Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 424
Filter
Add more filters

Publication year range
1.
Biochem Biophys Res Commun ; 707: 149783, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38493746

ABSTRACT

Ingestion of Porphyromonas gingivalis, a periodontal pathogen, disrupts the intestinal barrier in mice. However, the involvement of outer membrane vesicles (OMVs) secreted from P. gingivalis in the destruction of the intestinal barrier remains unclear. In this study, we tested the hypothesis that OMVs carrying gingipains, the major cysteine proteases produced by P. gingivalis, affects the intestinal barrier function. OMVs increased the permeability of the Caco-2 cell monolayer, a human intestinal epithelial cell line, accompanied by degradation of the tight junction protein occludin. In contrast, OMVs prepared from mutant strains devoid of gingipains failed to induce intestinal barrier dysfunction or occludin degradation in Caco-2 cells. A close histological examination revealed the intracellular localization of gingipain-carrying OMVs. Gingipain activity was detected in the cytosolic fraction of Caco-2 cells after incubation with OMVs. These results suggest that gingipains were internalized into intestinal cells through OMVs and transported into the cytosol, where they then directly degraded occludin from the cytosolic side. Thus, P. gingivalis OMVs might destroy the intestinal barrier and induce systemic inflammation via OMV itself or intestinal substances leaked into blood vessels, causing various diseases.


Subject(s)
Adhesins, Bacterial , Porphyromonas gingivalis , Animals , Mice , Humans , Gingipain Cysteine Endopeptidases/metabolism , Caco-2 Cells , Porphyromonas gingivalis/physiology , Cytosol/metabolism , Occludin/metabolism , Adhesins, Bacterial/metabolism
2.
Biol Pharm Bull ; 47(6): 1123-1127, 2024.
Article in English | MEDLINE | ID: mdl-38839364

ABSTRACT

This study aimed to validate the In vitro Dissolution Absorption System 2 (IDAS2) containing a biological barrier of Caco-2 or Madin-Darby canine kidney (MDCK) cell monolayer through dose sensitivity studies. Metoprolol and propranolol were selected as Biopharmaceutics Classification System (BCS) Class I model drugs, and atenolol as a Class III model drug. The IDAS2 is comprised of a dissolution vessel (500 mL) and two permeation chambers (2 × 8.0 mL) mounted with Caco-2 or MDCK cell monolayer. One or two immediate-release tablet(s) of the model drug were added to the dissolution vessel, and the time profiles of dissolution and permeation were observed. Greater than 85% of metoprolol and propranolol (tested at two dosing concentrations) were dissolved by 15 min, and all drugs were fully dissolved by 30 min. All three drugs were more permeable across Caco-2 cells than MDCK cells with a linear increase in permeation across both cells at both dose concentrations. Thus, the dose sensitivity of the IDAS2 was demonstrated using both cell barriers. These results indicate a successful qualification of IDAS2 for the development/optimization of oral formulations and that MDCK cells can be utilized as a surrogate for Caco-2 cells.


Subject(s)
Atenolol , Metoprolol , Propranolol , Solubility , Dogs , Caco-2 Cells , Humans , Animals , Madin Darby Canine Kidney Cells , Propranolol/pharmacokinetics , Metoprolol/pharmacokinetics , Metoprolol/administration & dosage , Atenolol/pharmacokinetics , Atenolol/administration & dosage , Dose-Response Relationship, Drug , Biopharmaceutics/methods , Permeability , Intestinal Absorption
3.
Mar Drugs ; 22(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38667804

ABSTRACT

High blood cholesterol levels are a major risk factor for cardiovascular diseases. A purified aqueous extract of Fucus vesiculosus, rich in phlorotannins and peptides, has been described for its potential to inhibit cholesterol biosynthesis and intestinal absorption. In this work, the effect of this extract on intestinal cells' metabolites and proteins was analysed to gain a deeper understanding of its mode of action on lipids' metabolism, particularly concerning the absorption and transport of exogenous cholesterol. Caco-2 cells, differentiated into enterocytes, were exposed to the extract, and analysed by untargeted metabolomics and proteomics. The results of the metabolomic analysis showed statistically significant differences in glutathione content of cells exposed to the extract compared to control cells, along with an increased expression of fatty acid amides in exposed cells. A proteomic analysis showed an increased expression in cells exposed to the extract compared to control cells of FAB1 and NPC1, proteins known to be involved in lipid metabolism and transport. To the extent of our knowledge, this study is the first use of untargeted metabolomics and a proteomic analysis to investigate the effects of F. vesiculosus on differentiated Caco-2 cells, offering insights into the molecular mechanism of the extract's compounds on intestinal cells.


Subject(s)
Fucus , Proteomics , Humans , Caco-2 Cells , Fucus/chemistry , Proteomics/methods , Anticholesteremic Agents/pharmacology , Lipid Metabolism/drug effects , Metabolomics , Cholesterol/metabolism , Intestinal Absorption/drug effects , Plant Extracts/pharmacology , Intestines/drug effects
4.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893466

ABSTRACT

Epigallocatechin gallate (EGCG), the principal catechin in green tea, exhibits diverse therapeutic properties. However, its clinical efficacy is hindered by poor stability and low bioavailability. This study investigated solid particle-in-oil-in-water (S/O/W) emulsions stabilized by whey protein isolate (WPI) and sodium caseinate (NaCas) as carriers to enhance the bioavailability and intestinal absorption of EGCG. Molecular docking revealed binding interactions between EGCG and these macromolecules. The WPI- and NaCas-stabilized emulsions exhibited high encapsulation efficiencies (>80%) and significantly enhanced the bioaccessibility of EGCG by 64% compared to free EGCG after simulated gastrointestinal digestion. Notably, the NaCas emulsion facilitated higher intestinal permeability of EGCG across Caco-2 monolayers, attributed to the strong intermolecular interactions between caseins and EGCG. Furthermore, the emulsions protected Caco-2 cells against oxidative stress by suppressing intracellular reactive oxygen species generation. These findings demonstrate the potential of WPI- and NaCas-stabilized emulsions as effective delivery systems to improve the bioavailability, stability, and bioactivity of polyphenols like EGCG, enabling their applications in functional foods and nutraceuticals.


Subject(s)
Biological Availability , Caseins , Catechin , Emulsions , Whey Proteins , Catechin/analogs & derivatives , Catechin/chemistry , Humans , Whey Proteins/chemistry , Caseins/chemistry , Caco-2 Cells , Emulsions/chemistry , Molecular Docking Simulation , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Drug Carriers/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Intestinal Absorption/drug effects
5.
Molecules ; 29(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611803

ABSTRACT

Alcohol dehydrogenase (ADH) plays a pivotal role in constraining alcohol metabolism. Assessing the ADH-activating activity in vitro can provide insight into the capacity to accelerate ethanol metabolism in vivo. In this study, ADH-activating peptides were prepared from corn protein meal (CGM) using enzymatic hydrolysis, and these peptides were subsequently identified following simulated gastrointestinal digestion and their absorption through the Caco-2 cell monolayer membrane. The current investigation revealed that corn protein hydrolysate hydrolyzed using alcalase exhibited the highest ADH activation capability, maintaining an ADH activation rate of 52.93 ± 2.07% following simulated gastrointestinal digestion in vitro. After absorption through the Caco-2 cell monolayer membrane, ADH-activating peptides were identified. Among them, SSNCQPF, TGCPVLQ, and QPQQPW were validated to possess strong ADH activation activity, with EC50 values of 1.35 ± 0.22 mM, 2.26 ± 0.16 mM, and 2.73 ± 0.13 mM, respectively. Molecular Docking revealed that the activation of ADH occurred via the formation of a stable complex between the peptide and the active center of ADH by hydrogen bonds and hydrophobic interactions. The results of this study also suggest that corn protein hydrolysate could be a novel functional dietary element that helps protects the liver from damage caused by alcohol and aids in alcohol metabolism.


Subject(s)
Alcohol Dehydrogenase , Zea mays , Humans , Caco-2 Cells , Molecular Docking Simulation , Protein Hydrolysates , Peptides/pharmacology
6.
Molecules ; 29(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38675547

ABSTRACT

Fermentation is used not only to preserve food but also to enhance its beneficial effects on human health and achieve functional foods. This study aimed to investigate how different treatments (spontaneous fermentation or fermentation with the use of starter culture) affect phenolic content, antioxidant potential, and cholinesterase inhibitory activity in different kale cultivars: 'Halbhoner Grüner Krauser', 'Scarlet', and 'Nero di Toscana'. Chosen samples were further tested for their protective potential against the Caco-2 cell line. HPLC-MS analysis revealed that the fermentation affected the composition of polyphenolic compounds, leading to an increase in the content of rutin, kaempferol, sinapinic, and protocatechuic acids. In general, kale cultivars demonstrated various antioxidant activities, and fermentation led to an increase in total phenolic content and antioxidant activity. Fermentation boosted anti-cholinesterase activity most profoundly in 'Nero di Toscana'. Extracts of spontaneously fermented 'Scarlet' (SS) and 'Nero di Toscana' (NTS) showed cytoprotective properties, as revealed by the malondialdehyde (MDA), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) assays. Additionally, strong anti-inflammatory activity of NTS was shown by decreased release of cytokines IL-1ß and TNF-α. Collectively, the conducted studies suggest fermented kale cultivars as a potential source for functional foods.


Subject(s)
Antioxidants , Brassica , Fermentation , Phenols , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/metabolism , Phenols/pharmacology , Phenols/analysis , Phenols/chemistry , Caco-2 Cells , Brassica/chemistry , Brassica/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cholinesterase Inhibitors/pharmacology , Chromatography, High Pressure Liquid , Polyphenols/pharmacology , Polyphenols/chemistry
7.
Biochem Biophys Res Commun ; 664: 94-99, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37141642

ABSTRACT

In nonclinical studies, models that can predict the metabolism of drug candidates by cytochrome P450 (CYP), including Cytochrome P450 family 3 subfamily A member 4 (CYP3A4) are helpful. CYP3A4-overexpressing human cells have been used universally to evaluate whether CYP3A4 metabolizes drug-candidate compounds. However, CYP3A4-overexpressing human cell lines are problematic because their activity levels are lower than that of in vivo human CYP3A4. Heme plays a paramount role in CYP activity. The rate-limiting step in heme biosynthesis is the generation of 5-aminolevulinic acid (5-ALA). In this study, we examined whether treatment with 5-ALA to CYP3A4-POR-UGT1A1-CES2 knockin and CES1 knockout (genome-edited) Caco-2 cells enhances CYP3A4 activity. A 7-day 5-ALA treatment increased intracellular heme levels in genome-edited Caco-2 cells without cytotoxicity. Moreover, consistent with the increase in intracellular heme content, 5-ALA treatment increased CYP3A4 activity in genome-edited Caco-2 cells. The results of this research are expected to be applied to pharmacokinetic studies using CYP-overexpressing human cells containing CYP3A4.


Subject(s)
Aminolevulinic Acid , Cytochrome P-450 CYP3A , Humans , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Caco-2 Cells , Aminolevulinic Acid/pharmacology , Heme , Cytochrome P-450 Enzyme System/metabolism
8.
Mol Pharm ; 20(2): 1202-1212, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36607603

ABSTRACT

The inherent low oral bioavailability of therapeutic peptides can be enhanced by the cell-penetrating peptide penetratin and its analogues shuffle and penetramax applied as carriers for delivery of insulin. In this study, the objective was to gain mechanistic insights on the effect of the carrier peptide stereochemistry on their interactions with insulin and on insulin delivery. Insulin-carrier peptide interactions were investigated using small-angle X-ray scattering and cryogenic transmission electron microscopy, while the insulin and peptide stability and transepithelial insulin permeation were evaluated in the Caco-2 cell culture model along with the carrier peptide-induced effects on epithelial integrity and cellular metabolic activity. Interestingly, the insulin transepithelial permeation was influenced by the degree of insulin-carrier peptide complexation and depended on the stereochemistry of penetramax but not of penetratin and shuffle. The l-form of the peptides initially decreased the epithelial integrity comparable to that induced by the d-peptides, suggesting a comparable mechanism of action. The immediate decrease was reversible during exposure of the Caco-2 epithelium to the l-peptides but not during exposure to the d-peptides, likely a result of their higher stability. Overall, exploration of the stereochemistry showed to be an interesting strategy for carrier peptide-mediated insulin delivery.


Subject(s)
Cell-Penetrating Peptides , Insulin , Humans , Insulin/metabolism , Caco-2 Cells , Carrier Proteins/chemistry , Insulin, Regular, Human/metabolism , Cell-Penetrating Peptides/chemistry , Epithelium/metabolism
9.
Crit Rev Food Sci Nutr ; 63(19): 3452-3467, 2023.
Article in English | MEDLINE | ID: mdl-34652225

ABSTRACT

Dietary polyphenols with great antidiabetic effects are the most abundant components in edible products. Dietary polyphenols have attracted attention as dipeptidyl peptidase-IV (DPP-IV) inhibitors and indirectly improve insulin secretion. The DPP-IV inhibitory activities of dietary polyphenols depend on their structural diversity. Screening methods that can be used to rapidly and accurately identify potential polyphenol DPP-IV inhibitors are urgently needed. This review focuses on the relationship between the structures of dietary polyphenols and their DPP-IV inhibitory effects. Different characterization methods used for polyphenols as DPP-IV inhibitors have been summarized and compared. We conclude that the position and number of hydroxyl groups, methoxy groups, glycosylated groups, and the extent of conjugation influence the efficiency of inhibition of DPP-IV. Various combinations of methods, such as in-vitro enzymatic inhibition, ex-vivo/in-vivo enzymatic inhibition, cell-based in situ, and in-silico virtual screening, are used to evaluate the DPP-IV inhibitory effects of dietary polyphenols. Further investigations of polyphenol DPP-IV inhibitors will improve the bioaccessibility and bioavailability of these bioactive compounds. Exploration of (i) dietary polyphenols derived from multiple targets, that can prevent diabetes, and (ii) actual binding interactions via multispectral analysis, to understand the binding interactions in the complexes, is required.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Humans , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/pharmacology , Structure-Activity Relationship , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism
10.
Bioorg Med Chem Lett ; 92: 129374, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37315699

ABSTRACT

Cytosolic phospholipase A2α (cPLA2α), the key enzyme of the arachidonic acid cascade, is considered to be an interesting target for the development of new anti-inflammatory drugs. Potent inhibitors of the enzyme include indole-5-carboxylic acids with propan-2-one residues in position 1 of the indole. Previously, it was found that central pharmacophoric elements of these compounds are their ketone and carboxylic acid groups, which unfortunately are subject to pronounced metabolism by carbonyl reductases and glucuronosyltransferases, respectively. Here we show that the metabolic stability of these inhibitors can be improved by introducing alkyl substituents in the vicinity of the ketone group or by increasing their rigidity. Furthermore, permeability tests with Caco-2 cells revealed that the indole derivatives have only low permeability, which can be attributed to their affinity to efflux transporters. Among other things, the polar ketone group in the center of the molecules seems to be a decisive factor for their reverse transport. After its removal, the permeability increased significantly. The enhancement in metabolic stability and permeability achieved by the structural variations carried out was accompanied by a more or less pronounced decrease in the inhibitory potency of the compounds against cPLA2α.


Subject(s)
Group IV Phospholipases A2 , Indoles , Humans , Structure-Activity Relationship , Group IV Phospholipases A2/metabolism , Caco-2 Cells , Indoles/chemistry , Ketones/chemistry , Enzyme Inhibitors/chemistry
11.
Bioorg Med Chem ; 77: 117110, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36495814

ABSTRACT

Indole-5-carboxylic acids with 3-aryloxy-2­oxopropyl residues in position 1 have been shown to be potent inhibitors of cytosolic phospholipase A2α (cPLA2α), an enzyme involved in the formation of pro-inflammatory lipid mediators. Unfortunately, in animal experiments, only very low plasma concentrations could be achieved after peroral administration of this type of compound. Since insufficient metabolic stability was suspected as the cause, structural modifications were made to optimize this property. These included the conversion of the aromatic into an aliphatic carboxylic acid function as well as the rigidification of the lipophilic structural elements. A selected pyrrole-3-propionic acid was tested for its peroral in vivo bioavailability in mice. However, higher plasma concentrations could not be achieved also with this compound. Using the Caco2 cell permeation assay, substances investigated were found to be very good substrates for gastrointestinal efflux transporters, which explains their poor peroral absorption.


Subject(s)
Group IV Phospholipases A2 , Humans , Mice , Animals , Structure-Activity Relationship , Caco-2 Cells , Biological Availability , Biological Transport , Cytosol
12.
Biotechnol Lett ; 45(5-6): 601-617, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37036605

ABSTRACT

BACKGROUND: Disruption of intestinal barrier function and an imbalance in intestinal immunity are crucial for the occurrence and development of ulcerative colitis. Because of their important roles in regulating inflammation and immunity, exosomes (Exos) released from bone marrow mesenchymal stem cells (BMSCs) may be useful for treating ulcerative colitis. The EphB/EphrinB signaling pathway plays a crucial role in the inflammatory process and the development and function of immune cells, and can mediate long-distance intercellular communication through extracellular vesicles. This study was conducted to explore the effects of pre-modified BMSC-Exos expressing EphB2 (EphB2-Exos) on immunoregulation in vitro. METHODS: We transfected a lentivirus vector encoding EphB2 into BMSCs and isolated EphB2-Exos from the culture supernatant. Inflammation and oxidative damage in the human colon adenocarcinoma cell line (Caco-2) were induced by dextran sulfate sodium/hydrogen peroxide. In addition, spleen CD4+ T lymphocytes of rats were sorted in vitro. We conducted a series of experiments to explore the biological functions of EphB2-Exos. RESULTS: EphB2-Exos were successfully isolated and were found to significantly protect the activity, proliferation, and migration of Caco-2 cells that were inhibited by dextran sulfate sodium. EphB2-Exos alleviated inflammation and apoptosis and increased the activity of antioxidant enzymes while inhibiting oxidative stress in Caco-2 cells. EphB2-Exos restored intestinal barrier function by inhibiting the RhoA/ROCK pathway and regulated the polarization of CD4+T cells. CONCLUSION: EphB2-Exos enhanced intestinal barrier function and regulated the immune balance by inhibiting the RhoA/ROCK pathway in vitro. These findings suggest that EphB2-Exos can be applied as a cell-free therapy for ulcerative colitis.


Subject(s)
Adenocarcinoma , Colitis, Ulcerative , Colonic Neoplasms , Exosomes , Mesenchymal Stem Cells , Rats , Humans , Animals , Exosomes/metabolism , Caco-2 Cells , Colitis, Ulcerative/metabolism , Adenocarcinoma/metabolism , Dextran Sulfate/metabolism , Colonic Neoplasms/metabolism , Inflammation/metabolism
13.
Mar Drugs ; 21(11)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37999403

ABSTRACT

Antarctic krill (Euphausia superba) is the world's largest resource of animal proteins and is thought to be a high-quality resource for future marine healthy foods and functional products. Therefore, Antarctic krill was degreased and separately hydrolyzed using flavourzyme, pepsin, papain, and alcalase. Protein hydrolysate (AKH) of Antarctic krill prepared by trypsin showed the highest Ca-chelating rate under the optimized chelating conditions: a pH of 8.0, reaction time of 50 min, temperature of 50 °C, and material/calcium ratio of 1:15. Subsequently, fourteen Ca-chelating peptides were isolated from APK by ultrafiltration and a series of chromatographic methods and identified as AK, EAR, AEA, VERG, VAS, GPK, SP, GPKG, APRGH, GVPG, LEPGP, LEKGA, FPPGR, and GEPG with molecular weights of 217.27, 374.40, 289.29, 459.50, 275.30, 300.36, 202.21, 357.41, 536.59, 328.37, 511.58, 516.60, 572.66, and 358.35 Da, respectively. Among fourteen Ca-chelating peptides, VERG presented the highest Ca-chelating ability. Ultraviolet spectrum (UV), Fourier Transform Infrared (FTIR), and scanning electron microscope (SEM) analysis indicated that the VERG-Ca chelate had a dense granular structure because the N-H, C=O and -COOH groups of VERG combined with Ca2+. Moreover, the VERG-Ca chelate is stable in gastrointestinal digestion and can significantly improve Ca transport in Caco-2 cell monolayer experiments, but phytate could significantly reduce the absorption of Ca derived from the VERG-Ca chelate. Therefore, Ca-chelating peptides from protein hydrolysate of Antarctic krill possess the potential to serve as a Ca supplement in developing healthy foods.


Subject(s)
Euphausiacea , Protein Hydrolysates , Animals , Humans , Protein Hydrolysates/chemistry , Euphausiacea/chemistry , Calcium , Caco-2 Cells , Peptides/chemistry , Antarctic Regions
14.
Ecotoxicol Environ Saf ; 249: 114447, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-38321666

ABSTRACT

Phycotoxins are a class of multiple natural metabolites produced by microalgae in marine and freshwater ecosystems that bioaccumulate in food webs, particularly in shellfish, having a great impact on human health. Phycotoxins are mainly leached and absorbed in the small intestine when human consumers accidentally ingest toxic aquatic products contaminated by them. To assess the intestinal uptake and damage of phycotoxins, a typical in vitro model was developed and widely applied using the human colorectal adenocarcinoma Caco-2 cell line. In this review, the application cases were summarized for multiple phycotoxins, including microcystins (MCs), cylindrospermopsins (CYNs), domoic acids (DAs), saxitoxins (STXs), palytoxins (PLTXs), okadaic acids (OAs), pectenotoxins (PTXs) and azaspiracids (AZAs). The results of the previous studies showed that each group of phycotoxins presented different cytotoxicity and mechanisms to Caco-2 cells, and significant discrepancies in the transport of phycotoxin across the Caco-2 cell monolayers. Therefore, this review describes the evaluation assays of the Caco-2 cell monolayer model, illustrates the principles of several primary cytotoxicity evaluation assays, and summarizes the cytotoxicity of each group of phycotoxins to Caco-2 cells line and their cellular transport, and finally proposes the development of multicellular intestinal models for future comprehensive studies on the toxicity and absorption of phycotoxins in the intestine. It will improve the understanding of Caco-2 cell monolayer models in the toxicology studies on phycotoxins and the potentially detrimental effects of microalgal toxins on the human intestine.


Subject(s)
Ecosystem , Microalgae , Humans , Caco-2 Cells , Intestinal Barrier Function , Marine Toxins/toxicity , Okadaic Acid/toxicity
15.
Ecotoxicol Environ Saf ; 264: 115404, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37625335

ABSTRACT

Radiation therapy and unwanted radiological or nuclear exposure, such as nuclear plant accidents, terrorist attacks, and military conflicts, pose serious health issues to humans. Dysfunction of the intestinal epithelial barrier and the leakage of luminal antigens and bacteria across the barrier have been linked to various human diseases. Intestinal permeability is regulated by intercellular structures, termed tight junctions (TJs), which are disrupted after radiation exposure. In this study, we investigated radiation-induced alterations in TJ-related proteins in an intestinal epithelial cell model. Caco-2 cells were irradiated with 2, 5, and 10 Gy and harvested 1 and 24 h after X-ray exposure. The trypan blue assay revealed that cell viability was reduced in a dose-dependent manner 24 h after X-ray exposure compared to that of non-irradiated cells. However, the WST-8 assay revealed that cell proliferation was significantly reduced only 24 h after radiation exposure to 10 Gy compared to that of non-irradiated cells. In addition, a decreased growth rate and increased doubling time were observed in cells irradiated with X-rays. Intestinal permeability was significantly increased, and transepithelial electrical resistance values were remarkably reduced in Caco-2 cell monolayers irradiated with X-rays compared to non-irradiated cells. X-ray irradiation significantly decreased the mRNA and protein levels of ZO-1, occludin, claudin-3, and claudin-4, with ZO-1 and claudin-3 protein levels decreasing in a dose-dependent manner. Overall, the present study reveals that exposure to X-ray induces dysfunction of the human epithelial intestinal barrier and integrity via the downregulation of TJ-related genes, which may be a key factor contributing to intestinal barrier damage and increased intestinal permeability.


Subject(s)
Intestinal Diseases , Intestinal Mucosa , Humans , Caco-2 Cells , Intestinal Mucosa/metabolism , X-Rays , Claudin-3/genetics , Claudin-3/metabolism , Intestines , Epithelial Cells/metabolism , Intestinal Diseases/metabolism , Permeability
16.
Chem Pharm Bull (Tokyo) ; 71(4): 262-268, 2023.
Article in English | MEDLINE | ID: mdl-37005250

ABSTRACT

Apple is an important dietary agent for human and apple polyphenols (AP) are the main secondary metabolites of apples. In this study, the protective effects of AP on hydrogen peroxide (H2O2)-induced oxidative stress damage in human colon adenocarcinoma Caco-2 cells were investigated by cell viability, oxidative stress change as well as cell apoptosis. Pre-adding AP could significantly increase the survival rate of H2O2-treated Caco-2 cells. Besides, the activities of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) were elevated. While the malondialdehyde (MDA) content which is the major oxidant products of polyunsaturated fatty acids (PUFA) reduced after AP treatment. In addition, AP also suppressed the emergence of DNA fragment and decreased the expression of apoptosis-related protein Caspase-3. These results demonstrated that AP could ameliorate H2O2-induced oxidative stress damage in Caco-2 cells, which could serve as a reference for further studies of apple natural active products and deep study of the anti-oxidative stress mechanism.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Hydrogen Peroxide/pharmacology , Caco-2 Cells , Polyphenols/pharmacology , Adenocarcinoma/drug therapy , Colonic Neoplasms/drug therapy , Oxidative Stress , Antioxidants/pharmacology , Apoptosis , Catalase/metabolism , Catalase/pharmacology , Cell Survival
17.
Molecules ; 28(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37375124

ABSTRACT

Resveratrol has anti-inflammatory, anti-cancer, and anti-aging pharmacological activities. There is currently a gap in academic research regarding the uptake, transport, and reduction of H2O2-induced oxidative damage of resveratrol in the Caco-2 cell model. This study investigated the role of resveratrol in the uptake, transport, and alleviation of H2O2-induced oxidative damage in Caco-2 cells. In the Caco-2 cell transport model, it was observed that the uptake and transport of resveratrol (10, 20, 40, and 80 µM) were time dependent and concentration dependent. Different temperatures (37 °C vs. 4 °C) could significantly affect the uptake and transportation of resveratrol. The apical to basolateral transport of resveratrol was markedly reduced by STF-31, a GLUT1 inhibitor, and siRNA intervention. Furthermore, resveratrol pretreatment (80 µM) improves the viability of Caco-2 cells induced by H2O2. In a cellular metabolite analysis combined with ultra-high performance liquid chromatography-tandem mass spectrometry, 21 metabolites were identified as differentials. These differential metabolites belong to the urea cycle, arginine and proline metabolism, glycine and serine metabolism, ammonia recycling, aspartate metabolism, glutathione metabolism, and other metabolic pathways. The transport, uptake, and metabolism of resveratrol suggest that oral resveratrol could prevent intestinal diseases caused by oxidative stress.


Subject(s)
Antioxidants , Hydrogen Peroxide , Humans , Resveratrol/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Caco-2 Cells , Glucose Transporter Type 1/metabolism , Hydrogen Peroxide/metabolism , Biological Transport
18.
Molecules ; 28(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38138458

ABSTRACT

The purpose of this study was to evaluate the physicochemical properties of whey protein hydrolysate and determine changes in absorption rate due to enzymatic hydrolysis. The molecular weight distribution analysis of whey protein concentrate (WPC) and low-molecule whey protein hydrolysate (LMWPH) using the Superdex G-75 column revealed that LMWPH is composed of peptides smaller than those in WPC. Fourier-transform infrared spectroscopy indicated differences in peak positions between WPC and LMWPH, suggesting hydrolysis-mediated changes in secondary structures. Moreover, LMWPH exhibited higher thermal stability and faster intestinal permeation than WPC. Additionally, oral LMWPH administration increased serum protein content at 20 min, whereas WPC gradually increased serum protein content after 40 min. Although the total amount of WPC and LMWPH absorption was similar, LMWPH absorption rate was higher. Collectively, LMWPH, a hydrolysate of WPC, has distinct physicochemical properties and enhanced absorptive characteristics. Taken together, LMWPH is composed of low-molecular-weight peptides with low antigenicity and has improved absorption compared to WPC. Therefore, LMWPH can be used as a protein source with high bioavailability in the development of functional materials.


