol (DTT), and tris (2-carboxyethyl) phosphine (TCEP) at serial concentrations. Among them, 100 µM XA-exposed and cultured at 27 °C without CO2B. gibsoni presented diverse morphologies, including parasites with long projections, gradually increased free merozoites, and aggregated and round forms, indicative of sexual stage induction. Then, the expression of CCp proteins of induced parasites was confirmed by real-time reverse transcription PCR, immunofluorescence, and western blot. The results showed that BgCCp genes were highly significantly increased at 24 h post-sexual stage induction (p < 0.01). The induced parasites were recognized by anti-CCp mouse antisera and anti-CCp 1, 2, and 3 antibodies weakly reacted with sexual stage proteins of expected molecular weights of 179.4, 169.8, and 140.0 KDa, respectively. Our observations on morphological changes and confirmation of sexual stage protein expression will advance elemental biological research and lay the foundation for the development of transmission-blocking vaccines against canine babesiosis.


Subject(s)
Babesia , Babesiosis , Dog Diseases , Ixodidae , Animals , Dogs , Mice , Babesia/genetics , Babesiosis/parasitology , Anti-Citrullinated Protein Antibodies/metabolism , Ixodidae/parasitology , Life Cycle Stages/genetics , Dog Diseases/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL