Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Genes Dev ; 30(20): 2310-2324, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27807034

ABSTRACT

Transcription factor EBF1 (early B-cell factor 1) regulates early B-cell differentiation by poising or activating lineage-specific genes and repressing genes associated with alternative cell fates. To identify proteins that regulate the diverse functions of EBF1, we used SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry of proteins associated with endogenous EBF1 in pro-B cells. This analysis identified most components of the multifunctional CCR4-NOT complex, which regulates transcription and mRNA degradation. CNOT3 interacts with EBF1, and we identified histidine 240 in EBF1 as a critical residue for this interaction. Complementation of Ebf1-/- progenitors with EBF1H240A revealed a partial block of pro-B-cell differentiation and altered expression of specific EBF1 target genes that show either reduced transcription or increased mRNA stability. Most deregulated EBF1 target genes show normal occupancy by EBF1H240A, but we also detected genes with altered occupancy, suggesting that the CCR4-NOT complex affects multiple activities of EBF1. Mice with conditional Cnot3 inactivation recapitulate the block of early B-cell differentiation, which we found to be associated with an impaired autoregulation of Ebf1 and reduced expression of pre-B-cell receptor components. Thus, the interaction of the CCR4-NOT complex with EBF1 diversifies the function of EBF1 in a context-dependent manner and may coordinate transcriptional and post-transcriptional gene regulation.


Subject(s)
B-Lymphocytes/physiology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation/genetics , Homeodomain Proteins/metabolism , Lymphopoiesis/genetics , Nuclear Proteins/metabolism , RNA Stability/genetics , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Gene Silencing , HEK293 Cells , Homeodomain Proteins/genetics , Humans , Mice , Molecular Chaperones/genetics , Mutation , Nuclear Proteins/genetics , Protein Binding , Transcription Factors/genetics , Transgenes
2.
Neurogenetics ; 24(2): 129-136, 2023 04.
Article in English | MEDLINE | ID: mdl-36802310

ABSTRACT

CNOT3 is the central component of the CCR4-NOT protein complex, which is a global regulator of RNA polymerase II transcription. Loss of function mutations in CNOT3 lead to intellectual developmental disorder with speech delay, autism, and dysmorphic facies (IDDSADF), which is very rare. Herein, we reported two novel heterozygous frameshift mutations (c.1058_1059insT and c.724delT) and one novel splice site variant (c.387 + 2 T > C) in CNOT3 (NM_014516.3) gene in three Chinese patients with dysmorphic features, developmental delay, and behavior anomalies. The functional study showed that the CNOT3 mRNA levels were significantly decreased in the peripheral blood of two patients with c.1058_1059insT and c.387 + 2 T > C variants, respectively, and minigene assay demonstrated that the splice variant (c.387 + 2 T > C) resulted in exon skipping. We also found that CNOT3 deficiency was linked to alterations of expression levels of other CCR4-NOT complex subunits in mRNA level in the peripheral blood. By analyzing the clinical manifestations of all these patients with CNOT3 variants, including our three cases and 22 patients previously reported, we did not observe a correlation between genotypes and phenotypes. In summary, this is the first time to report cases with IDDSADF in the Chinese population, and three novel CNOT3 variants in these patients expand its mutational spectrum.


Subject(s)
East Asian People , Neurodevelopmental Disorders , Humans , Transcription Factors/genetics , Neurodevelopmental Disorders/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Phenotype
3.
Br J Haematol ; 203(2): 282-287, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37519213

ABSTRACT

Donor-derived haematological neoplasms, in which recipients present with haematological malignancies that have evolved from transplant donor stem cells, have previously been described for myelodysplastic syndrome, myeloproliferative neoplasms, acute myeloid leukaemia and less often, leukaemias of lymphoid origin. Here we describe a rare and complex case of donor-derived T-cell acute lymphoblastic leukaemia with a relatively short disease latency of less than 4 years. Through genomic and in vitro analyses, we identified novel mutations in NOTCH1 as well as a novel activating mutation in STAT5B; the latter targetable with the clinically available drugs, venetoclax and ruxolitinib.


Subject(s)
Leukemia, Myeloid, Acute , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Male , Female , Siblings , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Tissue Donors , T-Lymphocytes
4.
Genes Cells ; 27(9): 579-585, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35822830

ABSTRACT

GW182 family proteins are a key component of microRNA-protein complex eliciting translational repression and/or degradation of microRNA-targets. The microRNAs in complex with Argonaute proteins bind to target mRNAs, and GW182 proteins are recruited by association with Argonaute proteins. The GW182 protein acts as a scaffold that links the Argonaute protein to silencing machineries including the CCR4-NOT complex which accelerates deadenylation and inhibits translation. The carboxyl-terminal effector domain of GW182 protein, also called the silencing domain, has been shown to bind to the subunits of the CCR4-NOT complex, the CNOT1 and the CNOT9. Here we show that a small region within the amino-terminal Argonaute-binding domain of human GW182/TNRC6A can associate with the CCR4-NOT complex. This region resides between the two Argonaute-binding sites and contains reiterated GW/WG-motifs. Alanine mutation experiments showed that multiple tryptophan residues are required for the association with the CCR4-NOT complex. Furthermore, co-expression and immunoprecipitation assays suggested that the CNOT9 subunit of the CCR4-NOT complex is a possible binding partner of this region. Our work, taken together with previous studies, indicates that the human GW182 protein contains multiple binding interfaces to the CCR4-NOT complex.


Subject(s)
Argonaute Proteins , Autoantigens , MicroRNAs , RNA-Binding Proteins , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Autoantigens/chemistry , Autoantigens/genetics , Autoantigens/metabolism , Binding Sites , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Protein Binding , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, CCR4/genetics , Receptors, CCR4/metabolism , Transcription Factors/metabolism , Tryptophan/genetics , Tryptophan/metabolism
5.
Clin Genet ; 98(4): 408-412, 2020 10.
Article in English | MEDLINE | ID: mdl-32720325

ABSTRACT

De novo pathogenic variants in CNOT3 have recently been reported in a developmental delay disorder (intellectual developmental disorder with speech delay, autism, and dysmorphic facies [IDDSADF, OMIM: #618672]). The patients present with a variable degree of developmental delay and behavioral problems. To date, all reported disease-causing variants occurred de novo and no parent-child transmission was observed. We report for the first time autosomal dominant transmissions of the CNOT3-associated developmental disorder in two unrelated families. The clinical characteristics in our patients match the IDDSADF features reported so far and suggest substantial variability of the phenotype within the same family.


Subject(s)
Autistic Disorder/genetics , Intellectual Disability/genetics , Language Development Disorders/genetics , Transcription Factors/genetics , Adolescent , Adult , Autistic Disorder/complications , Autistic Disorder/diagnosis , Autistic Disorder/diagnostic imaging , Child , Child, Preschool , Facies , Female , Genetic Predisposition to Disease , Humans , Intellectual Disability/complications , Intellectual Disability/diagnosis , Intellectual Disability/diagnostic imaging , Language Development Disorders/complications , Language Development Disorders/diagnosis , Language Development Disorders/diagnostic imaging , Male , Middle Aged , Phenotype , Exome Sequencing , Young Adult
6.
Apoptosis ; 24(7-8): 673-685, 2019 08.
Article in English | MEDLINE | ID: mdl-31177396

ABSTRACT

Chemotherapeutic resistance always results in poor clinical outcomes of cancer patients and its intricate mechanisms are large obstacles in overcoming drug resistance. CCR4-NOT transcription complex subunit 3 (CNOT3), a post-translational regulator, is suggested to be involved in cancer development and progression. However, its role in chemotherapeutic resistance is not well understood. In this study, after screening the CNOT3 mRNA in a cancer microarray database called Oncomine and examining the expression levels of CNOT3 mRNA in normal tissues and lung cancer tissues, we found that CNOT3 was up-regulated in lung cancer tissues. Besides, its high-expression was associated with poor prognosis of lung cancer patients. We also found higher expression level of CNOT3 and lower expression level of receptor-interacting protein kinase 3 (RIPK3) in cisplatin-resistant A549 (A549/DDP) cells, and knocking down CNOT3 expression could sensitize A549/DDP cells to cisplatin-induced apoptosis. We demonstrated that CNOT3 depletion up-regulated the expression level of RIPK3 and the enhanced apoptosis was mediated by the elevated RIPK3 to further trigger Caspase 8 activation. Taken together, our results reveal a role of CNOT3 in cisplatin resistance of lung cancer and provide a potential target for lung cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Transcription Factors/metabolism , A549 Cells , Caspase 8/metabolism , Cell Proliferation , Fas-Associated Death Domain Protein/metabolism , Gene Expression , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Prognosis , Transcription Factors/genetics
7.
Ann Hum Genet ; 78(1): 62-71, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24116917

ABSTRACT

Mutations in PRPF31 are responsible for autosomal dominant retinitis pigmentosa (adRP, RP11 form) and affected families show nonpenetrance. Differential expression of the wildtype PRPF31 allele is responsible for this phenomenon: coinheritance of a mutation and a higher expressing wildtype allele provide protection against development of disease. It has been suggested that a major modulating factor lies in close proximity to the wildtype PRPF31 gene on Chromosome 19, implying that a cis-acting factor directly alters PRPF31 expression. Variable expression of CNOT3 is one determinant of PRPF31 expression. This study explored the relationship between CNOT3 (a trans-acting factor) and its paradoxical cis-acting nature in relation to RP11. Linkage analysis on Chromosome 19 was performed in mutation-carrying families, and the inheritance of the wildtype PRPF31 allele in symptomatic-asymptomatic sibships was assessed-confirming that differential inheritance of wildtype chromosome 19q13 determines the clinical phenotype (P < 2.6 × 10(-7) ). A theoretical model was constructed that explains the apparent conflict between the linkage data and the recent demonstration that a trans-acting factor (CNOT3) is a major nonpenetrance factor: we propose that this apparently cis-acting effect arises due to the intimate linkage of CNOT3 and PRPF31 on Chromosome 19q13-a novel mechanism that we have termed "linked trans-acting epistasis."


Subject(s)
Epistasis, Genetic , Eye Proteins/genetics , Genes, Recessive , Polymorphism, Genetic , Retinitis Pigmentosa/genetics , Transcription Factors/genetics , Alleles , Chromosomes, Human, Pair 19/genetics , Computational Biology , Eye Proteins/metabolism , Female , Genes, Dominant , Genetic Linkage , Genetic Loci , Heterozygote , Humans , Male , Microsatellite Repeats , Mutation , Pedigree , Pneumonia, Aspiration/genetics , Transcription Factors/metabolism
8.
J Inflamm Res ; 17: 5415-5425, 2024.
Article in English | MEDLINE | ID: mdl-39161681

ABSTRACT

Background: Acute lung injury (ALI) is caused by a variety of illnesses, including aspiration pneumonia and sepsis. The CCR4-NOT complex is a large multimeric protein complex that degrades mRNA through poly(A) tail shortening, whereas it also contributes to regulation of transcription and translation. Cnot3 is a scaffold component of the CCR4-NOT complex and is essential for the integrity of the complex; loss of Cnot3 leads to depletion of whole complex. While the significance of cytokine mRNA degradation in limiting inflammation has been established, the roles of CCR4-NOT complex-mediated in ALI remain elusive. Methods: The effects of Cnot3 haploinsufficiency in the pathology and cytokine expression were analyzed in the mouse lungs of acid aspiration-induced acute lung injury. The decay rate and transcription activity of cytokine mRNAs under Cnot3 heterozygous deletion were analyzed in lipopolysaccharide (LPS) -stimulated mouse embryonic fibroblasts (MEFs). Results: Tamoxifen-induced heterozygous deletion of Cnot3 in adult mice (Cnot3 Hetz) did not show body weight loss or any apparent abnormality. Under acid aspiration-induced acute lung injury, Cnot3 Hetz mice exhibited increased pulmonary edema, worse lung pathologies and more severe inflammation compared with wild type mice. mRNA expression of pro-inflammatory genes Il1b and Nos2 were significantly upregulated in the lungs of Cnot3 Hetz mice. Consistently, mRNA expression of Il1b and Nos2 was upregulated in LPS-stimulated Cnot3 Hetz MEFs. Mechanistically, while heterozygous depletion of Cnot3 stabilized both Il1b and Nos2 mRNAs, the nascent pre-mRNA level of Il1b was upregulated in Cnot3 Hetz MEFs, implicating Cnot3-mediated transcriptional repression of Il1b expression in addition to destabilization of Il1b and Nos2 mRNAs. PU.1 (Spi1) was identified as a causative transcription factor to promote Il1b expression under Cnot3 haploinsufficient conditions. Conclusion: CNOT3 plays a protective role in ALI by suppressing expression of pro-inflammatory genes Il1b and Nos2 through both post-transcriptional and transcriptional mechanisms, including mRNA stability control of Spi1.

9.
Genes (Basel) ; 14(2)2023 02 08.
Article in English | MEDLINE | ID: mdl-36833363

ABSTRACT

(1) Background/aims: To examine potential genetic modifiers of disease penetrance in PRPF31-associated retinitis pigmentosa 11 (RP11). (2) Methods: Blood samples from individuals (n = 37) with PRPF31 variants believed to be disease-causing were used for molecular genetic testing and, in some cases (n = 23), also for mRNA expression analyses. Medical charts were used to establish if individuals were symptomatic (RP) or asymptomatic non-penetrant carriers (NPC). RNA expression levels of PRPF31 and CNOT3 were measured on peripheral whole blood using quantitative real-time PCR normalized to GAPDH. Copy number variation of minisatellite repeat element 1 (MSR1) was performed with DNA fragment analysis. (3) Results: mRNA expression analyses on 22 individuals (17 with RP and 5 non-penetrant carriers) revealed no statistically significant differences in PRPF31 or CNOT3 mRNA expression levels between individuals with RP and non-penetrant carriers. Among 37 individuals, we found that all three carriers of a 4-copy MSR1 sequence on their wild-type (WT) allele were non-penetrant carriers. However, copy number variation of MSR1 is not the sole determinant factor of non-penetrance, as not all non-penetrant carriers carried a 4-copy WT allele. A 4-copy MSR1 mutant allele was not associated with non-penetrance. (4) Conclusions: In this Danish cohort, a 4-copy MSR1 WT allele was associated with non-penetrance of retinitis pigmentosa caused by PRPF31 variants. The level of PRPF31 mRNA expression in peripheral whole blood was not a useful indicator of disease status.


Subject(s)
DNA Copy Number Variations , Retinitis Pigmentosa , Humans , Transcription Factors/genetics , Retinitis Pigmentosa/genetics , RNA, Messenger , Denmark , RNA , Eye Proteins/genetics
10.
Cell Rep ; 42(12): 113413, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38096059

ABSTRACT

Nonoptimal synonymous codons repress gene expression, but the underlying mechanisms are poorly understood. We and others have previously shown that nonoptimal codons slow translation elongation speeds and thereby trigger messenger RNA (mRNA) degradation. Nevertheless, transcript levels are often insufficient to explain protein levels, suggesting additional mechanisms by which codon usage regulates gene expression. Using reporters in human and Drosophila cells, we find that transcript levels account for less than half of the variation in protein abundance due to codon usage. This discrepancy is explained by translational differences whereby nonoptimal codons repress translation initiation. Nonoptimal transcripts are also less bound by the translation initiation factors eIF4E and eIF4G1, providing a mechanistic explanation for their reduced initiation rates. Importantly, translational repression can occur without mRNA decay and deadenylation, and it does not depend on the known nonoptimality sensor, CNOT3. Our results reveal a potent mechanism of regulation by codon usage where nonoptimal codons repress further rounds of translation.


Subject(s)
Codon Usage , Ribosomes , Animals , Humans , Ribosomes/metabolism , Protein Biosynthesis , Codon/genetics , Codon/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Front Genet ; 13: 845016, 2022.
Article in English | MEDLINE | ID: mdl-36110215

ABSTRACT

17a-Hydroxylase/17,20-lyase deficiency (17OHD) is caused by pathogenic mutations in CYP17A1. Female patients present with hypertension, hypokalemia, and sexual infantilism while males present with sex development disorder. Moyamoya disease (MMD) is a chronic cerebrovascular disease that frequently results in intracranial ischemia or hemorrhage. The present study describes a case of 17OHD and MMD in a 27-year-old phenotypically female (46, XY) patient and discusses the clinical features and characteristics of her genetic defect. Clinical, hormonal, radiological, and genetic analyses were performed and blood samples were collected for whole-exome sequencing (WES). The results of the WES revealed a homozygous intronic mutation (c.297+2T>C) in CYP17A1, which led to combined 17a-hydroxylase/17,20-lyase deficiency, as well as novel variants in PCNT and CNOT3 that might lead to MMD. To our knowledge, this study is the first to describe 17OHD accompanied by MMD. While several cases have previously described patients with 17OHD with histories of cerebral hemorrhage or cerebral ischemia, a correlation in genetic levels between 17OHD and MMD was not found. The risk of cerebrovascular accidents should be considered in patients with 17OHD and hypertension. Cerebrovascular examination in patients with 17OHD may be beneficial for the prevention of life-threatening intracranial vascular disease.

12.
Genes (Basel) ; 12(7)2021 06 30.
Article in English | MEDLINE | ID: mdl-34208845

ABSTRACT

Objective, the application of genomic sequencing in clinical practice has allowed us to appreciate the contribution of co-occurring pathogenic variants to complex and unclassified clinical phenotypes. Besides the clinical relevance, these findings have provided evidence of previously unrecognized functional links between genes in the context of developmental processes and physiology. Patients and Methods, a 5-year-old patient showing an unclassified phenotype characterized by developmental delay, speech delay, peculiar behavioral features, facial dysmorphism and severe cardiopathy was analyzed by trio-based whole exome sequencing (WES) analysis to identify the genomic events underlying the condition. Results, two co-occurring heterozygous truncating variants in CNOT3 and SMAD6 were identified. Heterozygous loss-of-function variants in CNOT3, encoding a subunit of the CCR4-NOT protein complex, have recently been reported to cause a syndromic condition known as intellectual developmental disorder with speech delay, autism and dysmorphic facies (IDDSADF). Enrichment of rare/private variants in the SMAD6 gene, encoding a protein negatively controlling transforming growth factor ß/bone morphogenetic protein (TGFB/BMP) signaling, has been described in association with a wide spectrum of congenital heart defects. We dissected the contribution of individual variants to the complex clinical manifestations and profiled a previously unappreciated set of facial features and signs characterizing IDDSADF. Conclusions, two concomitant truncating variants in CNOT3 and SMAD6 are the cause of the combination of features documented in the patient resulting in the unique multisystem neurodevelopmental condition. These findings provide evidence for a functional link between the CCR4-NOT complex and TGFB/BMP signaling in processes controlling cardiac development. Finally, the present revision provides evidence that IDDSADF is characterized by a distinctive facial gestalt.


Subject(s)
Autistic Disorder/pathology , Genetic Predisposition to Disease , Intellectual Disability/pathology , Language Development Disorders/pathology , Smad6 Protein/genetics , Transcription Factors/genetics , Autistic Disorder/genetics , Child, Preschool , Heterozygote , Humans , Intellectual Disability/genetics , Language Development Disorders/genetics , Male , Exome Sequencing
13.
Genes (Basel) ; 12(10)2021 09 28.
Article in English | MEDLINE | ID: mdl-34680937

ABSTRACT

Retinitis pigmentosa 11 (RP11) is caused by dominant mutations in PRPF31, however a significant proportion of mutation carriers do not develop retinopathy. Here, we investigated the relationship between CNOT3 polymorphism, MSR1 repeat copy number and disease penetrance in RP11 patients and non-penetrant carriers (NPCs). We further characterized PRPF31 and CNOT3 expression in fibroblasts from eight RP11 patients and one NPC from a family carrying the c.1205C>T variant. Retinal organoids (ROs) and retinal pigment epithelium (RPE) were differentiated from induced pluripotent stem cells derived from RP11 patients, an NPC and a control subject. All RP11 patients were homozygous for the 3-copy MSR1 repeat in the PRPF31 promoter, while 3/5 NPCs carried a 4-copy MSR1 repeat. The CNOT3 rs4806718 genotype did not correlate with disease penetrance. PRFP31 expression declined with age in adult cadaveric retina. PRPF31 and CNOT3 expression was reduced in RP11 fibroblasts, RO and RPE compared with controls. Both RP11 and NPC RPE displayed shortened primary cilia compared with controls, however a subpopulation of cells with normal cilia lengths was present in NPC RPE monolayers. Our results indicate that RP11 non-penetrance is associated with the inheritance of a 4-copy MSR1 repeat, but not with CNOT3 polymorphisms.


Subject(s)
Eye Proteins/genetics , Penetrance , Retinitis Pigmentosa/genetics , Adolescent , Adult , Aged , Cells, Cultured , Child , Eye Proteins/metabolism , Female , Genes, Modifier , Humans , Male , Middle Aged , Polymorphism, Genetic , Retina/metabolism , Retina/pathology , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology , Scavenger Receptors, Class A/genetics , Scavenger Receptors, Class A/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Transl Androl Urol ; 10(9): 3669-3683, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34733662

ABSTRACT

BACKGROUND: Currently, drug-resistance is a major challenge in the treatment of renal cancer. Although microRNAs (miRNAs) have been reported to contribute to the incidence of drug resistance in renal cancer, the bio-functional roles and underlying regulatory mechanisms of novel miRNAs in cisplatin resistance remain largely unclear. METHODS: In this study, miRNA microarray analysis was applied to evaluate miRNA changes induced by cisplatin on RCC (renal cell carcinoma) cell lines. Then, Caki-1 and 786-0 cells were transfected with miR (miRNA)-124 mimics to observe cisplatin resistance in RCC cell lines after up-regulation of miR-124. TargetScan was used to identify putative protein-coding gene targets of miR-124. Further, the interaction between calpain small subunit 1 (Capn4) and CCR4-NOT transcription complex subunit 3 (CNOT3) was detected by quantitative real-time PCR (qPCR) and western blotting, and confirmed by co-immunoprecipitation. The effect of Capn4 and/or CNOT3 on cell viability and half maximal inhibitory concentration (IC50) value of miR-124 overexpressed Caki-1 and 786-O cells to cisplatin was evaluated using the Cell Counting Kit-8 (CCK-8) assay. And the effect of Capn4 and/or CNOT3 on the level of necroptosis in miR-124 overexpressed Caki-1 and 786-O cells to cisplatin was evaluated by flow cytometric analysis. Then, four groups of 786-0 cells (miR-124, miR-124+ Capn4, miR-124+ CNOT3, miR-124+ Capn4+ CNOT3) were inoculated into nude mice to observe the effect of cisplatin on tumor formation. RESULTS: miR-124 was found to be markedly elevated in renal cancer cells by cisplatin. Functionally, the overexpression of miR-124 reduced the sensitivity of renal cancer cells to cisplatin and CAPN4 was found to be a direct target of miR-124, which can negatively regulated CAPN4 expression. Moreover, ectopic expression of CAPN4 reversed the impairment of miR-124 on cisplatin-sensitivity and cisplatin-induced necroptosis. Mechanically, the present study revealed that CAPN4 could directly interact with CNOT3 and promote its degradation, and that the cisplatin-resistant phenotype was reversed by up-regulation of CNOT3. CONCLUSIONS: Therefore, miR-124 is an important inhibitor in cisplatin-induced necroptosis, and the miR-124-CAPN4-CNOT3 signaling axis plays a critical role in the emergence of cisplatin-resistance.

15.
Oncotarget ; 10(39): 3939-3951, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31231471

ABSTRACT

Germline mutations in the tumor suppressor Adenomatous Polyposis Coli (APC) define Familial Adenomatous Polyposis (FAP), the genetic predisposition to developing adenomatous polyps. Recent sequencing of FAP adenomas have challenged established dogma that APC mutations alone represent the adenoma mutational landscape because recurrent somatic mutations in non-WNT pathway genes were also discovered. In particular, one of these novel genes, CNOT3, presented E20K and E70K mutations that are predicted to be deleterious in silico. We utilized zebrafish embryos to determine if these mutations affect CNOT3 function and perform novel biology in an APC-dependent pathway in vivo. Human CNOT3 (hCNOT3) and E20K mRNA injection rescued zebrafish cnot3a knockdown lordosis phenotype while E70K did not. In the FAP apcmcr zebrafish model, we show that ctbp1, but not retinoic acid, regulates cnot3a expression. Injection of hCNOT3 and E20K, but not E70K, to homozygous apcmcr zebrafish initiated gut differentiation while cnot3a knockdown in wildtype embryos led to decreased intestinal development and differentiation. Finally, targeted sequencing of 37 additional FAP adenomas revealed CNOT3 mutations in 20% of these samples. Overall, our work supports a mechanism where CTBP1 regulates CNOT3 and that overall CNOT3 perturbation could work in concert with germline APC mutations in advancing adenomas to a more transformed state prior to progression to adenocarcinoma.

17.
Oncotarget ; 9(14): 11794-11804, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29545936

ABSTRACT

The priming stage is the first step of liver regeneration (LR). This stage is characterized by the transition from G0 to cell cycle for 4 hours in rat. In this study, individual gene level and gene set level (GSEA) was performed to identify the candidate genes and significantly changed biological processes at 2 h after partial hepatectomy (PH). The leading edge analysis is performed to identify the key genes and iRegulon was employed for transcription factor (TF) analysis. A total of 53 differentially expressed genes were identified using RMA package based on R language at 2 h after PH, including the transcription factor, enzyme and cytokine. As the most important genes in our analysis, Socs3 was selected with a special analysis so as to find the pathways correlate to the expression of it. The changed significantly pathways in LR involved response to stress, ATP metabolism, and regulation of cell cycle mainly. Several transcription factors were identified including Stat5a, Cnot3 and zfp384. Taken together, at the early priming stage of LR in rat, the liver is experiencing some changes including response to stress, activated ATP metabolism and inhibition of cell cycle. Our analysis provided a detailed and comprehensive map for further research of the early priming stage of LR in rat.

18.
FEBS Lett ; 591(2): 358-368, 2017 01.
Article in English | MEDLINE | ID: mdl-28032897

ABSTRACT

Lipodystrophy involves a loss of adipose tissue. In mice, disruption of adipose tissue Cnot3, a subunit of the CCR4-NOT deadenylase complex, causes adipose tissue anomalies. In Cnot3ad-/- mice, white adipose tissue (WAT) decreases concomitantly with enhanced inflammation, whereas brown adipose tissue increases and contains larger lipid droplets. Cnot3ad-/- mice show hyperinsulinemia, hyperglycemia, insulin resistance, and glucose intolerance, and cannot maintain body temperature during cold exposure. Increased expression of inflammatory genes and decreased leptin expression also occur in Cnot3ad-/- WAT, achieving levels similar to those in lipodystrophic aP2-nSrebp1c and Ppargldi/+ mice; thus, Cnot3ad-/- mice exhibit lipodystrophy.


Subject(s)
Adipocytes/metabolism , Lipodystrophy/metabolism , Transcription Factors/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Disease Models, Animal , Epididymis/metabolism , Gene Expression Profiling , Glucose Intolerance/complications , Glucose Intolerance/metabolism , Hyperglycemia/complications , Hyperglycemia/metabolism , Hyperinsulinism/complications , Hyperinsulinism/metabolism , Inflammation/metabolism , Inflammation/pathology , Insulin Resistance , Lipolysis , Male , Mice, Knockout , Organ Specificity , Thermogenesis , Transcription Factors/genetics
19.
Front Genet ; 8: 61, 2017.
Article in English | MEDLINE | ID: mdl-28588606

ABSTRACT

The NOT genes encode subunits of the conserved Ccr4-Not complex, a global regulator of gene expression, and in particular of mRNA metabolism. They were originally identified in a selection for increased resistance to histidine starvation in the yeast S. cerevisiae. Recent work indicated that the Not5 subunit, ortholog of mammalian CNOT3, determines global translation levels by defining binding of the Ccr4-Not scaffold protein Not1 to ribosomal mRNAs during transcription. This is needed for optimal translation of ribosomal proteins. In this work we searched for mutations in budding yeast that were resistant to histidine starvation using the same selection that originally led to the isolation of the NOT genes. We thereby isolated mutations in ribosome-related genes. This common phenotype of ribosome mutants and not mutants is in good agreement with the positive role of the Not proteins for translation. In this regard, it is interesting that frequent mutations in RPL5 and RPL10 or in CNOT3 have been observed to accumulate in adult T-cell acute lymphoblastic leukemia (T-ALL). This suggests that in metazoans a common function implicating ribosome subunits and CNOT3 plays a role in the development of cancer. In this perspective we suggest that the Ccr4-Not complex, according to translation levels and fidelity, could itself be involved in the regulation of amino acid biosynthesis levels. We discuss how this could explain why mutations have been identified in many cancers.

SELECTION OF CITATIONS
SEARCH DETAIL