Subject(s)
Protein Hydrolysates , Subtilisins , Protein Hydrolysates/chemistry , Subtilisins/metabolism , Whey/metabolism , Whey Proteins , Peptides/chemistry , Blood Proteins
19.
Molecules ; 28(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37110519

ABSTRACT

The probiotic features of Lactiplantibacillus (L.) pentosus and L. paraplantarum strains, endogenous in Cobrançosa table olives from northeast Portugal, were assessed in terms of functional properties and health benefits. Fourteen lactic acid bacteria strains were compared with Lacticaseibacillus casei from a commercial brand of probiotic yoghurt and L. pentosus B281 from Greek probiotic table olives, in attempts to select strains with higher probiotic performances than those references. For functional properties, the i53 and i106 strains, respectively, exhibited: 22.2 ± 2.2% and 23.0 ± 2.2% for Caco-2 cell adhesion capacity; 21.6 ± 7.8% and 21.5 ± 1.4% for hydrophobicity; 93.0 ± 3.0% and 88.5 ± 4.5% for autoaggregation ability by 24 h of incubation; and ability to co-aggregate with selected pathogens-from 29 to 40% to Gram+ (e.g., Staphylococcus aureus ATCC 25923 and Enterococcus faecalis ATCC 29212); and from 16 to 44% for Gram- (e.g., Escherichia coli ATCC 25922 and Salmonella enteritidis ATCC 25928). The strains proved to be resistant (i.e., halo zone ≤14 mm) to some antibiotics (e.g., vancomycin, ofloxacin, and streptomycin), but susceptible (i.e., halo zone ≥ 20 mm) to others (e.g., ampicillin and cephalothin). The strains exhibited health-beneficial enzymatic activity (such as acid phosphatase and naphthol-AS-BI-phosphohydrolase), but not health-harmful enzymatic activity (such as ß-glucuronidase and N-acetyl-ß-glucosaminidase). Additionally, the antioxidant activity and cholesterol assimilation features, respectively, of the strains were 19.6 ± 2.8% and 77.5 ± 0.5% for i53, and 19.6 ± 1.8% and 72.2 ± 0.9% for i106. This study indicated that the addition of L. pentosus strains i53 and/or i106 to Cobrançosa table olives is likely to enhance the added value of the final product, in view of the associated potential benefits upon human health.


Subject(s)
Lactobacillales , Olea , Probiotics , Humans , Olea/microbiology , Caco-2 Cells , Fermentation , Escherichia coli
20.
Molecules ; 28(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570593

ABSTRACT

Arabinoxylan has prebiotic properties, as it is able to resist digestion in the small intestine and undergoes fermentation in the large intestine. In this work, arabinoxylan was extracted from corn fiber using an alkaline solution and further purified with membrane processing. It was found that the extracts were mainly composed of xylose (50-52%), arabinose (37-39%), galactose (9%) and glucose (1-4%), with an A/X ratio of 0.72-0.77. All the extracts were composed of phenolic compounds, including ferulic acid derivatives such as dimers, trimers and tetramers. The purified extract had a lower concentration of ferulic and p-coumaric acid (0.004 and 0.02 mg/mgdry_weight, respectively) when compared to raw extract (19.30 and 2.74 mg/mgdry_weight, respectively). The same effect was observed for the antioxidant activity, with purified extracts having a lower value (0.17 ± 0.02 µmol TEAC/mg) when compared to the raw extract (2.20 ± 0.35 µmol TEAC/mg). The purified extract showed a greater antiproliferative effect against the HT29 cell line with EC50 = 0.12 ± 0.02 mg/mL when compared to the raw extract (EC50 = 5.60 ± 1.6 mg/mL). Both raw and purified extracts did not show any cytotoxicity to the Caco-2 cell line in the maximum concentration tested (10 mg/mL).


Subject(s)
Phenols , Zea mays , Humans , Caco-2 Cells , Phenols/pharmacology , Antioxidants/pharmacology , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL